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Abstract 

This paper introduces an innovative approach to modelling count data through the introduction of a robust quantile regression 
model, the Half Cauchy Quantile Regression (HCQR). Count data is frequently challenged by outliers and skewed distributions. 
By integrating the heavy-tailed properties of the Half Cauchy distribution into the quantile regression framework, the HCQR 
model offers reliable estimates, particularly in the presence of extreme values. Quantile regression models, including HCQR, 
typically exhibit greater robustness to such extremes compared to traditional methods. The study highlights the limitations of 
traditional count regression models, such as the Negative Binomial Regression (NBR), particularly their performance 
inadequacies within the quantile regression framework. A comparative analysis using real-world crime data illustrates that the 
HCQR model substantially outperforms the NBR model. By integrating the half Cauchy distribution into the quantile regression 
framework, the HCQR model was formulated. In the Half Cauchy Quantile Regression Model, the Half Cauchy quantile function 
is used to transform the traditional quantile regression outputs, accommodating the characteristics of the Half Cauchy 
distribution. This superiority is demonstrated through improved metrics such as lower Standard Deviation, Skewness, Kurtosis, 
Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), Akaike Information Criterion 
(AIC), and Bayesian Information Criterion (BIC), establishing HCQR's enhanced robustness and predictive accuracy. 
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1. Introduction 

In traditional linear regression, the primary focus is on es-
timating the conditional mean of the response variable, which 
represents the center of the data distribution. However, this 
statistical regression approach often fails to capture important 
information about the tails of the distribution, particularly in 

the presence of extreme values. Quantile regression addresses 
this limitation by modelling the conditional quantiles of the 
response variable. This allows quantile regression to estimate 
a broader range of statistical relationships, capturing not only 
the central tendency of the response variable but also its be-

http://www.sciencepg.com/journal/sjams
http://www.sciencepg.com/journal/149/archive/1491302
http://www.sciencepg.com/
https://orcid.org/0000-0001-5512-7226
https://orcid.org/0000-0002-9825-3123
https://orcid.org/0000-0002-5839-0262


Science Journal of Applied Mathematics and Statistics http://www.sciencepg.com/journal/sjams 
 

28 

havior at various points in the data distribution. Quantile 
regression has gained recognition as a powerful tool for ana-
lyzing data beyond the mean, especially in the presence of 
outliers, skewness, and heavy-tailed distributions [5, 6]. 
However, existing quantile regression models often struggle 
to handle count response data, where outliers and extreme 
values are more pronounced [3]. Traditional count regression 
models like Poisson and Negative Binomial regressions, 
while effective, may not adequately address the presence of 
extreme outliers in the data [11]. This paper therefore presents 
the Half Cauchy Quantile Regression (HCQR) model, lever-
aging the robust properties of the Half Cauchy distribution. 
By incorporating the Half Cauchy distribution’s heavy-tailed 
nature in the quantile regression framework, the proposed 
HCQR model enhances the robustness of quantile regression, 
particularly when modeling count data with outliers. 

Quantile regression, introduced by [7], extends tradi-
tional regression by estimating conditional quantiles in-
stead of focusing solely on the conditional mean [2]. It has 
been widely used to model data with heteroscedasticity, 
skewness, and extreme values [8]. [1, 4] provided a com-
parative analysis of OLS and quantile regression, demon-
strating that quantile regression offers more detailed in-
sights into the impact of covariates across the entire dis-
tribution of response variables. 

There has been a paradigm shift where several approaches 
have been introduced which focused on extending QR to 
handle data that departs from normality in regression models, 
especially when the response variable follows an asymmet-
rical distribution. [10] proposed the Birnbaum-Saunders 
quantile regression using the Birnbaum-Saunders distribution. 
[12] proposed a new quantile regression using the unit Birn-
baum–Saunders distribution. [9] proposed the Transmuted 
unit Rayleigh quantile regression model as an alternative to 
Beta and Kumaraswamy quantile regression models [13, 14] 
investigated the robustness of QR to outliers using a Cauchy 
transformation, proving its effectiveness in handling extreme 
values. Their study emphasized QR's superiority in providing 
robust estimations compared to traditional regression meth-
ods. 

The Half Cauchy distribution is also one of such robust 
method, which is particularly suitable especially when the 
response variable follows a non-normal distribution that is a 
count data exhibiting a heavy-tailed nature. Previous research 
has demonstrated the effectiveness of using the Cauchy dis-
tribution in quantile regression [12, 13], but the Half Cauchy 
distribution, a truncated version of the Cauchy distribution, is 
better suited for modeling count data. 

Traditional count regression model, like Negative Binomial, 
assume specific distributions for count data. However, these 
models may struggle when the data exhibit extreme outliers. 
The proposed Half Cauchy Quantile regression (HCQR) 
model aims to overcome this limitation by incorporating the 
Half Cauchy distribution. 

2. Material & Methods of Research 

2.1. Count Regression Model - Negative 

Binomial Regression 

Count data refers to data that represents the number of 
occurrences of an event within a specified time. In other 
words, count data are discrete (countable), non-negative in-
tegers (0, 1, 2, 3…) that represents the frequency of occur-
rence of an event or phenomenon. 

Modelling count data with quantile regression can be more 
complex than other types of data due to its discrete nature, it’s 
restriction to non-negative values, and the presence of over-
dispersion. Count regression models are specialized statistical 
models designed to handle count data. These models are 
usually used when the response variable is a count, and we are 
interested in understanding the relationship between the count 
variables and one or more predictor variables. One commonly 
used count regression model is the Negative Binomial re-
gression model. 

In the context of modelling count data, Negative Binomial 
Regression (NBR) model is widely used to handle overdis-
persed data, where the variance exceeds the mean. It is par-
ticularly suited for situations where traditional Poisson re-
gression, which assumes equal mean and variance, is inade-
quate. The NBR is a generalization of the Poisson model. In 
practice, count data often exhibits overdispersion, meaning 
that the variance is greater than the mean. 

The Negative Binomial regression model is given as: 

Log (E( Yi ∣∣ X )) =  β0 + β1X1 + β2X2 + ⋯ + βpXp 

here β0, β1, … , βp are the regression coefficients, and 
X1, X2, … , Xp are the predictors. 

2.2. Quantile Regression with Jittered Data 

Quantile regression is a statistical technique that extends 
the capabilities of ordinary least regression by estimating the 
conditional quantiles of the response variable. However, 
quantile regression typically assumes that the response vari-
able is continuous. The challenge with applying continuous 
quantile regression to count data is that count data is inher-
ently discrete (i.e. it consists of integer values (0, 1, 2, 3…) 
while quantile regression models are designed for continuous 
data. When dealing with count data and the assumption is 
violated, then transformation is necessary to transform the 
data into a continuous form. One of such transformation is 
jittering, which simply involves adding some amount of noise 
to the count data. 

Jittering is a simple technique where a small amount of 
random noise is added to the count data, making the data more 
continuous while still retaining the characteristics of the 
original count variable. For this study, the noise is drawn from 
a half Cauchy distribution. 
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Given that the response variable (𝑌)  is count, (i.e. 
Y = y1, y2, … , yn) where 𝑦𝑖 represents the count for the 𝑖𝑡ℎ  
observation, we apply jittering by adding a random noise 𝜖𝑖 
which is drawn from the half Cauchy distribution. This 
transformed data 𝑌𝑗𝑖𝑡𝑡𝑒𝑟𝑒𝑑 is given as: 

Yjittered =  Y +  ϵ 

where 𝜖 = (𝜖1, 𝜖2, … , 𝜖𝑛) are the jittering noise values, drawn 
from the half Cauchy distribution. 

For each observation 𝑦𝑖, the jittered data takes the form, 

yi
jittered 

= yi + ϵi 

where 𝜖𝑖 ~ Half Cauchy. This means that each 𝜖𝑖  is a ran-
dom value drawn from the Half Cauchy distribution. To en-
sure that the transformed values are non-negative, we use the 
condition: 

yi
jittered 

= max (yi + ϵi, 0) 

This condition ensures that the jittered data remains non 
negative (as count data cannot be negative). 

2.3. Half Cauchy Distribution 

The half Cauchy distribution is the folded (truncated) form 
of the standard Cauchy distribution around the origin so that 
only positive (nonnegative) values are observed and detected. 
The half-Cauchy distribution is a heavy-tailed distribution 
characterized by its robustness against outliers, making it 
suitable for modeling data with extreme values. 

The probability density function (PDF) of the half-Cauchy 
distribution is given by: 

f(x: σ) =
2

πσ 
 [1 + (

x − θ

σ 
)

2

]

−1

; x > 0 

𝜃 is the location parameter (center of the peak) 
𝜎 is the scale parameter (controls the width of the distri-

bution) 
when 𝜃 = 0 and 𝜎 = 1, we have a standard Half Cauchy 

distribution as 

f(x) =  
2

π
(

1

1+x2)  

 
Figure 1. Half Cauchy Distribution Probability Density Function plot. 

The cumulative distribution function (CDF) can be expressed as: 

F(x) =
2

π
arctan(x) , x ≥ 0  
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Figure 2. Half Cauchy Distribution Cumulative Density Function plot. 

Inverse CDF (Quantile Function): The quantile function 
(i.e. Q(p)) is the inverse of the CDF, solving for 𝑥 in terms 
of the cumulative probability 𝑝 = F(x), where p ∈ [0,1]. 

Q(p) = tan (
π

2
p), (0 ≤ p ≤ 1)  

Since Q(p) = tan (
𝜋

2
𝑝) for 0 ≤ p ≤ 1, then let 𝜏  be 

the quantiles in quantile regression, where 0 ≤ 𝜏 ≤ 1. We 
can now relate equation as: 

Q(τ) = tan (
π

2
τ) (0 ≤ τ ≤ 1)  

The proposed HCQR model extends traditional quantile 
regression by integrating the Half Cauchy distribution’s 
quantile function. The mathematical formulation involves 
transforming the response variable using the quantile function 
of the Half Cauchy distribution, which allows for robust es-
timation of the conditional quantiles. 

Q(τ) =  Qτ(Y|X) 

tan (
π 

2
τ)  = β0

(τ)
+ β1

(τ)
X1 + β2

(τ)
X2 + ⋯ + βp

(τ)
Xp  

to solve for 𝜏, we apply the inverse tangent (arctangent) 
function to both sides of the equation to get: 

π 

2
τ = arctan( β0

(τ)
+ β1

(τ)
X1 + β2

(τ)
X2 + ⋯ + βp

(τ)
Xp)  

solve for 𝜏 by multiplying both sides of the equation by 
2 

𝜋
 to get: 

τ =
2

π
arctan( β0

(τ)
+ β1

(τ)
X1 + β2

(τ)
X2 + ⋯ + βp

(τ)
Xp)  

recall that 𝜏 is the quantile range where 𝜏 ∈ [0,1] which 
essentially corresponds to the cumulative probability (quan-
tiles) based on the predictors 𝑋1, 𝑋2, … , 𝑋𝑝 and their coeffi-
cient β0

(τ)
, β1

(τ)
, β2

(τ)
, … βp

(τ). 
Since 𝜏 represents a quantile, it can be expressed as Q(τ), 

representing the quantile function. Therefore, we can rewrite 
the above equation 43 as: 

Q(τ)  =  
2

π
arctan( β0

(τ)
+ β1

(τ)
X1 + β2

(τ)
X2 + ⋯ + βp

(τ)
Xp)  

Now, the quantile function 𝑄𝑦(𝜏) for the response varia-
ble 𝑌 similarly relates to the quantile function 𝑄(𝜏). 

The regression model can be expressed as follows: 

Qτ(Y) =  
2

π
arctan( β0

(τ)
+ β1

(τ)
X1 + β2

(τ)
X2 + ⋯ + βp

(τ)
Xp)  

𝑄𝜏(𝑌) = the 𝜏𝑡ℎ quantile of the response variable 𝑌 to 
be estimated. 

X1, X2, … , Xp = The predictor variables (independent var-
iables) that influence the quantile of the response variable 𝑌. 

β0
(τ) = The intercept (slope) term for the quantile regres-

sion model at quantile 𝜏. 
β1

(τ)
, β2

(τ)
, … βp

(τ) = The regression coefficients for the pre-
dictor variables at quantile 𝜏 

𝜏 = specified quantiles of the model (0.05, 0.25, 0.50, 
0.75, 0.95) 

The proposed half Cauchy quantile regression model will 
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be applied on a jittered count (discrete) data as well as man-
age extreme values and outliers. 

3. Results 

A detailed comparison and discussion of the results ob-
tained from the implementation of the Negative Binomial 
Regression (NBR) model and the proposed Half Cauchy 
Quantile Regression (HCQR) model was applied to a real life 
(crime data) where factors such as population density, income 

level, unemployment rate and police presence was used to 
investigate contributing factors to rise of crime rate. The 
above-mentioned models are evaluated based on results ob-
tained on their model diagnostics including Mean Squared 
Error (MSE), Root Mean Squared Error (RMSE), Mean Ab-
solute Error (MAE), Skewness, Kurtosis, Standard Deviation, 
Akaike Information Criterion (AIC) and Bayesian Infor-
mation Criterion (BIC). 

Table 1. Model Comparison for NBR, CQR and proposed HCQR for the jittered data. 

Model 

 

MSE RMSE MAE Skewness Kurtosis 
Standard 

Deviation 
AIC BIC 

Negative Binomial 
Regression  

104.837 10.239 5.755 8.220 75.270 10.293 3004.587 3190.536 

Half Cauchy Quan-
tile Regression 

0.05 95.969 9.796 3.147 7.245 68.616 9.289 2973.108 2993.066 

0.25 96.044 9.800 3.190 7.218 68.284 9.283 2973.510 2993.467 

0.50 93.296 9.659 2.982 7.220 68.392 9.287 2960.729 2980.686 

0.75 91.823 9.582 2.862 7.248 68.688 9.286 2953.902 2973.859 

0.95 90.245 9.500 2.773 7.303 69.549 9.260 2946.694 2966.651 

 

4. Discussion 

The table above presents a comparison of the Negative bi-
nomial regression (NBR) and the proposed Half-Cauchy 
quantile regression (HCQR Each metric evaluates the model’s 
performance with specific quantiles highlighted, leading to a 
holistic view of model accuracy, error distribution and fit 
quality. The MSE, RMSE and MAE values of the proposed 
model is lower than that of the NBR, suggesting it predicts with 
the least error, gives slightly more precise prediction under this 
model and performs well across different sections of the data 
compared to the Negative Binomial Regression model. Also, 
the skewness and kurtosis value for the proposed model is 
lower compared to the Negative Binomial Regression model. 
This suggests and reveals a more asymmetric error distribution 
of the data, leading to a more reliable prediction having heavy 
tails with fewer extreme values or outliers in its prediction. The 
proposed model has lower values in the standard deviation as 
compared with the other models considered in the study, indi-
cating more closeness to the median (mean). Finally, the AIC 
and BIC values for the proposed model is also observed to be 
lower than the Negative Binomial Regression model. This 
indicates that it provides a better balance between model 
goodness of fit and performance. Across all metrics, the pro-
posed Half Cauchy quantile regression model consistently 

outperforms the performance of the Negative Binomial Re-
gression model, especially at higher quantiles which are crucial 
for understanding extremes values (outliers) in life data. This 
suggest that the Half Cauchy quantile regression model can be 
particularly effective in applications were predicting outliers 
(extreme value) accurately is crucial especially when the error 
distribution follows a non-normal distribution. 

5. Conclusion 

From the analysis conducted, the proposed HCQR model 
formulated with the Half Cauchy distribution, was found have 
performed well in handling count (discrete) and robust against 
extreme values (outliers). The proposed model's performance 
evaluations demonstrated the superior robustness of HCQR 
compared to Negative Binomial regression model. The perfor-
mance metrics such as RMSE, MSE, MAE, AIC, BIC, Skewness, 
Kurtosis and standard deviation demonstrated the robustness and 
suitability of the proposed HCQR model in handling count (dis-
crete) data. The proposed HCQR model outperformed the Neg-
ative Binomial Regression model in terms of robustness and 
goodness-of-fit, particularly in challenging datasets. 

This study also demonstrates the potentials of the proposed 
HCQR in addressing critical gaps in statistically modeling 
count (discrete) data, laying a foundation for broader adoption 
in statistical and applied research. 
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6. Recommendations 

Based on outcomes presented in the results obtained, we 
recommend that researchers working with count data are 
encouraged to consider the half Cauchy quantile regression 
model, especially in situations where traditional count re-
gression models fail to account for outliers present in the 
count data. The proposed HCQR model’s robustness makes it 
a strong alternative for handling real world datasets where 
heavy – tailed distributions are present. 

Also, researchers are encouraged to refine and extend the 
framework, particularly by introducing Bayesian methods for 
parameter estimation. Expanding the model will make it more 
applicable to a wider range of real-world dataset. 

Abbreviations 

OLS Ordinary Least Squares 
NBR Negative Binomial Regression 
CQR Cauchit Quantile Regression 
HCQR Half Cauchy Quantile Regression 
MSE Mean Square Error 
MAE Mean Absolute Error 
RMSE Root Mean Square Error 
AIC Akaike Information Criteria 
BIC Bayesian Information Criterion 
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