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Abstract: In this work, we demonstrate via numerical simulation the general design for one dimensional photonic crystal (1D- 
PC). In the design procedure, the transfer matrix method and Bloch theorem are used to determine the transmission coefficient 
and dispersion relation of (1D- PC) structure for both TE (transverse electric) and TM (transverse magnetic) modes. Results 
obtained showing the effect of the filling factor as well as the incident angle on the photonic band gap width. The analysis is 
carried out using MATLAB software tool. The accuracy of the analysis is tested by comparing the computed results with 
measurements published data. 
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1. Introduction 

Photonic crystals (PCs) structures have attracted increasing 
interest in recent years [1-5]. Various materials and techniques 
have been employed in order to obtain one, two, and three 
dimensional photonic crystals [6-9]. These structures designed 
to control the propagation of electromagnetic waves in the 
same way as the periodic potential in semiconductor crystals 
[10-12]. Particularly, one dimensional photonic crystals have 
been known for several decades as Bragg mirror. Interference 
of the Bragg scattering is considered as a cause of the Bragg 
gap or band gap. The periodicity creates the band gaps depend 
on some parameters, as the dielectric contrast between the 
employed materials, and the filling factor of the elementary 
cell [13]. 

One dimensional photonic crystal (1D- PC) structures have 
a number of useful properties, which are employed as low-loss 
optical waveguides, dielectric reflecting mirrors, optical 
switches, optical limiters, optical filters etc. It has been 
demonstrated experimentally and theoretically that 
one-dimensional PBG have complete omnidirectional PBGs. 
Various materials have been employed in order to obtain one 
photonic crystals (1D) as: Si/SiO2, SiO2/TiO2, Na3AlF6/ZnSe, 
Na3AlF6/Ge [5, 14-18]. Silicon has been the choice for 
microelectronics technology because of various reasons such 
as its cost, compatible with mass production and availability. 
For this reason, we are study the transmission coefficient and 

dispersion curves of (1D- PC) structures composed of Si/SiO2. 
Nowadays, the numerical modeling of photonics crystals is 

based on the calculation of the transmission, the reflection 
coefficients properties [19-23]. These methods including the 
plane wave expansion (PWE) method, the generalized Rayleigh 
identity method, the finite-difference time-domain (FDTD) 
method, and the transfer matrix method (TMM). Each method 
has its own limitations for finding the band structure. The 
transfer matrix method is most popular because of its simplicity 
in algorithm and capability to model complex structures. It is 
recently introduced by Pendry and MacKinnon, to calculate the 
EM transmission through the PBG materials [24]. 

In this paper, we combine the transfer matrix method 
(TMM) to the Block theorem in order to find the 
characteristics of transmission spectra and diagrams of 
dispersion of one dimensional photonic crystal (1D- PC). 
Several simulation cases by Matlab will be given to show the 
performance of this approach. The results obtained from this 
approach are in very good agreement with reported by the 
practical study of H. Tian et al. [14]. 

2. Theory 

2.1. Study of Transmissions in the (1D- PC) Structure 

Let us consider first the (1D-PC) structure consisting of 
alternating multilayer shown in Fig. 1, there are N layer or 
(N/2) period made up of dielectric materials. Every layer has 
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to be dl thicknesses, and index nl. In order to find the 
formulation of the structure, we supposed that the incident 
electromagnetic wave from air to Si and SiO2 medium. 

Let the layers be in the x-y plane, the z direction being 
normal to interface of layers. 

 

Fig. 1. Structure of one-dimensional photonic crystal. 

The refractive index profile of considered structure can be 
given as 

�� = � �� 0 < 	 < d��� d� < 	 < d� �             (1) 

and 

��(z) = ��(z + �)             (2) 

where 
l: is number of layer d = d� + d�: is period 
Based on the Maxwell equations and the boundary 

conditions, the TMM has been widely used to calculate the 
amplitude and phase spectra of the light wave propagating in a 
(1D- PC) structure. We will suppose that a space time 

dependence of all the components of the kind ).( trkie ω−�
�

. The 

transverse components of the E and H fields from Maxwell’s 
equations in the lth layer, for TM polarization, are given by: 

��� = ����������(��.� ! "�#$�.!%& "�)' +  (���(��#��(��.� ! "�#$�.!%& "�)) )                          (3) 

)�* = +� cos /� (����(�����(��.� ! "�#$�.!%& "�)) − (���(��#��(��.� ! "�#$�.!%& "�)))                       (4) 

)�1 = −+� cos /� (����(�����(��.� ! "�#$�.!%& "�)) + (���(��#��(��.� ! "�#$�.!%& "�)))                      (5) 

Where Al and Bl are the amplitudes of the forward and 
backward travelling waves in the lth layer. 

The transverse components of the E and H fields from 

Maxwell’s equations in the lth layer, for TE polarization, are 
given by: 

)�� = ����������(23.� ! "�#43.!%& "�)' + (������#��(23.� ! "�#43.!%& "�)' )                      (6) 

��* = − 5�� ! "� (����(�����(23.� ! "�#43.!%& "�)) − (���(��#��(23.� ! "�#43.!%& "�)))                   (7) 

��1 = 5�� ! "� (����(�����(23.� ! "�#43.!%& "�)) + (���(��#�6(23.� ! "3#43.!%& "3)))                    (8) 

Where the wave numbers and intrinsic impedances are: 

7� = 89ε;μ;ε=μ=             (9) 

η= = ?@AB@BC = DECE@BCB@             (10) 

By using the boundary conditions and the condition of 
continuity of E and H fields at the interfaces of z = 0 and z = �� , �� , �G … … . �I , we can found the relationship 
between the fields (1D- PC) structure consisting of l layer, 
this relation is given by: 

J)���K = M�M� … … M? … . M=��M= J)���K      (11) 

The matrix Ml-1 of the lth layer can be written in the form 

M(=��) = M cos(δ(=��)) i γ(=��) sin(δ(=��))i γ(=��)�� sin(δ(=��)) cos(δ(=��)) R (12) 

S(���)  and T(���)  being the matrix parameters and 
depending on the incident angle of light, the optical constants 
and the layer thickness, are expressed as: 

 S(���) = 7(���). �(���). cos /(���)       (13) 

T(���) = U  5(�V6)� ! "(�V6)  W) XY�� +(���) cos /(���)  WZ XY���      (14) 

We note that /(���) is related to the angle of incidence /; 
by the Snell’s Descart’s low, that is 



 Journal of Electrical and Electronic Engineering 2015; 3(2): 12-18  14 
 

[(���)\][/(���) = [;\][/;         (15) 

By considering the transmission matrix of each layer, we 
can obtain the transmission matrix of whole structure. For l 
number of multilayers; the corresponding transfer matrix can 
be defined as a product of matrices, is obtained to be 

∏ Z���_� = `m�� m��m�� m��b         (16)
 

Where 
m11, m12, m21 and m22 are the complex numbers 
The transmittance t and reflectance r are defined as the 

ratios of the fluxes of the transmitted and reflected waves, 
respectively, to the flux of the incident wave. After some 
derivations, the total transmission and reflection coefficients 
are given by 

c = �d66#efV6d6g 'eCV6��dg6#efV6dgg '�d66#efV6d6g 'eCV6#�dg6#efV6dgg '    (17) 

h = �.eCV6
�d66#efV6d6g 'eCV6#�dg6#efV6dgg '   (18) 

Here p0 and ps are the first and last medium of the structure 
which given as 

ij�� = k 5f � ! "f�C  W) XY��
 � ! "f5f�C  WZ XY�� �        (19) 

i;�� = k 5C � ! "C�C  W) XY��
 � ! "C5C�C  WZ XY�� �       (20) 

Where 

2; = lm;�;  

Hence the reflectance R and transmittance T spectrums of 
can be obtained by using the expressions: 

W = |h|�                 (21) 

o = |c|�                 (22) 

2.2. The Dispersion Relation 

In general, wave propagation in periodic media can be 
described in terms of Bloch waves. For a determination of the 
dispersion surfaces of a periodic crystal, it is necessary only to 
integrate the wave-field through a periodic media [6]. 

According to Bloch theorem, fields in a periodic structure 
satisfy the following equations: 

)(	 + �) = ����p)(	)          (23) 

The parameter k is called the Bloch wave number or 
dispersion relation. In order to determinate k, we can use 
relation between the electric field amplitudes of two layers. 
From Equation (11), we obtain: 

J)���K = M�M� J)���K            (24) 

We can put the product matrix as: 

M�. M� = JM�� M��M�� M��K          (25) 

TrsM�. M�t is the trace of the transfer matrix characterizing 
the wave scattering in a periodic structure, is given by; 

TrsM�. M�t = M�� + M�� = 2cos (kd)    (26) 

Where 

M�� = cos(δ�) ∗ cos(δ�) − (γ�/γ�)  sin(δ�)  sin(δ�)  (27) 

M�� = cos(δ�) ∗ cos(δ�)−(γ�/γ�)  sin(δ�)  sin(δ�)  (28) 

Substituting (27) and (28) into (26), we obtain the following 
equation: 

cos(kd) = cos(δ�) ∗ cos(δ�) − ( ygg#y6g�y6yg)sin(δ�)  sin(δ�)  (29) 

The quantity cos(kd) determines the band structures of the 
(1D- PC) structure. In the region where |cos (kd)| < 1, k 
takes a real value and this leads to propagating Bloch waves 
(pass band). In the region where |cos (kd)| > 1, the value of 
k become complex which consists of an imaginary and a real 
part corresponding to the evanescent and propagating Bloch 
waves. The band edges are the regions where |cos (kd)| = 1. 

3. Numerical Calculation and Discussion 

3.1. Transmission Properties Under Different Incident 

Angles 

In this subsection, we consider only normal incidence of the 
electromagnetic wave on the (1D- PC) structure. To check the 
correctness of our computer program, numerical results are 
compared with those obtained from the real values in the 
practical uses [14]. The structure is restructured as (Hn Ln)

m 
where n = 1 . . . m, m is chosen as 15. We have kept constant 
the dielectric permittivity’s of the layers, are fixed to be nH = 
3.7 and nL = 1.5 (Si and the second layer is SiO2). There are 
three different values of the thickness of the considered layers 
that we will use in our studies, are: (dH = 112.1 nm, dL = 276.4 
nm), (dH = 112.1 nm, dL = 281.4 nm) and ( dH = 117.1 nm, dL = 
281.4 nm). 

The transmission spectra in figures 2-4 is computed and 
plotted with wavelength centered at 2.5 µm taking into 
account the different values of the filling ratio (F=dH/d). It 
may be seen from these results, that the structure exhibits 
various band gaps (or stop band) where the photonic states are 
forbidden in the structure, can be seen in the transmission 
spectrum. In this study we are considered only the larger band 
gap width, is defined as the frequency range when W ≤ 0.01%. 
When the thickness of the layer is dH = 112.1 nm, and dL = 
276.4 nm, the band gap rang is 1294nm to 2321nm. When dH 
= 112.1 nm and dL = 281.4 nm, the band gap rang is 1394nm to 
2437nm. When dH = 112.1 nm and dL = 281.4 nm, the band 
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gap rang is 1463nm to 2699nm. The photonic band gap is also 
same for both the TE and TM modes. So that, we can observe 
that the figure 4 has wider band gap than the figures 2-3. Also 
we can say that the change in the filling ratio allows us to 
obtain a new structure which can have adjustable gap width. It 
is found that the agreement between our results and those 
obtained via practical uses [14] is very good since the 
discrepancies between the two sets of results are below 0.8%. 

In this subsection, we consider only normal incidence of the 
electromagnetic wave on the (1D- PC) structure. To check the 
correctness of our computer program, numerical results are 
compared with those obtained from the real values in the 
practical uses [14]. The structure is restructured as (Hn Ln)

m 
where n = 1 . . . m, m is chosen as 15. We have kept constant 
the dielectric permittivity’s of the layers, are fixed to be nH = 
3.7 and nL = 1.5 (Si and the second layer is SiO2). There are 
three different values of the thickness of the considered layers 
that we will use in our studies, are: (dH = 112.1 nm, dL = 276.4 
nm), (dH = 112.1 nm, dL = 281.4 nm) and ( dH = 117.1 nm, dL = 
281.4 nm). 

The transmission spectra in figures 2-4 is computed and 
plotted with wavelength centered at 2.5 µm taking into 
account the different values of the filling ratio (F=dH/d). It 
may be seen from these results, that the structure exhibits 
various band gaps (or stop band) where the photonic states are 
forbidden in the structure, can be seen in the transmission 
spectrum. In this study we are considered only the larger band 
gap width, is defined as the frequency range when W ≤ 0.01%. 
When the thickness of the layer is dH = 112.1 nm, and dL = 
276.4 nm, the band gap rang is 1294nm to 2321nm. When dH 
= 112.1 nm and dL = 281.4 nm, the band gap rang is 1394nm to 
2437nm. When dH = 112.1 nm and dL = 281.4 nm, the band 
gap rang is 1463nm to 2699nm. The photonic band gap is also 
same for both the TE and TM modes. So that, we can observe 
that the figure 4 has wider band gap than the figures 2-3. Also 
we can say that the change in the filling ratio allows us to 
obtain a new structure which can have adjustable gap width. It 
is found that the agreement between our results and those 
obtained via practical uses [14] is very good since the 
discrepancies between the two sets of results are below 0.8%. 

 

Fig. 2. Transmission spectra of 1D, nH = 3.7, nL = 1.5, dH = 112.1 nm, dL = 

276.4 nm and F=0.288. 

 

Fig. 3. Transmission spectra of 1D, nH = 3.7, nL = 1.5, dH = 112.1 nm, dL = 

281.4 nm, and F=0.284. 

 

Fig. 4. Transmission spectra of 1D, nH = 3.7, nL = 1.5,dH = dH = 117.1 nm, dL 

= 276.4 nm, and F=0.297. 

The angle of the incidence is an important factor in the 
enlargement of gap width that is omitted in the previous 
studies [1, 4, 5, 14]. In the following, we present the results 
obtained of band gap width as functions of incident angle for 
two kinds (TE and TM modes). From the Figures 5-7, it is 
clearly seen that the band gap width for the TM mode is less 
than the TE mode for all the three cases. The band gap width 
of the structure compared for the incident angle with that in 
case of normal incidence is better, and the band gap width is 
more suitable when the angle is important for mode TE. The 
gap width of TM mode decreases with the increase of the 
angle for all the three cases. In addition, we can see that the 
band gap width of both modes (TE or TM) increases with the 
increase of filling ratio. 
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Fig. 5. Band gap width as functions of incident angle, nH = 3.7, nL = 1.5, dH = 

112.1 nm and dL = 276.4 nm. 

 

Fig. 6. Band gap width as functions of incident angle, nH = 3.7, nL = 1.5, dH = 

112.1 nm and dL = 281.4 nm. 

 

Fig. 7. Band gap width as functions of incident angle, nH = 3.7, nL = 1.5, dH = 

117.1 nm and dL = 276.4 nm. 

3.2. Band Gap Structure of the (1D- PC) Structure 

To predict the propagation of an electromagnetic wave in a 
(1D- PC) structure, it is necessary to know its dispersion 

relation or ω(k), where ω is the frequency of a wave with 
wavenumber k. In order to determine the variation of 
dispersion diagram, we computed the normalized frequency 
versus the wave vector for transverse electric (TE) and 
transverse magnetic (TM) modes. It has been calculated for 
the first Brillouin zone by employing the transfer matrix 
method and Bloch's theorem. 

In figures 8-10, results are presented for the dispersion 
diagram of the structure analyzed in fig 1 for normal incidence 
for TE (or TM) mode. The band diagram of figure 8 is extends 
between the normalized frequencies (0.4344 (λ/d) to 0.7713 
(λ/d)). In figure 9, we have (0.4294 (λ/d) to 0.7631 (λ/d)). In 
figure 10, we have (0.4245 (λ/d) to 0.7532 (λ/d)). 

 

Fig. 8. Photonic band structure of (1D- PC), nH = 3.7, nL = 1.5,dH = 112.1 nm 

and dL = 276.4 nm, θ=0°. 

 

Fig. 9. Photonic band structure of (1D- PC), nH = 3.7, nL = 1.5,dH = 117.1 nm 

and dL = 281.4 nm, θ=0°. 

As seen in these figures, a gap is present between the 
allowed states which can be easily identified, this corresponds 
to the band gap of the structure, and comparison shows that 
these gaps occur over the same frequency range as the 
transmission stop band. The existence of photonic band gap 
appeared when the value of Bloch wave vector becomes 
complex. However, the real values of Bloch wavevector k are 
corresponding to the pass band and imaginary values are 
corresponding to the forbidden band gap. 
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Fig. 10. Photonic band structure of (1D- PC) (1D- PC), nH = 3.7, nL = 1.5,dH 

= 117.1 nm and dL = 276.4 nm, θ=0°. 

3.3. Photonic Gap Map of the (1D- PC) Structure 

In this section, we have demonstrated that it is possible to 
modify the photonic gap (PBG) of structure by varying the 
incident angle and filling factor f. The gap map shown in 
Figures 11–13 represent results in terms of frequencies (~�� ) 
(where d is the period constant, C the speed of light and ¸f the 
frequency) as function of the filling factor (f =dH/d). The 
photonic gap map for the TE or TM mode (normal incidence), 
presented in figure 11, the red region indicates the variation 
of band gap (PBG), the empty space regions represent the 
ranges of transmission. From simulation analysis, we observe 
that the increasing of f has the effect of increasing photonic 
gap. Also, we found that the first band gap is appear when the 
value of f is greater than 0.001. 

In the figures 12-13, the red region indicates the variation 
of TE PBG, and the blue region indicates the variation of TM 
PBG for oblique incidence (θ=20°). It may be seen from the 
plot that the forbidden bandwidth varies with the ratio filling 
factor (dH/d) of the two modes. As the angle of the incidence 
increases the forbidden bandwidth was also found to be 
increased and shifted to higher frequency regions 

 

Fig. 11. Photonic gap map (normalized frequency wa/2πc versus the filling 

factor(dH/d) of (1D- PC), nH = 3.7, nL = 1.5, d = 388.5nm, θ=0°. 

 

Fig. 12. Photonic gap map (normalized frequency wa/2πc versus the filling 

factor(dH/d) of (1D- PC), nH = 3.7, nL = 1.5,d = 388.5nm, Mode TE, θ=20°. 

 

Fig. 13. Photonic gap map (normalized frequency wa/2πc versus the filling 

factor(dH/d) of (1D- PC), nH = 3.7, nL = 1.5,d = 388.5nm, Mode TM, θ=20°. 

4. Conclusion 

In summary, we have used the transfer matrix method and 
Bloch theorem to study one-dimensional photonic crystals. 
We have discussed the calculation of transmissivity, 
reflectivity, and dispersion relation for both TE and TM modes 
at different incidence angles. Our results show that the PBG 
sensitivity depend on many factors, such as the filling factor 
and polarization modes. The angle of incidence of the wave is 
also another factor which affects the width of band gaps. 
Further, theory approach TMM and Bloch theorem can allow 
for better characterization of the one-dimensional photonic 
crystals with defect. 
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