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Abstract: We virtually design here new subnanomolar range antimalarials, inhibitors of plasmodium falciparum M17 
Aminopeptidase (pfA-M17), by means of structure-based molecular design. Complexation QSAR models were elaborated for 
two training sets (6 methylphosphonic acids (APP) resp. 13 Hydroxamic Acid derivatives (AHO): QSARAPP. resp. QSARAHO) 
and a linear correlation was established between the computed Gibbs free energies of binding (GFE: ∆∆Gcom) and observed 
enzyme inhibition constants (Ki

exp) for each training set: QSARAPP: pKi
exp=−0.1665×∆∆Gcom+7.9581, R2=0.97 resp. QSARAHO: 

pKi
exp=−0.4626×∆∆Gcom+8.1842, R2=0.98. The predictive power of the QSAR models was validated with 3D-QSAR 

pharmacophore generation (PH4): PH4APP: pKi
exp=0.99677×pKi

pred– 0.00457, R2=0.99 resp. PH4AHO: pKi
exp =1.02016×pKi

pred–
0.10478, R2=0.99. Breakdown of computed pfA-M17:APPs resp. pfA-M17:AHOs interaction energy into each active site 
residue’s contribution provided additional helpful structural information to design new APP and AHO analogues in a consistent 
way. In a first step we designed a virtual library (VLAPP resp. VLAHO) from P1 and P’1 substitutions to explore both S1 and S’1 
pockets. Further the VLs screened with the 3D-QSAR PH4s and the Ki

pred of the best fit hits virtually evaluated with QSARAPP 
resp. QSARAHO models. This approach combining use of molecular modeling, PH4 and in silico VL screening helpfully provided 
valuable structural information for the synthesis of novel pfA-M17 inhibitors. 

Keywords: Drug Design, QSAR Model, Pharmacophore Model, ADME Properties, Complexation Model,  
Molecular Modelling 

 

1. Introduction 

Malaria, along with tuberculosis and HIV/AIDS are the 
major infectious diseases infecting hundred millions people 
each year at such a level that the United Nations raised their 
eradication as a Millennium Development Goal (MDG 6: 
“Combat HIV/AIDS, malaria and other diseases”). Recently 
UN MDG Report 2015 states: “The global malaria incidence 
rate has fallen by an estimated 37% and the mortality rate by 
58%” [1]. This achievement is mainly attributed to the 

following facts: “More than 900 million insecticide-treated 
mosquito nets were delivered to malaria-endemic countries in 
sub-Saharan Africa between 2004 and 2014 …, //indoor 
residual spraying, //diagnostic testing and artemisinin-based 
combination therapies (ACT)” [1]. 

For one decade (2006 – 2016), survival of millions people 
at risk of malaria infection relies on the strategy of “ACT”, the 
strength of which remains unable to address the unstoppably 
growing spread of artemisinin-resistant Plasmodium 

falciparum (pf) [2, 3] for long. 
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One alternative to ACT anti pf resistance strategy is the 
design of hybrid drugs where two antimalarial moieties are 
linked into a unique molecule, these moieties known for their 
confirmed antimalarial potency against two different parasite 
targets and operating according different mechanisms of 
action [4, 5, 6]. 

Another promising gate was opened through the 
identification and characterization of new parasite therapeutic 
targets such as metalloaminopeptidases (MAP), reported to 
play a crucial role in the parasite viability and survival [7, 8, 
9]. Among them both M1 alanyl and M17 leucyl specific 
aminopeptidases (pfA-M1, pfA-M17) are validated ones, due 
to their mediation during the final stage of hemoglobin 
digestion were they split small peptide fragments into free 
amino acids and thereafter by their inhibition which is lethal to 
pf [10, 11] they are worth targeting. 

The X-rays crystal structure analysis of pfA-M17 (PDB 
code 4K3N) active site reveals, besides the two catalytic zinc 
ions in coordination with Asp 459, Lys 374, Asp 379, Asp 399, 
Glu 461, also a narrow hydrophobic S1 pocket with residues 
Met 392, Met 396, Phe 398 (suitable for stacking interaction), 
Thr 486, Gly 489, Leu 492, and Phe 583 and no suitable polar 
hydrogen-bonding partners (acceptor or donor) to interact 
with any charged P1 sidechain [9, 12, 13] and finally a S1’ 
cavity with hydrophobic residues namely Ala 460 and Ile 547. 

 

1 (14 µM) 

 

2 (11 nM) 

 

3 (8 nM) 

Figure 1. Chemical structure of antimalarial agents: Phosphinate dipeptide 

core (1), phosphonic arginine core (2) and amino-hydroxamic acid core (3). 

Phosphinate dipeptide analogue inhibitors of pfA-M17 
reaching 14 µM (compound 1 in Figure 1) were identified first 
as lead antimalarials [7]. Thereafter phosphonic arginine 
inhibitors were designed (Ki ≥ 11 nM) (compound 2 in Figure 
1) probing the S1 pocket at the enzyme active site for a better 
insight into the interactions and structural requirements for 
nanomolar range potency [12]. X-rays crystal structure of 
pfA-M17 in complex with 2 confirmed these interactions 
particularly the coordination of 2 to the catalytic zinc ion 
through the aminophosphonate moiety [12]. More recently, 
the same authors extended their investigations by replacing 
the phosphonic acid Zinc Binding Group (ZBG) present in 2 
with an aminohydroxamic acid analogue of aminophosphonic 
in order to probe the S1’ pocket of pfA-M17 for additional 
affinity. This novel series allowed access to S1’, improving 
the potency from 11 to 8 nM (compound 3, Figure 1) [13]. 

The structure activity relationship (SAR) from these studies 
and the availability of X-rays crystal structure pfA-M17 in 
complex with 2 and 3 respectively triggers an in silico attempt 
for the design of pfA-M17 inhibitors filling advantageously 
both S1 and S1’ cavities. 

In our present study, starting from high resolution 3D 
structure of pfA-M17 in complex with 2 and 3 respectively 
(PDB codes 4K3N and 4R76), we first elaborate two 
Molecular Mechanics Poisson-Boltzmann (MMPB) QSAR 
models of complexation of pfA-M17 first with 
aminophosphonic (APP) and then with aminohydroxamic 
(AHO) inhibitors respectively by computing the free energy of 
complexation (∆Gcom) for the Training Set (TS) which were 
correlated with the biological activity to explain about 98% of 
the variation of Ki values by that of ∆Gcom. Besides a three 
dimensional quantitative structure-activity relationship 
(3D-QSAR) pharmacophore model was used to prepare a 
four-feature pharmacophore (PH4) of the bound APPs and 
AHOs respectively, which then was matched against the 
molecular data of the designed analogues to confirm the 
compliance with each QSAR model. Moreover, the computed 
enzyme – ligand interaction energy map Eint correlates well 
with Ki; thus allowing us to reach its breakdown to each active 
site residue contribution. From this last structural information 
we were able to select P1 and P1’ suitable fragments as 
building blocks for a Virtual Library (VL) of pfA-M17 
inhibitors. In order to prevent any toxicity issue and access 
good pharmacokinetic profile analogues, the VL was focused, 
prior to any screening, to those compounds the ADMET of 
which has 0 property descriptors that fall outside the range of 
values determined for 95% of known drugs out of 24 selected 
descriptors computed by the QikProp [14]. The predictability 
of the obtained QSAR models of inhibitor-enzyme binding 
cross-checked with a PH4 3D-QSAR pharmacophore model 
was used to screen the VL. The best Hit Fits from the 
PH4-based virtual screening of the VL have been in silico 
MMPB evaluated to yield a predicted inhibitory activity 
reaching the picomolar range for the most potent analogues. 
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(C) 

Figure 2. pfA-M17– ligand interactions at active site depicted in 2D for the most active APP (A), AHO (B) and Bestatin (C) respectively. 

2. Methods 

The complexation methodology has been described largely 
accor-ding to a procedure successfully used to elaborate one 
descriptor QSAR models of viral, bacterial and protozoal 
protease-inhibitor complexes and from them to design 
peptidomimetic, hydroxylnaphthoic, thymidine, triclosan and 
pyrrolidine carboxamide derivative inhibitors [15, 16, 17, 18, 
19, 20, 21, 22, 23,24].  

2.1. Training and Validation Sets 

The training and validation sets of aminophosphonic and 
amino-hydroxamic analogues inhibitors of pfA-M17 used in 
this study were selected from literature [12, 13]. The 
inhibitory potencies of these derivatives cover sufficiently 
broad range of activity to allow reliable QSAR models to be 
built (11 ≤ Ki ≤ 1000001 nM and 8 ≤ Ki ≤ 501000 nM 
respectively). 

2.2. Model Building 

Molecular models of free enzyme pfA-M17 (E), free 
inhibitors (I) and the enzyme-inhibitor complexes (E:I), were 
built from high-resolution crystal structure of the reference 
complex pfA-M17:APP1 and pfA-M17:AHO4 containing the 

APP1 and AHO4 respectively [12, 13] (Protein Data Bank [25] 
entry codes 4K3N and 4R76 at a resolution of 2 Å and 2.5 Å 
respectively) using the graphical user interface available in 
Insight-II molecular modeling program [26]. The most recent 
detailed description of this method is in ref. [23, 24]. 

2.3. Entropic Term 

The most recent detailed description of the ligand 
vibrational entropic loss upon E:I complex formation and its 
use procedure in binding affinity calculation is available ref. 
[23].  

2.4. Calculation of Binding Affinity 

The calculation of binding affinity upon E:I complex 
formation according to the Molecular Mechanics and 
Poisson-Boltzmann scheme (MM-PB) is reported fully in refs. 
[23, 24]. 

2.5. Pharmacophore Generation 

Pharmacophore modeling procedure as reported in [24] has 
been used in this work. 

2.6. Interaction Energy 

To calculate the MM interaction energy (Eint) between 
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enzyme residues and the inhibitor, a protocol available in 
Discovery Studio 2.5 [27] that computes the non-bonded 
interactions (van der Waals and electrostatic terms) between 
defined sets of atoms, was used. The calculations were 
performed using CFF force field [27] with a dielectric 
constant of 4. The breakdown of Eint into active site residue 
contributions (presented in% of total Eint of pfA-M17 – APP 
and pfA-M17 – AHO respectively) reveals the significance of 
individual interactions and allows a comparative analysis, 
which leads to identification of affinity enhancing and 
unfavorable APP and AHO substitutions. 

2.7. ADME-Related Properties 

The ADME-related properties treatment in this work has 
been fully described in [24]. 

2.8. Virtual Library Generation 

The analogue model building was performed with 
Molecular Operating Environment (MOE) program [28]. The 
library of analogues was enumerated by attaching the 
R-groups (fragments, building blocks) onto the APP and AHO 
scaffolds using the Quasar Combi Design module of MOE 
program [28]. Chemical reagents considered in this study 
were taken from the directories of chemicals available from 
the commercial suppliers of chemicals [29]. Each analogue 
was built as a neutral molecule in MOE program [28] and its 
molecular geometry was refined by molecular mechanics 
optimization using Discovery Studio 2.5 [27] smart minimizer 
with high convergence criteria (energy difference of 10-4 kcal 
mol-1, R. M. S. displacement of 10-5 Å) and a dielectric 
constant of 4 using class II consistent force field CFF [27] as 
described in Molecular Mechanics section. 

2.9. ADME and Pharmacophore-Based Library Focusing 

The library focusing strategy based on ADME-related 
properties and the pharmacophore-based library focusing 
procedure is described in ref. [24]. 

2.10. In Silico Screening 

The conformer with the highest mapping (four features) in 
each cluster was selected for virtual screening using the 
complexation model. The Gibbs Free Energy (GFE) computed 
upon E:I complex formation in a solvent was evaluated for 
each of them to reach the new analogues with favorable 
pharmacokinetic profile since they were ADMET selected 
during the first focusing step described in section § 
ADME-based library focusing. As indicated previously the 
GFE takes account of many components derived from ideal 
hydrogen bonds, perturbed ionic interactions, lipophilic 
inter-actions, contributions, due to the freezing of internal 
degrees of freedom and due to the loss of translational and 
rotational entropy of the ligand. The ∆∆Gcom was then used for 
prediction of pfA-M17 inhibitory potencies (Ki

pre) of the 
focused virtual library of APP and AHO analogues by 
employing this parameter in a target-specific scoring function. 
The scoring function, specific for the pfA-M17 receptor of 

Plasmodium falciparum: pKi
pre [pfA-M17] = a × ∆∆Gcom + b, 

was parameterized using the QSAR model described above. 
The workflow in Figure 3 summarizes the methodology of the 
Computer Aided Design of AHO analogues molecule. 

 

Figure 3. novel AHO/APP analogues design methodology workflow. 

3. Results and Discussion 

A training set of 6 APPs (Table 1) and another of 13 AHOs 
and validation set of 2 VHOs (Table 2) were selected from a 
series of compounds with experimentally determined 
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activities from the same laboratory [12, 13]. Their 
experimental activities (11 ≤ Ki ≤ 1 000 001 nM and 8 ≤ Ki ≤ 
501 000 nM respectively) cover sufficiently large range to 
serve well for building of a reliable QSAR model of pfA-M17 
inhibition. 

3.1. QSAR Models 

The relative Gibbs free energy of the enzyme (E), inhibitor 
(I), E:I complex formation, equation (6) [24], was computed 
for the complexes from in situ modification of the template 
inhibitors APP1 and AHO4 respectively in the binding site of 
pfA-M17 as described in the Methods section. Tables 3 and 4 
respectively list the ∆∆Gcom of E:I binding and its components, 
(∆∆HMM, ∆∆Gsol, ∆∆TSvib, ∆∆Gcom= ∆∆HMM+∆∆Gsol -∆∆TSvib, 
see equation (6) [24]). At the bottom of each one of both tables 
the ratio of predicted and observed inhibition constants 
(pKi

pre/pKi
exp) for the validation set of APPs and AHOs (not 

included into the training set) are listed. The statistical data of 
the regression are presented in Figure 4 (A, B and A’, B’ 
respectively) and listed in Table 5.  

The free energy (∆∆Gcom) and its enthalpic contribution 
(∆∆HMM) in tables 3 resp. 4 are computed in an approximate 
way as indicated in methods section. The relevance of the one 
descriptor QSAR model derived from these energies is assessed 
through linear regression correlation with the experimental 
activity data (Ki). As we can see from table 5 the regression 
coefficient and Fischer F-test values are relatively high 
indicating a strong correlation between the binding model and 
the observed inhibitory potencies of the APPs resp. AHOs. The 
consistency of the model is evaluated through the ratio of 
predicted and observed inhibition constants ( exp/ i

pre
i pKpK ) for 

the validation set of AHOs in table 4 (since APPs are in a very 
short number the whole set totally was reserved for the training 
set) is close to one confirming the high predictive power of the 
QSAR models. On the basis of these results, the regression 
equations and computed ∆∆Gcom quantities of novel APPs and 
AHOs analogues, sharing the same binding mode with the 
training set compounds, can be used to predict their pfA-M17 
inhibitory concentrations pre

iK . 

This Computational approach successfully narrows the 
filter and accelerates the process to new lead compounds 
compared with traditional synthesis approach. This was 
observed for peptide and peptidomimetic inhibitors of HIV-1 
[16, 17] and hepatitis C (HCV) [15] virus proteases design, for 
combinatorial design of bicyclic thymidine analogues [22] 
and complexation structure-based design of thymidine 
analogues [21, 23] inhibitors of Mycobacterium Tuberculosis 

(MTb) thymidine monophosphate kinase, to provide insight 
into selectivity of peptidomimetic inhibitors with modified 
statine core for pf Plasmepsin II over human Cathepsin D [18]. 
Recently a complete process starting from the complexation 
QSAR model and its derived 3D-QSAR four features 
Pharmacophore (PH4) model have successfully served to 
screen a large Virtual Library of 1.6 million compounds 
reaching one hundred orally bioavailable pyrrolidine 
carboxamide inhibitors of MTb enoyl acyl carrier protein 
reductase (InhA) [24]. 

3.2. Binding Mode of Inhibitors 

3.2.1. Free Energy 

The binding modes of APPs and AHOs coming from the 
complexation models are illustrated in 3D depiction in Figure 
5 and 6, the last one for the Connolly surface for APP1 and 
AHO1 respectively. The main interactions at the active sites 
reported from the reference X-rays structures (Figure 2) are 
conserved, involving the key residues and S1 and S1’ pockets. 
In order to get a better insight in these interactions, we build 
the enzyme – inhibitor interaction energy diagram.  

3.2.2. Enzyme – Inhibitor Interaction Energy 

Besides the complexation enthalpy, entropy and solvation 
energy, global interaction energy ∆Eint can guide in the design 
of new potent analogues as exemplified by our design of new 
thymidine analogues [21] where analysis of breakdown of 
∆Eint into contribution of each active site residue to the 
interaction with the inhibitor (∆Eint – ResX) shed light on the 
appropriate substitutions able to improve stabilizing effect of 
specific residue (ResX) contribution to ∆Eint and to affinity in 

fine. In this study, a 40% jump is observed in experimental 
activity from APP1 (11 nM, the most potent APPs) to AHO1 
(8 nM, the best AHOs). Since strong correlation between 
global interaction energy ∆Eint and Ki

exp has been noticed as 
well for APPs (Tables 6) and AHOs (Tables 7) from statistical 
data in table 8 and the plots in Figure 5, we can try to get 
insight into ∆Eint breakdown (∆Eint – ResX) as provided in table 9 
where ∆Eint – ResX are grouped by type of interaction such as 
H-Bonds (∆Eint – ResX:HB), S1 (∆Eint – ResX:S1) and S1’ (∆Eint – 

ResX:S1’) pockets filling, for the most active inhibitors, APP1 
and AHO1 respectively.  

For ∆Eint – ResX:HB, 17% of Eint is HB-based in APP1 versus 
25% in AHO1 for a 47% jump closely in the trend of Ki

exp. 
For ∆Eint – ResX:S1, 19% of Eint with APP1 versus 15% with 

AHO1 for a -27% jump, reverse to the trend of Ki
exp. 

Analysis of table 9 confirms inability of APP1 to reach S1’ 
pocket while AHO1 does. Indeed, for ∆Eint – ResX:S1’, about 10% 
of Eint is related to S1’ residues’ interaction with APP1 while 
22% are involved with AHO1 reaching an exaggerated jump 
of 120%, nevertheless it’s in the trend of Ki

exp. 
In the hypothesis that these three groups of interaction 

could explain the essentials of interaction between pfA-M17 
and APP1 and AHO1 respectively, the 46% of Eint for APP1 
versus 62% for AHO1 corresponds to a 35% jump globally, 
close to 40% observed experimentally. 

On the basis of this result, improvement of interaction with 
S1 pocket residues as for APPs and with S1’ pocket as for 
AHOs will lead to the design of most active analogues. 

4. pfA-M17 Inhibition Pharmacophore 
(PH4) Models  

The 3D-QSAR PH4 generation process follows three main 
steps, the constructive, the subtractive and the optimization 
steps.  

 



92 Hermann N'Guessan et al.:  In silico Design of Phosphonic Arginine and Hydroxamic Acid Inhibitors of Plasmodium   
falciparum M17 Leucyl Aminopeptidase with Favorable Pharmacokinetic Profile 

Table 1. Training set of APP pfA-M17 inhibitors for QSAR model.  

 

Training Set R Ki [nM]  

APP 1  11 

APP 2  160 

APP 3  1800 

APP 4  63000 

APP 5  268000 

APP 6  1000001 

Table 2. Training set of AHO inhibitors of pfA-M17 for QSAR model. 

 

Training Set R1
 R2 Ki [nM]  

AHO1  2-FluoroBenzoyl NHOH 8 
AHO2 3-FluoroBenzoyl NHOH 35 
AHO3 4-FluoroBenzoyl NHOH 12 
AHO4 3-aminobenzoyl NHOH 14 
AHO5 tBu (C==O) NHOH 28 
AHO6 tBuNH (C==O) NHOH 38 
AHO7 H. HCl OH 501000 
AHO8 Boc NHOH 30 

 
 

Training Set R Ki [nM]  

AHO9 H. HCl NHOH 86000 
AHO10 Benzoyl NHOH 154 
AHO11 CH3CH2 (C==O) NHOH 16 
AHO12 (CH3)2CH (C==O) NHOH 53 
AHO13 Boca OH 464000 
VHO1 CH3 (C==O) NHOH 19 
VHO2 4-aminobenzoyl NHOH 11 

a: tert-butyloxycarbonyl protecting group. 

Table 3. Complexation energy and its components for the training set of 

pfA-M17 inhibitors: APP1 – APP6.  

Training 
Seta 

Mw
b ∆∆H

MM
c 

∆∆Gs

ol
d 

∆∆TS

vib
e 

∆∆Gco

m
f 

Ki
expg 

APP1  254 0 0 0 0 11 
APP2 245 0.27 3.66 0.82 3.11 160 
APP3 245 8.70 -2.67 -0.15 6.18 1 800 
APP4 259 12.74 -0.78 2.70 9.26 63 000 
APP5 255 15.46 -2.42 3.29 9.75 268 000 
APP6 211 17.04 -5.07 1.72 10.25 1 000 001 

a for the chemical structures of the training set of inhibitors see Table 1. 
b Mw (g mol-1) is the molecular mass of the inhibitor. 
c ∆∆HMM (kcal mol-1) is the relative enthalpic contribution to the Gibbs free 
energy change related to the protease-inhibitor complex formation derived 
by molecular mechanics (MM): ∆∆HMM ≅[EMM{PR:AHOx}-EMM{AHOx}]- 
[EMM{PR:AHO1}-EMM{AHO1}], AHO1 is the reference inhibitor; 

d ∆∆Gsolv (kcal mol-1) is the relative solvation Gibbs free energy contribution to 
the Gibbs free energy (GFE) change related to protease-inhibitor complex 
formation: ∆∆Gsolv = [Gsolv{PR:AHOx}-Gsolv{AHOx}] 
-[Gsol{PR:AHO1}-Gsol{AHO1}]; 

e -∆∆TSvib (kcal mol-1) is the relative entropic contribution of the inhibitor to 
the GFE related to protease-inhibitor complex formation: ∆∆TSvib = 
[TSvib{AHOx}PR-TSvib{AHOx}] - [TSvib{AHO1}PR-TSvib{AHO1}]; 

f ∆∆Gcomp (kcal mol-1) is the relative GFE change related to the 
enzyme-inhibitor complex formation: ∆∆Gcomp ≅ ∆∆HMM + ∆∆Gsolv - ∆∆TSvib. 

g Ki
exp (nM) is the experimental pfA-M17 inhibition constant from ref. [12]. 

Table 4. Complexation energy and its components for the training set of pfA-M17 inhibitors: AHO1 – AHO13. 

Training Seta Mw
b ∆∆HMM

c ∆∆Gsol
d ∆∆TSvib

e ∆∆Gcom
f Ki

expg  

AHO1  354 0 0 0 0 8 

AHO2 354 -0.20 0.80 0.01 0.59 35 

AHO3 354 -0.01 1.98 -0.11 2.08 12 

AHO4 351 0.07 1.07 1.91 -0.77 14 

AHO5 316 6.51 -0.55 4.41 1.55 28 

AHO6 331 7.91 0.57 5.14 3.34 38 

AHO7 216 29.19 1.26 3.98 26.47 501000 

AHO8 332 4.41 1.42 4.30 1.53 30 

AHO9 232 30.84 -5.40 4.57 20.87 86000 

AHO10 334 3.35 7.07 0.98 9.44 154 

AHO11 288 7.35 -1.24 3.19 2.92 16 

AHO12 302 8.12 -2.83 0.69 4.60 53 

AHO13 316 22.58 9.25 2.09 29.74 464000 

 

Validation Set  Mw
 ∆∆HMM

 ∆∆Gsol ∆∆TSvib ∆∆Gcomp pKi
pre/pKi

exp h 
VHO1 274 8.86 -1.78 2.64 4.44 0.94 
VHO2 351 1.42 1.24 1.97 0.69 0.99 

a – f
(see Table 3 with “APP” changed into “AHO”). For the chemical structures of the training set of inhibitors see Table 2. 

gKi
exp (nM) is the experimental pfA-M17 inhibition constant from ref. [13]. 

h
ratio of predicted and experimental inhibition constants pKi

pre/pKi
exp. Ki

pre was predicted from computed ∆∆Gcom using the regression equation (D) for pfA-M17 
shown in Table 5. 
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Table 5. Statistical information on regression analysis of correlation for the training set between ∆∆HMM, ∆∆Gcom and experimental activities (Ki
exp) respectively 

against pfA-M17, (A), (B) for APPs and (C), (D) for AHOs. 

pKi
exp = -0.2552⋅∆∆HMM + 7.5181  (A) 

pKi
exp = -0.4626⋅∆∆Gcom + 8.1842  (B) 

pKi
exp = -0.1523⋅∆∆HMM + 8.0541  (C) 

pKi
exp = -0.1665⋅∆∆Gcom + 7.9581  (D) 

 

Statistical data of regression  (A) (B) (C) (D) 

Number of compounds n  6 6 13 13 

Squared regression correlation coefficient 2R   0.96 0.98 0.88 0.97 

LOO cross-validated squared correlation coefficient 2
XVR   0.95 0.97 0.85 0.96 

Standard error of the regression σ 0.956 0.279 0.658 0.305 

Statistical significance of regression, Fisher F-test F  109.4 238.8 78.2 403.4 

Level of statistical significance α > 95% > 95% > 95% > 95% 

Range of activity Ki
exp

 (nM) 11 – 1000001  8 - 501000 

 

The constructive phase of HypoGen automatically selected 
as leads the most active compounds for which (Ki

exp × 1.25 – 
Ki

exp /1.25 > 0). For AHOs, only AHO1, 8 × 1.25 – Ki
exp/1.25 > 

0 or Ki
exp

 < 12.5, was retained as lead. In the same way, for 
APPs, Ki

exp
 < 17.2, only APP1 was retained as lead. Both 

APP1 and AHO1 were used to generate all starting PH4 
features respectively. Only those were retained which matched 
respectively both leads APP1 and AHO1.  

In the subtractive phase inactive compounds with log10 
(Ki

exp) – log10 (Ki
exp) > 3.5 were used to remove those 

pharmacophoric features that mapped more than 50% of these 
compounds while pharmacophore representatives which 
contained all features were retained. APP4, 5 and 6 were used 
to remove from PH4APP the features mapping > 50% of them 
while AHO7, 9 and 13 served to remove from PH4AHO the 
features mapping > 50% of them as well. 

In the optimization phase, the highest scoring PH4s 
according to their probability function cost calculated based 
on a simulated annealing algorithm, were retained. A total of 
10 optimized hypotheses were kept all displaying four 
features for each pharmacophore. 

The features, their internal coordinates and their mapping 
are displayed in Figure 8 (A, A’ and B, B’ respectively). The 
statistical data for the set of hypotheses (costs, RMSD, R) are 
listed in Tables 10 (for APP) and 11 (for AHO) for both PH4, 
while the statistical information on regression analysis 
correlation for the training set between estimated activities 
and experimental ones are listed in table 12.  

The bound conformation of inhibitors at pfA-M17 active 
site reveals a great deal of information about affinity. The best 
way of exploiting them consists in generating the 
Pharmacophore (PH4) of activity. The process is described in 
the methods section. The reliability of the generated 
pharmacophore models was then assessed through the 
calculated cost parameters. As indicated in tables 10 and 11 
for APPs resp. AHOs the overall costs ranged from 41.2 
(Hypo1) to 48.2 (Hypo10) for APPs and from 492.1 (Hypo1) 
to 854.7 (Hypo10) for AHOs. The gap between the highest 
and lowest cost parameter was relatively small and matched 

well with the homogeneity of the generated hypotheses and 
the consistency of the training set. For the best APPs’ PH4 
model the fixed cost (26.3) was lower than the null cost (741.1) 
by ∆ = 714.8; in the same way the best AHOs’ PH4 model 
fixed cost (23.4) was lower than the null cost (11552.9) by ∆ = 
11529.5. This difference represents a chief indicator of the 
predictability of the PH4 model (∆ > 70 corresponds to a 
probability higher than 90% that the model represents a valid 
correlation [21]). In order to be statistically significant the 
hypotheses have to reach values as close as possible to the 
fixed cost and as far as possible from the null cost. 
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(B) 
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(A’) 

 

(B’) 

Figure 4. QSAR models of APP (A, B) and AHO (A’, B’) respectively. 

The differences ∆ ≥ 699.9 for the set of 10 APPs’ PH4 
hypotheses and ∆ ≥ 11060.8 for the set of 10 AHOs’ PH4 
hypotheses confirm the high quality of the pharmacophore 
models PH4APP and PH4AHO. Standard indicators such as the 
root-mean-square deviation (RMSD) between the hypotheses 
ranged from 1.009 to 1.709 for APPs and from 8.351 to 10.692 
for AHOs while the squared correlation coefficient (R2) 
occupied an interval from 0.998 to 0.994 for APPs and from 
0.98 to 0.96 for AHOs. The PH4 hypothesis with the best 
RMSD and highest R2 for APPs and for AHOs respectively 
was retained for further analysis; they have been selected from 
the detailed statistical data for the set of hypotheses (costs, 
RMSD, R2) and listed in Tables 10 resp. 11. The geometries of 
the Hypo1 pharmacophore of pfA-M17 inhibition are 
displayed on Figure 8 for APPs (A) and AHOs (A’): features 
and coordinates between them for each APPs’ and AHOs’ PH4 
respectively and with the best inhibitor APP1 and AHO1 
mapped to them. Clearly both PH4 are different from each 
other and not superimposable: PH4APP featuring S1 pocket 
filling while PH4AHO targets S1 and S1’ filling as exemplified 
by Figure 9. The consistency of the model is reinforced by the 
position of the PH4APP with APP1 resp. PH4AHO with AHO1 
mapped to it at the enzyme active site as displayed in Figure 
10. From this the mapping to the PH4s gives a reliable 
indication of the level of enzyme – ligand affinity at the 
pfA-M17 active site. 

 

(A) 

 

(B) 

Figure 5. Global Enzyme – ligand interactions energy (Eint) regression plots 

for APP (A) and AHO (B) respectively. 

Table 6. Global Enzyme – ligand (PR:APP1) interactions energy (Eint) for the 

training set of pfA-M17 inhibitors: APP1 – APP6.  

Training Seta ∆Eint 
a 

APP1  0 
APP2 1.9 
APP3 3.6 
APP4 6.2 
APP5 7.3 
APP6 9.3 

a∆Eint (kcal.mol-1) is the interaction energy as defined in Methods section: 
∆Eint = Eint{PR:APPx}-Eint{ PR:APP1}, APP1 is the reference inhibitor. 

Table 12 lists the regression equations for pKi
exp vs. pKi

pre 
estimated from Hypo1 for APPs (A) and AHOs (B) along with 
related indicators such as R2, Rxv

2, F-test and σ with α > 95% 
while Figure 8 (B and B’) displays their plot respectively for 
APPs and AHOs. For the AHOs validation set the ratio 
pKi

pre/pKi
exp has been computed for VHO1:1.03 and 

VHO2:1.04 both relatively close to one which attests the 
substantial predictive power of this regression for the best 
PH4 model. The selected PH4 models will serve in virtual 
screening of APPs and AHOs designed analogues libraries. 

5. New pfA-M17 APP and AHO 
Inhibitors Analogues 

The diversity library design of new APP and AHO 
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analogues inhibitors of pfA-M17 was based on substitutions at 
one position for APP (in order to better fit S1 pocket at the 
enzyme active site) and two for AHO (in order to better fit S1 
and S1’ pockets). The 77 and 134 R-groups used are listed in 
tables 13 and 16 for APP and AHO respectively. 

Table 7. Global Enzyme – ligand (PR:AHOx ) interactions energy (Eint) for the 

training set of pfA-M17 inhibitors: AHO1 – AHO13.  

Training Seta ∆Einta 
AHO1  0 
AHO2 0.1 
AHO3 0.6 
AHO4 2.4 
AHO5 5.9 
AHO6 6.6 
AHO7 19.7 

Training Seta ∆Einta 
AHO8 0.9 
AHO9 20.5 
AHO10 12.0 
AHO11 7.4 
AHO12 7.3 
AHO13 21.4 

 

Validation Set  pKi
pre/pKi

exp b 
VHO1 0.87 
VHO2 1.03 

a∆Eint (kcal.mol-1) is the interaction energy as defined in Methods section: 
∆Eint = Eint{PR:AHOx}-Eint{PR:AHO1}, AHO1 is the reference inhibitor; 
bratio of predicted and experimental inhibition constants pKi

pre/pKi
exp. Ki

pre 
was predicted from computed ∆Eint using the regression equation (B) for 
pfA-M17 shown in Table 8. 

 

(A) 

 

(B) 

Figure 6. Enzyme – ligand interactions at the active site of pfA-M17 depicted in 3D for the most active APP (A) namely APP1, AHO (B), AHO1 respectively. 
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Table 8. Statistical data on regression analysis of correlation for the APP (A) and AHO (B) training sets between ∆Eint and pfA-M17 inhibition experimental 

activities (Ki
exp). 

pKi
exp = -0.5514⋅∆Eint - 19.89 (A) 

pKi
exp = -0.2142⋅∆Eint - 4.76 (B) 

 

Statistical data of regression  (A) (B) 
Number of compounds n  6 13 
Squared correlation coefficient of regression R2  0.99 0.88 
LOO cross-validated squared correlation coefficient R2

XV 0.98 0.87 
Standard error of the regression σ  0.24 0.6521 
Statistical significance of regression, Fisher F-test F  337.8 81.978 
Level of statistical significance α  > 95% > 95% 
Range of activity of Ki

exp
 (nM) 11 – 1000001  8 - 501000 

 

(A) 

 

(B) 

Figure 7. Connolly surface of pfA-M17 active-site with bound most active APP (A) namely APP1, AHO (B), AHO1 inhibitor respectively. The binding site 

surface is colored according to residue hydrophobicity: red – hydrophobic, blue – hydrophilic, and white – intermediate. 

Table 9. Breakdown of pfA-M17 global interaction energy to each active site residue contribution for H-Bonds, S1 and S1’ pockets in the case of the most active 

inhibitors, APP1 and AHO1 respectively. 

(% of Eint) pfA-M17:APP1 (A) pfA-M17:AHO1 (B) 

H-BOND 

Lys374 – 12% – 
– Asp379 – 5% 
Lys386 – 3% Lys386 – 5% 
Asp399 – 2% Asp459 – 8% 
– Leu487 – 6% 
17% of total Eint 25% of total Eint 

S1 pocket  

Met392 – 1% Met392 – 1% 
Met396 – 6% Met396 – 3% 
Phe398 – 3% Phe398 – 2% 
Gly489 – 4% Gly489 – 5% 
Tyr493 – 2% Ala577 – 2% 
Ala577 – 3% Tyr493 – 2% 
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(% of Eint) pfA-M17:APP1 (A) pfA-M17:AHO1 (B) 
19% of total Eint 15% of total Eint 

S1’ pocket  

Arg463 – 4% Arg463 – 6% 
Ile547 – 0.1% Ile547 – 2% 
Ala460 – 5% Ala460 – 5% 
Asn457 – 0.1% Asn457 – 3% 
Ser554 – 0.1% Ser554 – 4% 
Lys552 – 0.5% Lys552 – 2% 
9.8% of total Eint 22% of total Eint 

 

(A) 

 

(B) APP 
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(A’) 

 

(B’) AHO 

Figure 8. Pharmacophore (PH4) models of APP (A, B) and AHO (A’, B’) respectively displaying: the features and their internal coordinates (distances and 

angles), mapping of APP1 and AHO1 to each respective pharmacophore (A, A’) and the plot of estimated and experimental activity for each PH4 (B, B’). 
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Table 10. Output parameters of the 10 generated PH4 Hypotheses for APPx after CatScramble validation procedure for pfA-M17 inhibitors listing RMSD, total 

cost and R correlation coefficient. 

Hypothesis RMSD R2 Total costs 
Hypo1 1.009 0.998 41.2 
Hypo 2 1.474 0.995 43.1 
Hypo 3 1.731 0.993 44.1 
Hypo 4 1.644 0.994 44.8 
Hypo 5 1.841 0.993 44.8 
Hypo 6 1.612 0.994 44.9 
Hypo 7 1.597 0.994 45.3 
Hypo 8 1.889 0.992 46.3 
Hypo 9 1.587 0.995 47.1 
Hypo 10 1.709 0.994 48.2 
Fixed cost 0 1.0 26.3 
Null cost 15.594 0 741.1 

Table 11. Output parameters of the 10 generated PH4 Hypotheses for AHOx after CatScramble validation procedure for pfA-M17 inhibitors listing RMSD, total 

cost and R correlation coefficient. 

Hypothesis RMSD R2 Total costs 
Hypo1 8.351 0.98 492.1 
Hypo 2 8.391 0.97 497.3 
Hypo 3 8.745 0.97 546.3 
Hypo 4 9.169 0.97 585.6 
Hypo 5 9.169 0.97 585.6 
Hypo 6 9.158 0.97 589.3 
Hypo 7 10.186 0.97 722.0 
Hypo 8 10.522 0.96 778.2 
Hypo 9 10.632 0.96 793.0 
Hypo 10 10.692 0.96 854.7 
Fixed cost 0 1.0 23.4 
Null cost 42.137 0 11552.9 

Table 12. Statistical information on regression analysis of correlation for the training set between PH4 predicted activity (pKipred) and experimental one (pKiexp) 

for APP (A) and AHO (B) respectively against pfA-M17. 

pKi
exp = 1.02016 ⋅ pKi

pred – 0.10478  (A) 
pKi

exp = 0.99677 ⋅ pKi
pred – 0.00457 (B) 

 

Statistical data of regression  (A) (B) 
Number of compounds n  6 13 
Squared correlation coefficient of regression R2  0.99 0.99 
LOO cross-validated squared correlation coefficient R2

XV 0.99 0.98 
Standard error of the regression σ  0.1342 0.1707 
Statistical significance of regression, Fisher F-test F  1047.8 1312.9 
Level of statistical significance α  > 95% > 95% 
Range of activity of Ki

exp
 (nM) 11 – 1000001  8 - 501000 

 

5.1. Library Design 

In order to identify more potent orally bioavailable 
pfA-M17 inhibitors we have built two virtual libraries; first for 
new APP with a variety of substitutions in one position, 
second for new AHO with substitutions in two positions. 
During the virtual library enumeration the R-groups listed in 
Table 13 were attached to position R1 for APPs of the 
appropriate scaffold to form a combinatorial library of the size: 
77 APP analogues. In the same way R1 and R2 positions of 
AHOs have been substituted with R-groups from Table 16, R1 
× R2 = 84 × 50 = 4,200 AHO analogues. All analogues are 
matching the substitution pattern of the best inhibitor APP1 
and AHO1 respectively. 

These diversity libraries of APPs and AHOs analogues 
were generated from the substituted phosphonic arginine and 

hydroxamic acids listed in the databases of available 
chemicals [29]. Nowadays one of the criteria for the design of 
new antimalarials, in regards to the target population, is their 
oral bioavailability. In order to design a more focused library 
of a reduced size and increased content of drug-like and orally 
bioavailable molecules, we have introduced a set of filters and 
penalties, which can help to select smaller number of suitable 
APPs and AHOs that can be submitted to in silico screening. 
The initial virtual library was thus filtered in an ADME-based 
focusing step to remove compounds with expected poor oral 
bioavailability and low drug likeness. For AHOs only 
analogues with high predicted percentage of human oral 
absorption (HOA) in the gastrointestinal tract larger than 25% 
(25% is the highest value of poor oral bioavailability 
compounds, see legend (r) in table 20) [24] and compounds 
satisfying the Lipinski’s rule of five [30] computed for the 
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entire virtual library using QikProp software [14], were kept. 
Let’s recall that this focusing was not applied for APPs 
analogues since they were used here to guide S1 pocket 
interaction improvement only, their ADME profile is already 
known to be not favorable as table 20 confirms for most of 
them.  

5.2. In Silico Screening of Libraries of APPs and AHOs 

The libraries of APPs and AHOs analogues were further 
screened for molecular structures matching to the 3D-QSAR 
PH4 pharmacophore model Hypo1 of pfA-M17 inhibition by 
APPs (PH4APP) and AHOs (PH4AHO) respectively.  

5.2.1. Library of APPs 

From the set of 77 analogues, only 16 best fitting analogues 
(PH4APP hits) have been retained and submitted to screening 
with help of the complexation QSAR model. Computed Gibbs 
free energy upon complex formation with pfA-M17 and its 
components as well as predicted Ki

pre estimated from the 
correlation Equation (B), table 5, are given in table 14. For a 
short majority of new APP analogues, the estimated inhibitory 
potencies shown in Table 14 are better than that for the most 
active training set compound APP1 (Ki

exp = 11 nM [12]).  
The main goal of the design of APP analogues is to provide 

structural information, essentially appropriate substituent 
sup-posed to serve in discovery of new scaffold or to improve 
existing one such as AHOs’ affinity. 

5.2.2. Library of AHOs 

From the set of 4200 analogues of AHOs 4128 mapped to at 
least 2 features, 3615 of which mapped to 4 features of the 
pharmacophore. Out of then, only 17 best fitting analogues 
(PH4 hits) have been retained and submitted to screening with 
help of the complexation QSAR model. Computed Gibbs free 
energy of complex formation with pf A-M17 and its 
component as well as predicted Ki

pre estimated from the 
correlation Equation (D), table 5, are given in tables 17 and 18. 
For a majority of new AHO analogues, the estimated 
inhibitory potencies shown in table 17 are better than that for 
the most active training set compound AHO1 (Ki

exp = 8 nM 
[13]).  

5.3. Analysis of New Inhibitors 

In order to identify which substituents on the APPs (Table 
13) lead to new inhibitor candidates with the highest predicted 
potencies against pfA-M17, we have analyzed the frequency 
of occurrence of R1, groups in the APPs and R1, R2 groups in 
the AHOs PH4 best fitting hit selected from the focused 
virtual library shown in tables 15 and 18. 

For the 16 selected APPs the following R-groups were 
present: 1, 2, 6, 20, 23, 30, 32, 43, 44, 50, 58, 59, 60, 61, 73 
and 76; those in top ranked analogues (Ki

pred < 1 nM) are 30, 
43, 44 and 61; they fill the S1 pocket better. In fact, for the 
best-designed APP analogue APP-A-43 the predicted Ki is 
more than 73 times higher than for the APP1 based on a better 
fitting of the 4-(1H-pyrazol-1-yl)phenyl group in S1 
hydrophobic pocket with a sensitivity to the additional methyl 

group orientation (see also APP-A-44). 
For the 17 selected AHOs in R1 position 14 R-groups are 

presents once: 6, 7, 10, 12, 24, 26, 44, 47, 50, 54, 74, 77, 81 
and 82 except 10 and 44 present twice for fitting S1’ pocket. 
R2 position (for S1 pocket filling) is less spread since 10 
R-groups are presents once: 93, 95, 112, 116, 118, 125 and 133 
while 92 and 108 twice and 127 five times among them the 
best AHO new analogue A-81-127. A-10-112 analogue 
keeping the methyl extended 4-(1H-pyrazol-1-yl) phenyl 
group in S1 (as suggested from APPs best analogue) reached a 
predicted potency of 3.7 nM, in other words, twice more 
potent than AHO1. In order to improve better the potency, a 
larger R-group (#127) fitted better in S1 pocket while a 
CF3-phenyl occupies S1’ pocket to reach the best-designed 
AHO analogue A-81-127 displaying a predicted inhibitory 
potency more than 40 times higher than for the AHO1. 
Figure 11 displays interactions of best designed APP (A) and 
AHO (B) analogues respectively with pfA-M17. As one can see, 
besides S1 and S1’ pockets hydrophobic contacts, Hydrogen 
Bonds were conserved. In Figure 12, the AHO analogue (B) fits 
better in S1 and S1’ pockets than the best active training set 
AHO1 (see Figure 6 and 7, B) justifying, in a large part, the 
predicted increase of inhibitory potency of A-81-127. 
Specifically in Figure 11 (B), the hydrogen bond contact 
involving the ligand and Tyr 493 specific to pfA-M17 (in the 
human ortholog hA-M17, it’s a Valine residue) may be exploited 
to enhance the selectivity of A-81-127 as suggested by E. 
Cunningham et al. [7]. 

6. ADME Profiles of Designed APPs and 
AHOs 

Two main requirements from WHO about new 
antimalarials is their low cost and oral bioavailability. About 
this last one; table 19 displays ADME profile of predicted best 
active APP analogues. As expected their%HOA(r) are lower 
than 32%. The range for 95% of drugs (< 25% - poor, > 80% 
high) clearly indicates almost poor oral bioavailability. In the 
same way, predicted apparent Caco-2 cell membrane 
permeability in Boehringer-Ingelheim scale, for which the 
range for 95% of drugs (< 25 poor, > 500 great) (n) in table 19 
confirms their poor membrane permeability as indicated 
formerly [13]. Let’s recall that APPs served to get insight into 
S1 pocket impact for affinity improvement. Oppositely, as 
indicated in Table 20, AHOs ADME profile for the best 
designed new analogues displays%HOA in a higher range for 
their majority. Only one of them, the less active in this short 
list, displays poor cell membrane permeability. For almost all 
of them drug likeness defined as the number of stars, namely 
the number of property descriptors (from 24 out of the full list 
of 49 descriptors of QikProp, ver. 3.7, release [14]) that fall 
outside of the range of values for 95% of known drugs, equals 
0. For comparison purpose, the computed ADME profile of 
some current antimalarials is displayed at the bottom of table 
19. As we can see, for almost all antimalarials of the 
Artemisinin Combined Therapy (ACT) initiative the number 
of stars is greater than 0 despite their high%HOA. 
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7. Conclusions  

The studied enzyme pfA-M17 active site pockets S1 and S1’ 
have been investigated separately as reported through various 
papers. The hydrophobic S1 suitably accommodates hPhe [31] 
while the larger amphipathic S1’pocket with hydrophilic neck 
and hydrophobic extended cavity was expected to improve the 
target inhibition [13]. Fitting R-group in S1’ remained one of 
the main goals of this work. Accordingly our unrestrained 
effort to retrieve structural information from the crystal 
structure of pfA-M17 – APP1 and pfA-M17 – AHO1 
complexes in order to elaborate reliable one descriptor QSAR 
models of pfA-M17 inhibition for APPs and AHOs inhibitors 
using training and validation sets with known inhibitory 
activities [12, 13]. The unique descriptor, namely the 
computed Gibbs free energies (GFE) upon complex formation, 
correlated with observed inhibitory potencies. Since GFE is a 
combined descriptor involving enthalpic gas phase, solvation 
free energy and entropic contributions, a precise and deeper 
insight into S1 and S1’ pockets filling have been retrieved 
from the model. A consistent way to crosscheck this structural 
information was the analysis of interactions between the 
enzyme active-site residues and the inhibitor. In this regard the 
breakdown of interaction energy to each active site residue 
contribution clearly ordered the pockets S1’ >> S1 when 
comparing their affinity with APP1 and AHO1: a key 
information (Table 9) which directed our effort to design an 
initial diversity virtual combinatorial library of new analogues 
to be screened by the pharmacophore models derived from the 
GFE QSAR. The initial library filtered by a set of 
ADME-related descriptors to a focused one subsequently was 
screened by mapping of the analogues to the PH4AHO 

pharmacophore to reach a selected library subset of potent and 
orally bioavailable AHOs. This subset of 17 best virtual hits 
was submitted to the computation of predicted pfA-M17 
inhibitory potencies by the formerly elaborated complexation 
QSARAHO model. Starting from a training set led by AHO1 
(Ki

exp=8 nM), our best designed analogues reached predicted 
Ki in the low nanomolar concentration range. The best 
designed AHOs analogues A.50.108 (Ki

pre = 0.4 nM), 
A-81-127 (Ki

pre = 0.2 nM), A-7-127 (Ki
pre = 0.4 nM) and 

A-44-92 (Ki
pre = 0.3 nM), see tables 17 and 18, are 

recommended for synthesis and subsequent activity 
evaluation in pfA-M17 inhibition assays and may lead to a 
discovery of novel potent orally bioavailable lethal and 
selective antimalarials. 

Since pfA-M17 is a recent target the inhibition of which is 
at the beginning era, besides the list of 17 best virtual hits, the 
Structure Activity Relationship (SAR) information we 
provide about non potent analogues namely the non-suitable 
R-groups is of interest for medicinal chemists since they will 
know the analogues that are not worth synthesizing. More 
detailed such information is available on demand. 

At the end pfA-M17 S1 and S1’ pockets have to be targeted 
synergistically: while fitting S1’ to improve affinity with 
pfA-M17 better than S1, the latter subsite, through hydrogen 
bonding the selective enzyme residue Tyr 493 keeps the 
inhibitor selective over human hA-M17 as exemplified by our 
best designed A-81-127. 
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Figure 9. Best APP designed analogue (APP-A-43) mapped to APP – PH4 (left) and best AHO designed analogue (A-81-127) mapped to AHO – PH4 (right). 
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Figure 10. pfA-M17 active-site Connolly surface with bound most active inhibitors APP1 (left) and AHO1 (right) each one mapped to its PH4. The binding site 

surface is colored according to residue hydrophobicity: red – hydrophobic, blue – hydrophilic, and white – intermediate. 
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Figure 11. Enzyme – ligand interactions at the active site of pfA-M17 depicted in 3D for the best APP analogue (left), AHO (right). 

 

 

Figure 12. Connolly surface of the active-site of pfA-M17 with bound best APP analogue (left), AHO (right). The binding site surface is colored according to 

residue hydrophobicity: red – hydrophobic, blue – hydrophilic, and white – intermediate. 
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Table 13. R-groups (fragments, building blocks, substituents) used in the design of the initial diversity library of APP.  
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R-groups 
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Table 14. APP analogues inhibitors of pfA-M17, the name is a concatenation APP-A-#R, #R is the R group numbering from table 13. 

Analogue (*) Mw
 b [g mol-1] ∆∆HMM

 c [kcal mol-1] ∆∆Gsol
 d [kcal mol-1] ∆∆TSvib

 e [kcal mol-1] ∆∆Gcom
 f [kcal mol-1] Ki [nM] 

APP1  0 0 0 0 11 
APP-A-1 387 -4.33 2.29 -1.42 -0.61 3.4 
APP-A-2 288 0.59 -0.49 -1.34 1.43 30.1 
APP-A-6 322 -1.18 -2.61 -3 -0.7937 2.8 
APP-A-20 317 -1.24 3.09 -0.59 2.44 873 
APP-A-23 379 3.02 -1.33 -1.65 3.34 228 
APP-A-30 271 -0.83 -2.15 -1.03 -1.95 0.8 
APP-A-32 288 -5.72 2.73 -2.4 -0.59 3.5 
APP-A-43 267 -0.06 -3.23 0.21 -3.49 0.15 
APP-A-44 266 -0.58 0.60 1.97 -1.95 0.8 
APP-A-50 281 1.23 -1.12 0.84 -0.7251 3 
APP-A-58 300 1.53 -0.78 1.29 -0.5388 3.7 
APP-A-59 331 5.85 -1.85 -0.41 4.41 711.6 
APP-A-60 346 6.02 -3.98 -1.75 3.79 367.9 
APP-A-61 263 -0.6 -1.95 0.94 -3.49 0.16 
APP-A-73 228 4.36 -2.87 -5.15 6.64 7623.5 
APP-A-76 237 2.83 0.68 -0.65 4.16 549.4 
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Table 15. APP analogues inhibitors of pfA-M17, depicted in 2D, the name is a concatenation APP-A-#R, #R is the R group numbering from table 13. 

    
APP-A-1 APP-A-2 APP-A-6 APP-A-20 

    
APP-A-23 APP-A-30 APP-A-32 APP-A-43 

 
   

APP-A-44 APP-A-50 APP-A-58 APP-A-59 

    
APP-A-60 APP-A-61 APP-A-73 APP-A-76 

Table 16. R-groups (fragments, building blocks, substituents) used in the design of the initial diversity library of AHO analogues: R1 (1 – 84) and R2 (85 – 134). 
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Table 17. AHO analogues with scaffold A, the name is a concatenation A-#R1-#R2, #R1 and #R2 being the R group numbering from table 16. 

Analogue (*) Mw
 b [g mol-1] ∆∆HMM

c [kcal mol-1] ∆∆Gsol
 d [kcal mol-1] ∆∆TSvib

e [kcal mol-1] ∆∆Gcom
f [kcal mol-1] Ki [nM] 

AHO1  0 0 0 0 8 
A-4-117 434 -0.07 2.91 -0.3 3.14  36.7 
A-6-118 482 2.9 -2.17 -0.94 1.67  20.9 
A-7-127 401 -26.07 16.73 -1.6 -7.74  0.5 
A-10-112 407 -7.41 2.96 -1.62 -2.83  3.7 
A-10-133 411 4.31 3.91 3.1 5.12 78.3 
A-12-108 465 -15.6 9.24 -1.53 -4.83  1.7 
A-24-127 402 -9.86 20.67 2.35 8.46  281.9 
A-26-125 387 -19.18 21.43 1.3 0.94  15.8 
A-44-92 553 -10.5 0.94 -0.1 -9.46  0.29 
A-44-93 773 -8.29 3.59 -3.17 -1.53  6.1 
A-47-95 449 -0.71 1.94 -1.91 3.14  36.7 
A-50-108 432 -7.62 1.24 2.04 -8.42  0.4 
A-54-116 457 5.24 7.58 0.18 12.64  1401.8 
A-74-127 392 -7.62 5.81 1.61 -3.42  2.9 
A-77-92 526 -3.86 -2.65 -4.41 -2.1  4.9 
A-81-127 417 -17.53 7.45 -0.54 -9.54  0.28 
A-82-127 367 -10.94 6.07 -0.48 -4.39  2 

 

NH
O

OH
NH
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Table 18. AHO analogues with scaffold A, depicted in 2D, the name is a concatenation A-#R1-#R2, #R is the R group numbering from table 16. 

 
  

A-82-127 A-10-112 A-77-92 

 
  

A-12-108 A-50-108 A-81-127 

   
A-74-127 A-7-127 A-24-127 

   
A-47-95 A-4-117 A-26-125 

  
 

A-44-92 A-10-133 A-54-116 

   

 

A-44-93 A-6-118  

Table 19. Predicted ADME-related properties of the best-designed APP analogues. 

APPa #starsb MW [g/mol] Smold [Å2] Smol, hfoe [Å2] Vmolf [Å3]  RotBg HB donh HB acci logPo/w j 
APP-A-1 0 287.6 462.2 15.1 780.4 5 4 7 -1.1 
APP-A-44 0 267.2 473 94.1 798.0 5 4 7 -1.2 
APP-A-32 0 289.1 471.1 15.2 783.1 5 4 7 -1.0 
APP-A-61 0 263.2 498.4 12.7 834.1 6 4 6 -0.6 
APP-A-43 0 267.2 498.4 106.3 835.0 5 4 7 -1.2 
APP-A-30 0 271.1 474.5 12.5 790.0 5 4 7 -1.2 
APP-A-50 0 281.2 531.5 149.2 891.1 6 4 7 -0.9 
APP-A-6 0 322.1 507.7 12.6 853.3 5 4 7 -0.6 
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Table 19. Continued. 

APPa logSwatk logKHSAl logB/Bm BIPcacon [nm.s-1] #meta o Ki pred HOAq %HOAr 
APP-A-1 -1.6 -0.94 -0.8 2.4 3 3.4 1 27.3 
APP-A-44 -1.5 -0.92 -1.0 2.4 4 0.8 1 26.6 
APP-A-32 -1.8 -0.96 -0.8 2.4 3 3.5 1 27.8 
APP-A-61 -1.8 -1.04 -0.8 2.90 3 0.16 1 31.9 
APP-A-43 -1.8 -1.17 -0.9 1.80 4 0.15 1 25.0 
APP-A-30 -1.7 -0.99 -1.0 1.90 3 0.8 1 25.0 
APP-A-50 -2.1 -1.30 -0.8 1.90 4 3 1 26.9 
APP-A-6 -2.5 -0.87 -0.9 1.90 3 2.8 1 28.3 

abest designed APPs analogues, Table 15; 
bdrug likeness, number of property descriptors (from 24 out of the full list of 49 descriptors of QikProp, ver. 3.7, release [14]) that fall outside of the range of 
values for 95% of known drugs; 
cmolecular weight in g.mol-1 (range for 95% of drugs: 130 - 725 g.mol-1) [14]; 
dtotal solvent-accessible molecular surface, in Å2 (probe radius 1.4 Å) (range for 95% of drugs: 300 - 1000 Å2); 
ehydrophobic portion of the solvent-accessible molecular surface, in Å2 (probe radius 1.4 Å) (range for 95% of drugs: 0 - 750 Å2); 
ftotal volume of molecule enclosed by solvent-accessible molecular surface, in Å3 (probe radius 1.4 Å) (range for 95% of drugs: 500 - 2000 Å3); 
gnumber of non-trivial (not CX3), non-hindered (not alkene, amide, small ring) rotatable bonds (range for 95% of drugs: 0 - 15); 
hestimated number of hydrogen bonds that would be donated by the solute to water molecules in an aqueous solution. Values are averages taken over a number of 
configurations, so they can be non-integer (range for 95% of drugs: 0.0 - 6.0); 
iestimated number of hydrogen bonds that would be accepted by the solute from water molecules in an aqueous solution. Values are averages taken over a number 
of configurations, so they can be non-integer (range for 95% of drugs: 2.0 - 20.0); 
jlogarithm of partitioning coefficient between n-octanol and water phases (range for 95% of drugs: -2 - 6.5); 
klogarithm of predicted aqueous solubility, log S. S in mol dm–3 is the concentration of the solute in a saturated solution that is in equilibrium with the crystalline 
solid (range for 95% of drugs: -6.0 - 0.5); 
llogarithm of predicted binding constant to human serum albumin (range for 95% of drugs: -1.5 - 1.5); 
mlogarithm of predicted brain/blood partition coefficient. Note: QikProp predictions are for orally delivered drugs so, for example, dopamine and serotonin are 
CNS negative because they are too polar to cross the blood-brain barrier (range for 95% of drugs: -3.0 - 1.2); 
npredicted apparent Caco-2 cell membrane permeability in Boehringer-Ingelheim scale, in [nm/s] (range for 95% of drugs: < 25 poor, > 500 great); 
onumber of likely metabolic reactions (range for 95% of drugs: 1 - 8); 
ppredicted inhibition constants Ki

pre
. Ki

pre
 was predicted from computed ∆∆Gcom using the regression equation shown in Table 5; 

qhuman oral absorption (1 - low, 2 - medium, 3 - high); 
rpercentage of human oral absorption in gastrointestinal tract (<25% - poor, >80% high); 
(*)star indicating that the property descriptor value falls outside the range of values for 95% of known drugs.  

Table 20. Predicted ADME-related properties of the best-designed AHO analogues. For the legend see Table 19. 

AHOa #starsb MW [g.mol-1] Smold [Å2] Smol, hfoe [Å2] Vmolf [Å3] RotBg HBdonh HBacci logPo/w j 
A-82-127 0 367.3 626.6 9.1 1080.3 6 2.2 9.4 0.62 
A-10-112 0 407.2 647.7 148.9 1138.6 5 2.2 6.9 2.02 
A-77-92 1 526.2 694.1 8.7 1207.7 6 3.1 7.4 2.7 
A-50-108 0 431.4 723.1 7.6 1236.5 8 5.3 9.4 0.39 
A-81-127 0 417.3 672.6 10.4 1167.1 6 2.2 9.4 1.3 
A-7-127 0 401.4 627.1 55.4 1106.7 8 3.1 9.4 0.7 
A-44-92 0 553.1 722.5 9.7 1271.1 6 4.2 9.9 0.97 
Dapsone 1 236.2 431.6 0 687.9 2 0 7 -0.37 
Trimethoprim 0 272.2 500.2 223.9 835.9 5 0 6.5 0.59 
Chloroquine 1 293.7 594.1 188.9 982.9 6 0 3 4.56 
Amodiaquine 1 333.7 603.2 131.7 1018.7 6 0 5 3.61 
Mefloquine 2 362.2 533.1 0 925.1 2 0 4 4.14 
pamaquine 0 315.5 654.8 443.4 1148.1 9 1 4.75 4.02 
Sulfametopyrazine 1 268.2 473.4 77.8 773.3 4 0 9 -1.03 
Tetracycline 5 422.3 604.5 173.1 1111.8 2 0 16 -3.43 
Quinacrine 0 369.7 680.5 268.8 1163.6 7 0 3.5 5.57 
Proguanil 1 237.6 478.2 125.3 768.6 6 0 6 1.09 
Halofantrine 5 470.2 785.4 160.2 1351.8 5 0 3 7.63 
Sulfadoxine 1 296.2 510.6 152.3 849.5 5 0 9.5 -0.79 
Hydroxychloroquine 1 309.7 609.5 119.5 1006.5 6 0 5 3.36 
Bulaquine 0 369.5 560.2 360.2 1097.8 9 1 5.8 3.62 
Lumefantrine 5 496.7 819.1 160.7 1437.5 7 0 3 8.27 
arteether 1 312.4 531.1 506.1 970.2 2 0 5.7 2.7 
dihydroartemisinine 1 284.4 477.4 395.7 864.6 1 1 5.7 1.84 
Doxycycline 4 422.3 602.2 174.1 1104.2 2 0 17.2 -3.99 
Artemisinin 0 282 456.6 380.6 848.4 0 0 5.3 1.7 
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Table 20. Continued. 

AHOa logSwatk logKHSAl logB/Bm BIPcacon [nm.s-1] #meta o Kipred HOAq %HOAr 

A-82-127 -2.5 -0.78 -1.7 66.4 2 1.8 3 63 

A-10-112 -4.1 -0.18 -1.4 78.1 3 3.3 3 73 

A-77-92 -4.9 -0.19 -1.1 115.1 2 4.3 3 67.1 

A-50-108 -2.9 -0.65 -2.1 4.3 3 0.4 2 40.6 

A-81-127 -3.6 -0.6 -1.6 63.7 3 0.2 3 67.3 

A-7-127 -2.5 -0.78 -1.8 41.2 5 0.4 2 59.9 

A-44-92 -4.2 -0.48 -2.5 9.9 2 0.3 2 37.5 

Dapsone -0.5 -1.34 -0.9 289.1 0  2 68.8 

Trimethoprim -1.5 -0.91 -1.2 282.8 3  3 74.3 

Chloroquine -5.3 0.41 -0.1 3718.1 0  3 100 

Amodiaquine -4.4 -0.02 -0.4 1689.1 0  3 100 

Mefloquine -4.9 0.15 0.5 2903.1 0  3 100 

pamaquine -3.8 0.43 0.2 1475.2 5  3 100 

Sulfametopyrazine 0.2 -1.7 -1.3 195.8 1  2 61.9 

Tetracycline 1.1 -2.5 -2.6 6.8 5  1 21.8 

Quinacrine -6.5 0.8 -0.1 4435.7 1  1 100 

Proguanil -1.5 -1.1 -0.7 834.6 0  3 85.6 

Halofantrine -9.9 1.5 0.2 2844.1 0  1 100 

Sulfadoxine -0.11 -1.7 -1.4 213.4 2  2 63.9 

Hydroxychloroquine -4.51 -0.1 -0.7 1023.7 0  3 100 

Bulaquine -2.98 0.1 -0.4 3099.7 7  3 100 

Lumefantrine -10.01 1.7 0.2 4337.2 0  1 100 

arteether -2.99 -0.2 0.2 5731.8 0  3 100 

dihydroartemisinine -2.92 -0.1 -0.1 1664.9 0  3 95.4 

Doxycycline 1.73 -2.88 -2.45 9.17 4  1 20.8 

Artemisinin -2.1 -0.3 0.001 1886 1   3 95.8 
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