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Abstract 

Objective - To investigate, analyze and optimize (where needed) the properties and predictive analyses of selected 5G Mobile 

wireless network parameters (i.e. Signal to interference noise ratio (SINR) and Throughput as measures of network 

performance) and Interference conditions in the presence of building obstacles; using the novel approach of combining signal 

data and visual data in wireless communications. Methods- Using a sample set (i.e., 200 data points) of real life 5G Outdoor 

Micro cellular tests data and urban building image datasets from validated open source data stores; experimental, investigative 

and comparative analyses were carried out using the novel approach of combining signal data and visual data using Machine 

Learning (i.e. Computer Vision) Hybrid deep learning artificial intelligence CNN-based model (i.e., High performance CNN), 

analytical and mathematical optimization algorithms. The key idea is to leverage camera imagery and Machine Learning 

(Computer Vision) to successfully predict and analyze network parameters like SINR, Throughput and amount of Interference 

in the presence of signal obstacles which usually attenuate received signals aperiodically. Additionally obstacle related losses 

were analysed and network parameter optimization was also demonstrated. Results - The predictive analyses in the presence of 

obstacles (i.e. concrete buildings) of selected 5G wireless network parameters of SINR and Throughput were carried out 

successfully using the Hybrid High performance CNN model (HP CNN); with the model showing excellent efficiency by using 

lesser resources and image datasets from a different environment. Furthermore, the analytical and predictive analyses of a 

representation of the user interference (i.e. I/PG) in the presence of obstacles were also successfully carried out, and a new 

OPL algorithm was also proposed in relation to important user obstacle penetration losses. Additionally, the 5G network 

parameter (i.e. SINR) was mathematically optimized with reference to minimal interference as a demonstration of being an 

effective tool for engineers and network designers to analytically tune and manage network performance in subsystems and 

systems more efficiently. Conclusions - This work and diverse related works being carried out; gives no doubt that this novel 

hybrid intelligent approach presents great possibilities and capabilities for the modern wireless communications field and 

associated technologies for now and in the future; and its a key approach to autonomous, more efficient network performance 

management and AI-driven network parameter, attenuation, and interference management. 
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1. Introduction 

Mobile networks for the fifth generation (5G) and beyond 

has been the subject of attraction for the use of modern mil-

limeter-wave (mmWave) communication technology [1, 2]. 

5G networks and further generational upcoming networks 

comes with the capability to support high reliability, very 

low latency, high data rates and large traffic volumes in vari-

ous modern applications such as virtual reality (VR), aug-

mented reality (AR), and cloud services [3, 4]. The key ad-

vantage of larger bandwidth in the order of several GHz, 

thereby enabling mutil-Gbit/s data rates, is possessed by the 

mmWave band; to the extent that for next generation 60 GHz 

communication of the IEEE 802.11ay aims to enable up to 

100 Gbits/s communication using over 4 GHz of bandwidth 

[5, 6]. Sensitivity to blockage is higher for mmWave com-

munications than lower-frequency bands due to the use of 

directive antennas by the former, thereby it being unable to 

provide reliable wireless links in the presence of blockages. 

Such sudden losses could be as much as 20 dB or more on 

received power when a line-of-sight (LOS) path is blocked 

by obstacles such as vehicles and pedestrians [7]. Additional-

ly, such sudden losses or damaging attenuation can create 

packet losses, thereby degrading data rate and/or throughput; 

which is very much critical for modern communications sys-

tems like 5G and beyond; and associated applications. There-

fore to overcome such limitations that comes with uncon-

trolled and challenging communication environments, and 

driven by recent advances in computer vision (CV) and ma-

chine learning (ML); visual data (e.g., RGB depth (RGB-D) 

camera imagery, LiDAR point cloud, etc.) generated that are 

prevalent in intelligent machines such as autonomous vehi-

cles, drones and robots; and such visual data that are also 

from a variety of vision sensors, can be leveraged as a key 

enabler for beyond 5G URLLC (Ultra Reliable and Low La-

tency Communication). This leads to a line of work in wire-

less communications, called: “View to Communicate” (V2C), 

where such visual data enables the construction of high-

definition 3D environmental maps for improved indoor navi-

gation and positioning; and also enabling the accurate predic-

tion of wireless channel dynamics, parameters and character-

istics, such as future channel blockages and received power 

[8]. Furthermore and alternatively, occlusions by environ-

mental artifacts like lighting, human body, and walls, to visi-

ble light is an area of vulnerability for computer vision in 

some scenarios; which can also be resolved using WiFi, 

which involves leveraging radio frequency (RF) sensing; to 

detour, change and diffract blockages, thereby tracking user 

locations even behind walls more precisely, as opposed to 

the visible light approach. Such research direction, which 

more recently involved the non-invasive medical imaging by 

the penetration of body tissues by the high resolution sensing 

capabilities of mmWave and terahertz (THz) signals, is 

called: “Communicate to View” (C2V) [9]. 

 
Figure 1. An illustration of vision aided wireless communication [10]. 

Therefore, novel predictive intelligent wireless communi-

cations actions like beam-switching and handover were also 

proposed in some previous works, and such works employed 

a mmWave radar and camera to detect a human approaching 

the LOS path respectively [11]. Additionally, and with the 

new challenge of the prediction of received power based on 

images; the prediction problem of received power can be 

considered as a supervised learning regression problem, and 
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with the application of Machine learning (ML) algorithms 

learn the mapping from the images to the received signal 

power values. This experimental and investigative research is 

hence aimed at investigating, analyzing and optimizing 

(where needed) the properties and predictive analyses of 

selected 5G Mobile wireless network parameters (i.e. Signal 

to interference noise ratio (SINR) and Throughput as 

measures of networks performance) and Interference condi-

tions in the presence of building obstacles; using the novel 

approach of combining signal data and visual data using Ma-

chine Learning (i.e. Computer Vision) hybrid deep learning 

artificial intelligence CNN (Convolutional Neural Network) 

based model, analytical and mathematical optimization algo-

rithms. 

2. Literature Review 

 
Figure 2. A System description showing the prediction units which predict the link quality from the depth images, an also the network con-

troller [14]. 

As mentioned in previous works, there has been extensive 

stochastic and empirical analyses conducted with respect to 

blockages of mmWave channels and signals [12-15]. Such 

previous analyses have been focused on outputs of stochastic 

prediction models; which has been confirmed to have a mean 

attenuation that follows a log-normal distribution; when in-

duced by human blockage at 60Hz. As a key proposal, was 

the proactive and integrated blockage prediction and network 

control system for mmWave networks using the assistance of 

a camera. The system conducts efficient network operations 

such as proactive handover and flow control before a block-

age occurs by capturing the mobility of the obstacles using 

depth cameras. Furthermore, some previous works have been 

based on time series analysis, which cannot predict periodic 

variations, but can predict long-term and periodic trends. 

Some works have also shown that in conventional micro-

wave communications, the prediction of the time-series of 

link qualities, such as PRR, SNR, and capacity, were carried 

out successfully [16-18]. Additionally, studies involving 

ML-based prediction methods have also been carried out 

using time series-data; and such methods predicts the re-

ceived power or received signal parameter by using recurrent 

neural networks (RNNs) from learning long term and period-

ic trends like the time series analysis [19, 20]. 

Another previous work obtained the predicted received 

power in an indoor experiment system which had two ran-

domly moving people act as obstacles by blocking the com-

munication link; by feeding historical or past RGBD images 

into a deep neural network (DNN). Similarly, another work 

also demonstrated by indoor experiment that accurate RF 

channels prediction can be obtained without the consumption 

of RF resources by using vision-based solutions within future 

2.4GHz channel. 

Furthermore, some previous works demonstrated the fea-

sibility of THz-based NLOS imaging using common build-

ing materials, while operating in the 220-230GHz band [21]. 

Additionally, studies were also done on the recognition of 

persons from their walking postures using a mmWave-based 

gait recognition method; which under NLOS (non-line-of-

sight) scenarios, is expected to still be effective [22]. Studies 

and researches of different approaches continues and one of 

such works, postulated that the predicted received power 

could be obtained by raytracing simulation [23-25]; such that 

if the future positions, materials and shapes of all objects in 
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an environment (e.g., walls, furniture, and pedestrians) which 

defines the future communication environment which has a 

perfect geometry and can be obtained; ray-tracing simulation 

can then predict the received power by calculating all of the 

possible signal propagations. Also some other works demon-

strated that localization accuracy or resolutions of image data 

can be improved by the cooperative use of multiple signals 

on different frequency bands. Such work involves utilizing a 

multi-band radar data on 3-12GHz bands and decimeter-level 

localization, leveraging multi-band signals on 900MHz, 

2.4GHz, and 5GHz; thereby forming a super-resolution sys-

tem of radar data as reported by previous studies [26]. 

3. Methodology 

This research activity and study is very much data driven, 

as it involves the synthesis and integration of 5G mobile 

wireless network parameter datasets and Deep Learning or 

Artificial Intelligence Convolutional Neural Network (CNN) 

driven Computer Vision image datasets relating buildings 

obstacles in a typical urban environment‟ by the use of a 

high performance hybrid simulation model. The analyses 

were carried out in three sections of firstly the Prediction of 

selected 5G Wireless network parameters using the Machine 

Learning drive hybrid model for the network parameter and 

CNN algorithm for the image dataset; secondly the Simula-

tion and Predictive analysis of the 5G Interference and Ob-

stacle loss factors in the wireless system; and thirdly the Op-

timization and Comparative analyses of the selected 5G net-

work parameters and also the performances of the simulation 

algorithms using the Root Mean Square error (RMS) metric. 

In addition to the theoretical and practical concepts and pa-

rameters already known; new metrics are derived to indicate, 

measure and confirm key tests and analyses. 

3.1. Data Collection and Preparation 

Furthermore, for such various methodical analyses; data 

acquisition, data cleaning, data wrangling, image datasets 

preprocessing, sizing and cropping; are among key prelimi-

nary steps to ensure that the required data is importantly used 

for such analysis, following the key important steps: 

1) Step 1: Acquire data from validated open access data 

stores and live data web portals. 

2) Step 2: Clean the data, label it appropritely, process it, 

wrangle it and make it fit for purpose. 

3) Step 3: Store the data and partition them accordingly 

for use. 

4) Step 4: Feed the data into the particular analysis tool, 

model and process as required. 

5) Step 5: Prepare and specify how results will be reported. 

3.2. Key Assumptions and Network Simulation 

Specifications 

Here, a summary of important scientific and engineering 

assumptions made for this experimental research work are 

presented to aid better understanding of this research paper. 

These key assumptions are: 

1) The wireless transmitter (TX) is stationary (e.g. wire-

less base station or wireless hotspot), and the receiver 

(RX) is quasi-static (stationary or a very slow walking 

pace); thereby the change in time of the received signal 

is negligible. Therefore, the received signal analysis in 

this work is not based on time series. 

2) The system is based on LOS (Line of Sight) propaga-

tion from TX to RX (e.g. point to point or point to mul-

tipoint) in mobile cellular mode. The NLOS (Non- Line 

of Sight) is assumed to be adequately handled by mod-

ern 5G beamforming and inherent multipath systems. 

3) The Obstacle body is not mobile, but stationary, for ex-

ample concrete buildings in a typical dense urban envi-

ronment. Additionally the diffraction loss by the build-

ing obstacle on the incident received signal is negligi-

ble (i.e.: Ld = 0), and the incident angles of all user sig-

nals to the obstacle are equal. 

Table 1. Simulation System Parameters. 

System 5G Frequency band 

Midband (3.5GHz) and mmWave (24 - 

100GHz); User (RX) Throughput = 100Mbps - 

1Gbps 

Cellular Type Urban Outdoor Microcell Modulation 16-QAM 

Bandwidth 100 MHz Simulation Thresholds Throughput (100 Mbps) and SINR (10dB) 

Noise power density (N0) -174dBm/Hz Obstacle Type Urban Concrete buildings 

 

Furthermore, a summary of the systems simulated had the 

following specifications, which were aimed at obtaining needed 

results in harmony with the aims and objectives of this research 

work. These key parameters are specified in Table 1. 
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3.3. Machine Learning-driven (CNN-based) 

Prediction of Network Parameters 

Here the aim was to predict the received signal network 

parameters of Throughput and SINR, by using a hybrid pre-

dictive model that combines the training of the selected re-

ceived signal parameter with Computer vision (i.e. CNN-

Based) pre-trained image datasets; to predict the selected 

network parameter in the presence of obstacles as captured 

by cameras (typically RGB cameras); which is a similar 

principle demonstrated by previous works. 

In our ML experiments, we employed the commonly used 

holdout method [27] for the validation and test. In the hold-

out method, data are separated into two sets: one is used for 

training, and the other is used for evaluation. Furthermore, 

for this research work in particular, the received signal pa-

rameter dataset (i.e. Throughput or SINR) is read from file 

and standardized for better learning; then the CNN extracts 

image-based features from obstacles affecting signals. Addi-

tionally, this work utilized a High Performance (CNN) (i.e. 

HP CNN) which is actually a Fully Connected (Dense Lay-

ers) CNN (i.e. CNN + Dense model); for better model pre-

diction and performance for such different datasets. This 

then predicts the required network parameter as an output 

having had the images of the obstacle and received signal 

parameter datasets as inputs. It is also pertinent to note that 

the SINR was a focal measure of the signal quality than just 

the SNR, so as to better represent a more practical, real life 

scenario, where signals typically experience interferences 

and losses. 

 
Figure 3. Simplified Hybrid Predictive 5G received signal (RX) System Model. 

For situations where the received signal throughput or user 

received data rate or SINR datasets cannot be obtained by 

tests; such parameters can also be calculated by standard 

equations. 

For SINR at the receiver (user mobile) from definition; 

SINR = 
𝑃𝑆

𝑃𝐼+𝑃𝑁
                               (1) 

Where: SINR is the Signal to Interference and Noise ratio; 

and it can be expressed as a reference to signal power in dB. 

   is the Interference power from other users (both inter-cell 

and intra-cell).    is the Noise power; and    is the received 

signal power from the serving base station (i.e. TX). 

Also for practical Throughput with user experience in 5G; 

Tuser = 
𝐵

 
. 𝜂. 𝑙𝑜𝑔2 (1 + 

𝑃𝑆

𝑃𝐼+𝑃𝑁
)                   (2) 

Where: B is the total fixed bandwidth shared by the users; 

and Tuser is the throughput of each user for N number of users. 

𝜂  is the Efficiency factor (0.6-0.9 possibly due to coding, 

overhead, and retransmissions). 

It is also worthy to note that as SINR increases, Through-

put also gets better or increases. 

Deleted Sub Heading 
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Figure 4. Architecture of Traditional CNN [28]. 

Computer Vision technologies are able to effectively and 

efficiently detect objects and classify images; and at the heart 

of their operation are CNNs, which have shown remarkable 

accuracy in complex tasks, such as object detection in chal-

lenging domains, and classifying images with high accuracy, 

and are now quite ubiquitous in applications ranging from 

smartphone photo enhancements to satellite image analysis. 

CNNs are actually artificial Neural Networks (ANN) opti-

mized for image-related pattern recognition. CNNs are based 

on convolutional layers instead of fully connected layers. As 

shown in Figure 4, a convolutional layer is used to detect 

patterns in an image with a filter. A filter is just a matrix that 

is applied to a portion of an input image through a convolu-

tional operation and the output will be another image (also 

called a feature map) with the highlighted patterns found by 

the filter [29]. 

A convolution is a specific type of matrix operation. For 

an input image, a filter of size n*n will go through a specific 

area of an image and apply an element-wise product and a 

sum and return the calculated value: 

 
Figure 5. Convolutional operations [29]. 

In Figure 5, we applied a filter to the top-left part of the 

image. We then apply element-wise multiplication; then we 

will perform the same operation by sliding the filter to the 

right by one column from the input image. We keep sliding 

the filter until we have covered the entire image. Rather than 

sliding column by column, we can also slide by two, three, or 

more columns. The parameter defining the length of this 

sliding operation is called the stride. Furthermore, since a 

convolutional operation tend to decrease the size of an image 

after processing, we can retain the dimension of the image by 

applying padding; which is the addition of rows and columns 

with the value 0 around the border of the input image. A 

convolutional layer is just the application of the convolution-

al operation with multiple filters. 

Additionally and as used in this research work, the Fully 

Connected (Dense Layers) is a neural network layer where 

each neuron in the current layer is connected to all the neu-

rons in the previous layer; thereby greatly increasing the per-

formance of the neural network [30]. 

3.4. Analytical and Machine Learning-driven 

Interference and Obstacle Losses Study 

As earlier noted, another key focus of this research work is 

the analyses and prediction of the interference factor as an 

important channel characteristic for such a practical 5G wire-
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less system. 

Therefore, from definition, 

SINR = 
𝑃𝑆𝐺𝑆𝐿𝑆

 + 0
                             (3) 

Where: SINR is the Signal to Interference and Noise ratio 

at the receiver/user mobile (RX).    is the transmit power of 

the desired signal,     is the Antenna gain of the desired sig-

nal.    is the Path loss between the serving base station and 

the receiver, also in dB. I is the total interference power in 

dB, and    is the noise power. 

Also, 

For a 5G wireless system, the path loss is modeled and 

calculated using the log-distance path loss formula: 

PL(d) =     +  10𝑛𝑙𝑜𝑔1 (𝑑) + 𝑋𝜎           (4) 

Where:     is the path loss at reference distance; it‟s in 

dB. n is the path loss exponent (it varies from 2 to 4, depend-

ing on the environment). 𝑑 is the distance between interfer-

ing user and target receiver in (metres), and 𝑋𝜎 is the shadow 

fading component (Gaussian distributed). 

Hence from Equation (3); 

𝐼/     = 
𝐿𝑆

   𝑅
−                           (5) 

Since for this research work and in harmony with a practi-

cal scenario,      is constant. Therefore, I /PG is an effec-

tive measure of interference with reference to the transmit 

power; and this metric is called: Total User Interference per 

power gain, also in dB. This is very useful, as it enables this 

research to have a sharper focus on interference and its ef-

fects in a more practical sense and for more precise interfer-

ence related analyses. 

Therefore, for N users or mobiles, total interference per 

gain for N users is given as: 

𝐼/    = ∑ (
𝐿𝑆 (𝑁)

   𝑅𝑁
−    ( )

 
1 )                    (6) 

Now for when the signal is affected by the presence of an 

Obstacle (e.g. concrete buildings) on the LOS; this research 

postulates that the signal received by the users is not only 

affected by user interference, multipath losses; but the signal 

also experiences attenuation losses due to the obstacle, which 

also affects the SINR of the user signal. This research work 

assumes that the multipath losses element will be handled by 

modern inherent beam forming, MIMO (Multiple Input Mul-

tiple Output), and intelligent multipath systems that are part 

of 5G wireless systems; and therefore, the focus is on the 

effects of interference and obstacle related attenua-

tion/penetration losses. 

Since from definition of the Combined Attenuation Model, 

Lt =  𝑑  +   𝑝                             (7) 

Where: Lt is the total attenuation due to an obstacle; it‟s in 

dB.  𝑑 is the diffraction loss (also in dB).  𝑝 is the penetra-

tion loss due to the obstructing obstacle (in dB). 

Furthermore, it is assumed in this research work that the 

diffraction loss is negligible. 

Therefore, 

Lt =  𝑝                                  (8) 

Since from definition of the Penetration model represents 

the penetration loss as: 

Lp =    +  
𝐾

𝑐𝑜𝑠𝜃
                        (9) 

Where: L0 is the material-specific penetration loss at nor-

mal incidence; it is in dB (i.e. for Concrete it is between 

40dB to 80dB); K is the empirical constant related to the 

material type (i.e. for Concrete and mmWave 5G, it is be-

tween 12dB to 18dB). ɵ is the angle of incidence of the sig-

nal relative to the normal of the concrete building surface. 

Hence, at higher mm Wave signal frequencies, penetration 

loss increases as ɵ increases. 

It is also important to note that for this research work,    

was assumed to be 40dB, K as 12dB and ɵ as 45 degrees. 

Since total penetration loss is relative to alternating signal 

power, then the effective total penetration loss should be the 

root mean square (rms) value of the peak or absolute penetra-

tion loss value. 

Therefore, 

Lt(rms) =  𝑝(𝑟𝑚𝑠) = 
 𝑝

2⁄
                     (10) 

Furthermore, from theory the intensity of rays do not af-

fect penetration rate in a medium; but the penetration loss is 

affected by the material of the medium and the incident angle 

of the ray. However, as the amount of signals or intensity of 

rays to the medium increases, it can be postulated that the 

angle of incident of each user signal decreases, thereby de-

creasing the penetration loss. Hence in a mobile cellular sys-

tem, as number of users (N) increases; the total rms penetra-

tion loss by the obstacle decreases. 

Additionally, it can also be postulated that the user signals 

undergo a convolution, thereby, multiplying their vector 

magnitudes, to create an overall user effect of loss reduction 

on the total rms penetration loss from the obstacle. 

Therefore, 

LpTN = 
1

 𝑁
. ∑   𝑝(𝑟𝑚𝑠)𝑛 

 
𝑛=1                   (11) 

Where: LpTN is the total penetration loss due to an obstacle 

by N users or mobile signal receivers; it‟s in dB. 

For this research work, the number of users is assumed to 

be 2 (i.e. N = 2). 

Finally, and with reference to Equation (5); the total inter-
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ference and obstacle related attenuation/penetration loss for 

N mobile users ( 𝐼/       𝐿) is completely noted as: 

𝐼/       𝐿 = ∑ (
𝐿𝑆 (𝑁)

   𝑅𝑁
−    ( )

 
1 )  +  𝑝         (12) 

Therefore, this research work refers to Equation (12) as 

the Obstacle-Penetration Loss (OPL) algorithm. 

3.5. Mathematical Optimization of 5G Network 

Parameter 

Here the elegant and efficient process of Mathematical 

modeling and optimization is employed to effectively define, 

analyse and fine tune a wireless 5G system for optimal per-

formance. In most cases to optimize the full system involves 

modeling and optimizing sub-systems or functions or param-

eters of the communication system. For example, the system 

SNR, SINR, or Throughput could be optimized for maxi-

mum performance or the system Interference or losses could 

be optimized for minimum performance; which in both cases 

will lead to an overall optimization of the whole system for 

better and higher performance. 

Therefore, the mathematical modeling and optimization 

process involves three key steps, which are: 

Identification of the Decision Variables They are the com-

ponents of the system or subsystem that describe its state, 

and that the analyst wants to determine. Or, they represent 

configurations of the system that are possible to modify in 

order to improve its performance. In general, if these varia-

bles are n in number, they are represented by a (column) 1 

vector of Rn, often denoted by  

x= (x1... xn) T, i.e., x = [

𝑥1
⋮
𝑥𝑛
]                 (13) 

1) Description of the function or method Here the formula 

or function that defines or assesses the state of the sys-

tem or subsystem in question, given a set of decision 

variables. This function, called objective function, is 

denoted by f and the aforementioned measure obtained 

for the decision variables x is a real number denoted by 

f(x). 

2) Specifying the Constraints Here the mathematical de-

scription of the circumstances or constraints specifying 

the values that the decision variables can take, are de-

fined [31]. 

4. Results and Discussion 

This section outlines the results obtained and the various 

associated interpretations, and discussions on the results ob-

tained in harmony with theories derived and literature ob-

tained. 

4.1. Prediction Analysis of Throughput 

 
Figure 6. Predictive plots (for 100 sample points) for 5G Throughput. 
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Figure 7. Predictive plots (for 200 sample points) for 5G Throughput. 

As shown in Figure 6 and Figure 7; the actual (blue curve) 

and forecast (red curve) plots for the throughput (Mbps) as 

against specified sample index for the dataset points of the 

analysed 5G systems are shown. More data points (i.e. signal 

throughput and images dataset) indicated better prediction as 

expected, because the hybrid model does better with greater 

training data for better learning and output; though both plots 

showed good predictive output by the model, with accuracy 

levels of a minimum of 0.90, thereby indicating excellent 

performance of the model. Furthermore, the prediction re-

sults of the signal throughput from the plots, very well 

matches the ground truth (actual data), and both plots have 

low RMS error of about 10.10 Mbps - 10.20 Mbps, thereby 

further confirming the accuracy of the hybrid predictive 

model. This confirms the predictive ability of the hybrid im-

age (high performance deep CNN) dataset algorithm and the 

signal dataset, on the throughput or data rate of a standard 

5G communication system. The regular fluctuation of the 

data points also confirms the practical real life datasets that 

were used for the simulation experiment, as obtained from 

5G mobile connection tests. Additionally, the 200 points plot 

indicate the actual and forecast curves achieves a higher 

throughput of the signal (maximum of about 1400 Mbps - 

1800 Mbps) within lesser sample index ranges as against the 

100 points curves, which indicated larger sample index rang-

es at lesser throughput values of a maximum of between 

about 1200 Mbps to 1500 Mbps; thereby indicating that the 

more the data points, the better the model can account for a 

greater range of values and can provide more details within 

of the signal profile. 

Though the RMS error from the predictive curve is ac-

ceptably low; they could even be lower in the absence of 

potential „blind spots‟, which are a major reason for in-

creased error, whenever the LOS path of the signal was not 

adequately observed in the images. As earlier noted, with the 

increase in the number of data points; the accuracy of the 

model increased with also a corresponding decrease in RMS 

error; which aligned with a better working of the hybrid 

model. This is because the conv. layers of the high perfor-

mance-deep CNN captures the features of the signal 

throughput more effectively; however, a larger model with 

more data points also can increase computational time and 

requires larger training dataset. Furthermore, the sample im-

ages used influenced the outcome of the signal; as it is no-

ticed by the variations in accuracy of the signal throughput at 

certain points, due to different images captured by the cam-

era from various positions around the obstacle, which further 

substantiates the effect of signal blockage by the obstacle, 

creating some blind spots and lesser accuracy than when 

there is minimal image and signal blockage leading to better 

prediction accuracy. Therefore, suggesting that image type of 

obstacle angle or position of image capture and/or camera 

position of the captured images, can also affect algorithm 

prediction accuracy. 
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4.2. Prediction Analysis of SINR 

 
Figure 8. Predictive plots (for 100 sample points) for 5G SINR. 

 
Figure 9. Predictive plots (for 200 sample points) for 5G SINR. 

As also shown in Figure 8 and Figure 9; the actual (blue 

curve) and forecast (red curve) plots for the SINR (dB) as 

against specified sample index for the dataset points of the 

analysed 5G systems are shown. More data points (i.e. signal 

SINR and images dataset) also indicates better prediction as 

expected, which also indicates very good predictive output 

by the hybrid model, with accuracy levels of also a minimum 

of about 0.90 - 0.95, thereby indicating excellent perfor-

mance of the model. Furthermore, the prediction results of 

the signal SINR from the plots, very well matches the actual 

SINR data, and both plots have fairly low RMS error of about 

10.18 dB - 10.20 dB, thereby also further confirming the 

accuracy of the hybrid predictive model. This confirms the 

predictive ability of the hybrid image (high performance 

deep CNN) dataset algorithm and the signal dataset, on the 

total SINR of the tested and analysed 5G communication 

system. In similar pattern for the earlier described Through-

put plot of Figure 6 and Figure 7; the 200 points plot indicate 

the actual and forecast curves achieves a higher SINR of the 

signal (maximum of about 11dB - 17.8 dB) within lesser 
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sample index ranges as against the 100 points curves, which 

indicated larger sample index ranges at lesser SINR values of 

a maximum of between about 10 dB to 16 dB; thereby also 

indicating that the more the data points, the better the model 

can account for a greater range of values and can provide 

more details within of the signal profile. 

As also earlier noted, and with respect to the influence of 

camera position, obstacle position, potential „blind spots‟ and 

LOS; to predictive outcomes, the predictive plots of the SINR 

follows similar explanations as that of the Throughput. Also, 

it is pertinent to note that the predictive profile of the SINR 

signal, indicates a bit more deviation from the actual signal 

(which is more evident in smaller or lesser amount of signal 

sample data points); than the profile of the throughput; this is 

due to the distortion of the signal by the presence of user 

interference, the randomness of noise and the potential of 

further interference/loss by the building obstacles to the sig-

nal; which is typically reflected in the SINR data. 

4.3. Prediction Analysis of Interference 

Here the results of the analyses relating to the signal inter-

ference are presented. These analyses covered the predictive 

analysis of the interference per power gain metric (I/PG) of 

the sample signal, the utilization of the obstacle interference 

algorithm for the predictive analysis of the interference per 

power gain metric and a comparative analysis of the interfer-

ence per power gain, signal SINR and penetration loss by the 

obstacle (concrete buildings) to the signal; as described in 

the methodology. 

4.3.1. Prediction Analysis of Interference per Power Gain Metric (I/PG) 

 
Figure 10. Predictive plots (for 200 sample points) for 5G Interference per power gain (I/PG). 

As also shown in Figure 10; the actual (blue curve) and 

forecast (red curve) plots for the I/PG (dB) as against speci-

fied sample index for 200 dataset points (i.e. signal I/PG and 

images dataset) of the analysed 5G systems. The prediction 

results of the signal I/PG from the plot matches the actual 

signal I/PG data to an acceptable level, though not very well 

matched like the predictive plots of the signal throughput and 

SINR earlier analysed. This is due to the distortion of the 

signal by the presence of user interference, the randomness 

of noise, varying channel characteristics and the potential of 

further interference/loss by the building obstacles to the sig-

nal as earlier highlighted. This therefore further confirms the 

challenge with practically measuring, estimating and predict-

ing interference experienced by signals in modern communi-

cation systems and the challenge of interference to signal 

quality; thereby 5G networks can minimize interference and 

enhance user experience by leveraging beamforming, coor-

dinated multipoint (CoMP), and AI-driven interference man-

agement. 

The predictive I/PG has an acceptably low RMS error of 

about 14.77 dB, thereby also further confirming the accepta-

ble accuracy of the hybrid predictive model. Additionally, 

the 200 points plot indicate the actual and forecast curves 

achieves a maximum of about 30dB - 47 dB value of greater 

difference range within lesser sample index ranges than the 

respective predictive SINR and throughput curves. This is 

due to the factors affecting interference like random noise, 

user interference, obstacle losses as earlier noted and also 

importantly the transmit power and antenna gain being ex-

cluded from the experimental analysis and taken as constants 
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so as to be able to more precisely predict and guage the 

amount and effect of interference on the signal and the need-

ed precise transmission power and antenna gain to achieve a 

certain signal level and counter the amount of total interfer-

ence. Furthermore, and in harmony with the predictive anal-

yses of the signal SINR and throughput, the sample images 

used influenced the outcome of the signal and measured 

I/PG; as it is also noticed by the variations in prediction ac-

curacy of the signal I/PG at certain points, due to different 

positions of the camera and thereby associated resultant im-

ages different images; as also earlier explained [32]. 

4.3.2. Prediction Analysis of I/PG Using Obstacle-penetration Loss (OPL) Algorithm 

 
Figure 11. Predictive plots (for 200 sample points) for 5G (I/PG) using Obstacle-Penetration Loss (OPL) algorithm. 

As also shown in Figure 11; the actual (blue curve) and 

forecast (red curve) plots for the I/PG (dB) as against speci-

fied sample index for 200 dataset points of signal I/PG from 

the OPL algorithm and the images dataset of the analysed 5G 

systems via the hybrid model. The prediction results of the 

signal I/PG (from OPL) of the plot matches the actual signal 

I/PG data to also an acceptable level (though not also very 

well matched like the predictive plots of the signal through-

put and SINR earlier analysed, as earlier explained and ex-

pected) and it is very similar to the predictive plot of the 

I/PG signal, which indicates that the predictive value of I/PG 

(from OPL algorithm) matches at least the value of the signal 

I/PG, which means: predictive I/PG (from OPL) ≥ predictive 

I/PG; thereby confirming the accuracy of the OPL algorithm. 

The predictive I/PG (from OPL) also has an acceptably 

low RMS error of about 14.96 dB, thereby also further con-

firming the acceptable accuracy of the hybrid predictive 

model. This confirms the predictive ability of the hybrid im-

age (high performance deep CNN) dataset algorithm and the 

signal dataset, on the total I/PG (from OPL algorithm) of the 

tested and analysed 5G communication system. Additionally, 

the 200 points plot indicate in Figure 11, the actual and fore-

cast curves achieves a maximum of about 30dB - 47 dB val-

ue of greater difference range within lesser sample index 

ranges than the respective predictive SINR and throughput 

curves; similar to the I/PG predictive plot and due to similar 

reasons as earlier highlighted. 

Furthermore, and in harmony with the predictive analyses 

of the signal SINR and throughput, the sample images used 

influenced the outcome of the signal and measured I/PG 

(from OPL); as it is also noticed by the variations in accura-

cy of the signal I/PG (from OPL) at various index points, due 

also to different images captured by the camera from various 

positions around the obstacle. 
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4.3.3. Comparative Analysis Between Signal I/PG, SINR and Obstacle-penetration Loss (Lp) 

 
Figure 12. Plots (for 200 sample points) for 5G (I/PG), SINR and Lp. 

As also shown in Figure 12; the plots are shown for the 

curves of I/PG (dB) (for 2 users), SINR (dB), and Lp (dB) 

respectively against specified sample index for 200 dataset 

points of the signal dataset of the analysed 5G systems. It is 

noticed that any point where the interference factor: I/PG 

peaks, there is a corresponding and reverse equivalent drop 

in SINR; further confirming the effect of user interference on 

signal strength (i.e. SINR), and this also makes SINR (which 

incorporates measure of interference) a more practical metric 

to measure signal strength than just SNR. As also observed in 

Figure 10; I/PG reaches a maximum value of about 57 dB 

(which is within the acceptable loss range for a standard ap-

plicable 5G cellular system), for a corresponding SINR min-

imum value of below 0 dB. Such comparative result, give 

systems designers information to set SINR targets balanced 

with the required interference factor benchmarks. 

Also noticeably is that the Obstacle penetration loss (as-

suming diffraction loss is negligible) Lp, does not vary in 

harmony with the SINR. Lp is more affected by the charac-

teristics of the obstacle (i.e. building) medium (concrete in 

this experiment), and the angle of incidence of the user sig-

nal to the building; as also stated in the methodology. For 

this research work, the angles of incidences of different user 

signals were assumed to be the same or equal, thereby a near 

constant Lp profile is observed; but a pertinent element to 

note is that Lp (for 2 users) was about 50 dB, which is quite 

significant. Therefore, in addition to the use of modern mul-

tipath loss mitigation techniques and systems; communica-

tions systems designers must also factor in such obstacle 

related losses in systems planning and link budget allocations, 

to ensure the signal strength is within an acceptable threshold 

and „strong‟ enough to provide good service levels within 

environments with obstacles such as concrete buildings. Ad-

ditionally, the experiment highlights angle of incidence of 

user signal as an important variable, that can also be prede-

termined and increased to limit the penetration by an obsta-

cle or building. 

4.4. Comparison of RMS Error of Algorithms 

Here the root mean square (RMS) error values of the each 

of the algorithms applied in this experimental research work 

are presented and compared to reveal more relevant insights. 

As also shown in Figure 13; the RMS values for the com-

binations of applied algorithms to each of the variables of 

SINR (dB), I/PG (dB) and I/PG (from OPL) (dB) respective-

ly are shown in the plots. The different performances of the 

combinations of the High Performance CNN (HP CNN), and 

the earlier described Obstacle-Penetration-Loss (OPL) algo-

rithms for selected 200 dataset points of the signal dataset of 

the analysed 5G systems are reflected in their various dis-

played RMS error plots. It is noticed that any point where the 

RMS error values for I/PG and I/PG (from OPL) are about 

14.77 dB and 14.6 dB respectively; though having different 

algorithm combination; thereby indicating that the proposed 

OPL algorithm was efficient enough to achieve similar per-

formance for the predictive analysis of the interference factor: 

I/PG, though with additional algorithm processing. Further-

more, this suggests that the total interference related loss 

experienced by mobile users in a 5G system, is affected by 

the inter user interference and the penetration loss by any 

obstructive obstacle to the signal; and both user interference 

and obstacle penetration losses in an urban setting (where 

available by concrete buildings), also affect each other. 
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Figure 13. Plots (for 200 sample points) of RMSE values and Model Algorithms. 

Also noticeably from Figure 13; is that the predictive 

analysis for SINR had the least RMS error of about 10.18 dB 

with the hybrid HP CNN combination with no extra algo-

rithm, which showed excellent performance; thereby further 

confirming the greater challenge of measuring and predicting 

interference measure of real life mobile signals than SINR, 

due to noise randomness and varying interference related 

channel characteristics. It is also pertinent to note that the 

RMS errors for all three cases could be much lower, because 

the current higher values obtained are due to the fact that the 

image datasets used for this research and hybrid simulation 

model were from a different open source and not from the 

same environment the signal datasets were recorded; thereby 

having the expected increase in errors. Additionally, the real 

life nature of data used for this work comes with its imper-

fections and data „gaps‟; in addition to the limited 200 points 

data sample utilized for ease of experimental tests as against 

larger datasets; would in both cases expectedly introduce 

more errors to the predictive simulations [33]. 

4.5. Mathematical Optimization of 5G Network 

SINR 

As earlier described in the methodology; the process of 

Mathematical modeling and Optimisation is applied to opti-

mize or maximize the SINR; which implies better perfor-

mance of the system. 

For the Variables influencing SINR are earlier defined, 

they are: N0, PS, GS, LS, and I. 

Since the parameter of interest for this research work also 

involves analyzing and minimizing interference (I), which 

also greatly influences SINR in an inverse relationship; there-

fore, the Decision variable is I; where also variables: N0, PS, 

GS have been earlier defined as constants in this research 

work. 

Hence, 

The function or formula to define SINR is: SINR(I) = 
𝑃𝑆𝐺𝑆𝐿𝑆

 + 0
 as shown in Equation (3) 

Since the aim is to maximize SINR; the Optimization 

problem is therefore defined as: 

max (SINR(I)) = 
𝑃𝑆𝐺𝑆𝐿𝑆

 + 0
; 
𝑚𝑎𝑥

 𝜖𝑅
 + 

𝑃𝑆𝐺𝑆𝐿𝑆

 + 0
          (14) 

After tests, the Constraints are defined as: 

  > 0; I <                             (15) 

Which implies that for SINR to be maximized, the path 

loss (  ) must typically be more than zero, as usual in a prac-

tical setting (i.e. cannot be practically less than zero), but the 

total interference/interference power of the system (I) must 

be less than the path loss; thereby keeping it minimal for an 

inversely maximum SINR. 

Therefore, this process further confirms the Mathematical 

modeling and Optimization algorithmic procedure as an effi-

cient, cost effective tool for engineers and system designers 

to tune, design the system accordingly and proactively test 

and set parameters for targeted good system performance at 

minimal resource usage. 

5. Limitations and Recommendations of 

Study 

This research study was focused on the Data and Machine 

Learning (i.e. Computer Vision) 5G Mobile wireless network 

parameters and interference prediction and optimization; 

using hybrid high performance deep learning artificial intel-

ligence CNN algorithm, analytical algorithm and mathemati-
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cal optimization algorithm. Though a focused and insightful 

analyses of selected 5G network parameters (i.e. SINR, 

Throughput) and channel condition (i.e. Interference), and 

the novel use of the combination of the network parameter 

data and images of obstacle (i.e. concrete buildings) datasets 

to predict and analyse network conditions; there were also a 

few limitations within the scope of this study. In terms of 

data acquisition, the datasets used were from approved and 

dedicated data stores, repositories and databanks; which did 

not cover every network parameter and channel condition 

influencing factor and scenario; for there are also the possi-

bility of hetero-modal vision-based RF Channel and network 

parameters prediction, where more network parameters and 

channel conditions can be predicted at one go, using deep 

neural networks (i.e. DNN) and multiple cameras. From the 

prediction of handover methods, received power, beam form-

ing data/patterns, and to even multipath transmissions; such 

systems can further enable efficient proactive and autono-

mous network decision making which would also improve 

overall network performance [34-36]. Additionally, and it‟s 

important to note that the image datasets (i.e. obstacle build-

ings) used where from a different scenario and environment 

from that of the network parameters as similarly proposed by 

some works with the advantage of reducing required time 

and data from training on site [37]; this situation can also 

sometimes affect the results from achieving a perfect score; 

but the excellent results obtained in this research work fur-

ther confirms the rigorous ability of the algorithms and the 

hybrid model employed. So for optimal conditions within 

certain environments, the images should be taken from the 

same locations where the signal datasets are obtained. 

Furthermore, many challenges and opportunities are asso-

ciated with this novel approach, thereby necessitating more 

continuous research, collaborations across disciplines, algo-

rithm and models development (for example extending the 

proposed OPL algorithm for interference and obstacle-

penetration losses and also other channel conditions estima-

tion algorithm such as the proposed Veni Vidi Dixi (VVD) 

algorithm; to minimize the challenges and exploit the huge 

potentials and opportunities of this hybrid approach to mod-

ern wireless network analyses, predictions and optimization. 

6. Conclusions 

In this work, the predictive analyses in the presence of ob-

stacles (i.e. concrete buildings) of selected 5G wireless net-

work parameters for a typical Outdoor Microcellular system 

of the SINR, Throughput or data rate and user Interference, 

was carried out using the modern predictive model approach 

of combining the received signal dataset and the image da-

taset of the obstacles using a hybrid high performance deep 

learning artificial intelligence fully connected CNN algo-

rithm model (HP CNN); as a key novel approach to autono-

mous, more efficient network performance management and 

AI-driven network parameter and interference management. 

Datasets (including building images) from trustworthy and 

recognized data stores, portals, and sources were used for 

this study's research work, analyses, demonstrations and in-

vestigations; as a result, it may be assumed that the datasets 

are reliable and credible. 

It is also worthy to note that the results obtained were ex-

cellent and at par with similar approaches which was carried 

out by time series based signal system and associated models 

[38-43]. Furthermore, this research work obtained acceptable 

results within the required benchmarks by utilizing a sample 

dataset of 200 test sample points from the more than 56000 

points obtained during the 5G test, which further confirms 

the efficiency of this system, rigorous ability of the intelli-

gent algorithms and a pointer to how excellent results can 

still be obtained with limited datasets, limited resources, and 

with a faster approach which is needed in practice. Addition-

ally, the analytical and predictive analyses of a representa-

tion of the user interference (i.e. I/PG) in the presence of 

obstacles was also successfully carried out, and also a new 

OPL algorithm which modeled and factored-in the important 

obstacle prediction loss, and it‟s associated obtained ac-

ceptable results; was also proposed. Furthermore, the elegant 

mathematical modeling and optimization of a 5G network 

parameter (i.e. SINR) was demonstrated as an effective tool 

for engineers and network designers to analytically tune and 

manage network performance in subsystems and systems 

more efficiently. With diverse related works being carried 

out and more still to be proposed; there is no doubt that this 

novel hybrid intelligent approach presents great possibilities 

and capabilities for the modern wireless communications 

field and associated technologies for now and in the future. 

Abbreviations 

5G Fifth Generation 

ANN Artificial Neural Network 

C2V Communicate to View 

CNN Convolutional Neural Network 

CV Computer Vision 

DNN Deep Neural Network 

HP-CNN High Performance Convolutional Neural 

Network 

I/PG Total User Interference per Power Gain 

LOS Line of Sight 

MIMO Multiple Input Multiple Output 

ML Machine Learning 

NLOS Non-line of Sight 

OPL Obstacle Penetration Loss 

RMS Root Mean Square 

RNN Recurrent Neural Network 

RX Receiver 

SINR Signal to Interference Noise Ratio 

TX Transmitter 

V2C View to Communicate 

VVD Veni Vixi Dixi 
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