

Journal of Electrical and Electronic Engineering
2016; 4(3): 73-77

http://www.sciencepublishinggroup.com/j/jeee

doi: 10.11648/j.jeee.20160403.16

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)

Page Replacement Algorithm for NAND Flash Used in
Mobile Devices

Hai Jun Zhang
*
, Wan Jun Yu

School of Computer Science & Information Engineering, Shanghai Institute of Technology, Shanghai, China

Email address:

13162575996@163.com (Hai Jun Zhang), 15216853935@163.com (Wan Jun Yu)
*Corresponding author

To cite this article:
Hai Jun Zhang, Wan Jun Yu. Page Replacement Algorithm for NAND Flash Used in Mobile Devices. Journal of Electrical and Electronic

Engineering. Vol. 4, No. 3, 2016, pp. 73-77. doi: 10.11648/j.jeee.20160403.16

Received: May 22, 2016; Accepted: June 14, 2016; Published: June 17, 2016

Abstract: In modern society, intelligent devices equipped with flash memory are very popular. It has many wonderful

characteristics, such as small, fast, little consumption, shock resistance and so on. Flash memory is divided into NOR memory

and NAND memory. The NOR memory can be quickly read with byte data which is developed into data memory for code

storage. A new algorithm is needed to optimize the performance of the flash memory. In this paper, we propose a new strategy for

replacement to focus on reducing the execution time of the replacement cost and I / O, which is to improve the performance of the

algorithm performance. Trace-driven method has a better performance than the existing algorithms in terms of cost and

execution time.

Keywords: Page Replacement Algorithms, NAND Flash Memory, Embedded Systems

1. Introduction

Recently embedded systems are at a higher demand as

mobile services are expanding. The capacity of storage

increases and the price has fallen to a low level which is used

widely. This is more suitable for making the NAND flash

mobile embedded system. For example, a digital music player,

PDA and wireless devices, embedded system is a higher

demand for Mobile Service. Now, a variety of mobile

embedded systems company uses Flash technology for their

new products. Many intend to spend much money and time

optimizing the performance in the near future. NAND Flash

has many wonderful features such as small size, low power

consumption, shock resistance which are very convenient and

portable. In addition, the flash memory has a greater density

than the non-volatile RAM, namely the same size can store

much information. Embedded systems use flash memory as

non-volatile data storage management. Different

manufacturers use different technologies production for their

flash memory.

Embedded systems such as mobile phones and digital

music products contain DRAM, NAND flash memory and

NOR flash memory. DRAM is used for main memory to

store much information. NAND flash memory is used for

data files, and NOR flash can process program codes.

Mobile systems contain these three kinds of memory types,

so the size of the phone is bigger. In order to scale down the

size of the phone, we eliminate the NOR flash from the

mobile phone and it can also scale down the cost of the

mobile phone. If the mobile phones do not have the NOR

flash memory, the code is needed to be copied to DRAM

memory for processing the application programs when the

program is running. This mechanism is called "shadowing".

The mechanism has a good performance at running time

because whole program codes are in the main memory and it

doesn’t need to spend time to exchange codes between two

kinds of memory. However, it leads to another problem that

the mechanism needs much time to copy a whole program

code to the main memory. Besides, when shadowing is

running, the mechanism will cost much main memory space.

To solve the program about weakness of shadowing, we have

exploited a “demand paging” for mobile embedded systems.

Demand paging is a virtual memory technique. When code is

needed, it will copy file from the secondary storage to main

memory [1]. Thus, it doesn't occupy much main memory

space and longer loading time than shadowing mechanism.

When the space in the main memory is not enough and can’t

 Journal of Electrical and Electronic Engineering 2016; 4(3): 73-77 74

load program because of its limited memory capacity, a new

page need to be loaded in the demand paging mechanism to

replace the page that is not used. That is called a replacement

algorithm and it has significant importance when applied to

I/O operations in embedded systems. The disk and the

NAND flash medium have been studied for many years.

Flash memory has different physical characteristics in

contrast with traditional disks. The cost of write operation is

higher than that of read operation in NAND flash, and each

block has limited times of erase operations about 100,000

times. So it is very important to balance the times of each

block erase operations. For these reasons, an effective

replacement algorithm shall be made based on the embedded

system for NAND flash memory. The newly replacement

algorithm proposed for NAND flash attempts to reduce the

number of write operations and reduce I/O execution time.

The results of trace-driven simulation show that the

performance of the replacement algorithm in cost and I/O

execution time has a better than the existing algorithm about

LRU and CFLU.

2. Related Works

This section describes some of the different types of flash

about their physical characteristics, and analyzes some of the

existing replacement algorithm.

2.1. Characteristics of Flash Memory

Flash memory is a non-volatile solid-state storage medium,

and the density of storage has been improved, which is used as

an auxiliary storage memory due to the physical

characteristics. There are two kinds of memory, namely NOR

flash and NAND flash memory. NOR flash can quickly

randomly access the data which has a similarity with the

DRAM memory. NOR flash can be used to execute the

program codes. In contrast, NAND flash memory is widely

used storing large amounts of data, such as multimedia files

because it can't execute codes like NOR flash. However,

NAND flash memory can store much information than NOR

flash, and it has a characteristic of high density. NAND flash

I/O operations are slightly expensive than traditional disk. As

a result, manufacturers preferably used NAND flash memory

as the storage system which is widely used in mobile devices

and embedded system. In recent years, a new product called

hybrid flash memory which RAM and NAND flash memory

element are emerging is applied to computers and portable

products. Hybrid flash memory composed of NAND flash and

NOR flash increases rapidly. The hybrid storage medium

widely used is accepted by many companies [2]. For example,

Samsung's One-NAND which can not only store data but also

execute code is one kind [10]. The characteristics of NOR,

NAND and hybrid memory are listed in Table 1.

Table 1. Performance comparison between NOR and NAND flash memory.

 NOR multilevel cell (Mbytes/sec)
NAND 90-nm single- level cell (x8, large block)

(Mbytes/sec)

Samsung One NAND

90-nm (Mbytes/sec)

Read 109 16.3 109

Write 0.14 6.9 8.3

Erase (single) 0.13 65 65

Flash memory is divided into a plurality of blocks, each

block having a fixed number of pages. The working

mechanism of the traditional disk and flash memory is

different and flash memory has three different types of

operations: read operation, write operation and block erase

operation. Each operation has different performance

characteristics. Comparing to the hard disk, Flash memory has

two drawbacks involving I/O operations. Firstly, before the

data in the flash memory is rewritten, the flash block needs to

be erased for spare space. An erase operation costs a lot of

time and energy than the other two operations, namely read

operation and write operation. The second disadvantage is that

the number of erase operations for each block is limited. Life

becomes limited. This shortcoming hinders the development

of flash memory used in embedded systems. To solve the

problem of flash memory, a number of software layers

mechanism proposed by people shall contain flash memory

wear-leveling mechanism to balance the number of each

block’s operations [3]. Extending the lifetime of flash based

NAND flash is a major challenge. However, the design of

FTL (flash translation layer) can effectively optimize the

performance. A good and reliable wear-leveling algorithm

can not only extend the lifetime of the flash memory but also

guarantee fast write and erase operations [4].

2.2. Existing Algorithms on Replacement

The demand paging technique for NAND flash code storage

can reduce required main memory space. In Demand paging

system, the purpose of a page replacement algorithm chooses

the selection page which is less useful in the flash memory,

then erases it for free to load a new page. When loaded, no

free pages in the main memory, operating system will choose

a victim page. If the selection page is clean, OS can remove

the page from the main memory without exchanging data [5].

Hence, if the selection page is not clean, the data in the page

will be copied to swap space in order to store the original data.

There are some different kinds of replacement algorithms

which are used for memory based on the system. LRU (least

recently used) is widely used for page replacement on the

traditional operating system, due to the simplicity of the

algorithm. The main idea of LRU replacement algorithm is

that the page cited more is more likely to be cited again later.

LRU algorithm holds the page in the flash memory by the

order of he cited time. In the flash memory, when more spare

space needed, the operating system will choose the page

which is used least as the victim page.

Megiddo proposed an algorithm called A Self-Tuning, Low

75 Hai Jun Zhang and Wan Jun Yu: Page Replacement Algorithm for NAND Flash Used in Mobile Devices

Overhead Replacement Cache [6]. ARC algorithm uses two

lists. The first list includes the pages which are cited many

times and the second list includes the pages only once used

recently. Each kind of page fault occurred in each list

determines the size of the two lists. The total of two lists is

fixed, when the size of one list increases and the size of the

other list decreases. Presentation above shows ARC algorithm

is applicable to the page reference pattern.

Jiang proposed an efficient low inter-reference set

replacement policy to enhance the performance [7]. LIRS

algorithm replaces the page of hit with the inter-reference page.

The LIRS algorithm also has an LRU stack to classify the total

pages into two parts which are LIR pages and HIR pages.

LRU stack maintains the LIR pages which are cited frequently

when the HIR pages show that the pages are not cited

frequently. To have a better performance, LIRS algorithm

chooses the HIR pages as the objective pages. LIRS algorithm

gets a better performance than LRU algorithm. However,

when the size of buffer cache is larger than the size which is

set before, the LIRS maybe have a bad performance and

performs worse.

There is a fact that the cost of I/O operation is expensive, so

some people proposed replacement algorithms to narrow

down the page fault ration. The cost of a read operation is

lower than the write operation which is based on the flash

memory. Therefore, in order to reduce the cost, new

replacement algorithms should try to improve the I/O

performance and reducing the page fault.

Park proposed a Clean First LRU (CFLRU) replacement

algorithm in the paper “Energy-aware demand paging on

NAND flash-based embedded storages” [1]. The idea of

CFLRU algorithm is that the I/O cost of the page read

operation and page write operation is not the same in the flash

memory. CFLRU algorithm remains the selection page in the

LRU list, which has a similarity with the LRU page algorithm.

However, different from the LRU algorithm, CFLRU list is

divided into two areas, where the first area is clean-first area

and the next area is the working area. The first area stores the

victim pages which will be replaced preferably and the next

area stores the pages used recently. In order to improve the I/O

performance and reduce the cost of replacement, CFLRU

algorithm removes first page in a clean-first area by the LRU

algorithm order. CFLRU algorithm will remove dirty pages

which are removed by LRU order, with no clean pages in the

first area. In the working area, the principle of the CFLRU is

as the same as the LRU algorithm.

3. Flash Aware Replacement Strategy

3.1. Replacement Strategy

In flash memory, the cost of the write operation and the read

operation is not the same. The cost of the write operation is

higher. In order to optimize the I/O performance and reduce

the cost, it is more preferable to choose the clean page.

However, it will have a problem of degrading the I/O

performance because of the low match ratio. In order to not

only maximize the match ratio but also reduce the cost,

introducing three lists to achieve the two goals above. Figure 1

shows the three lists of FARS replacement algorithm.

Figure 1. Three level lists: L1, L2 and ghost list.

The LRU lists are classified into two parts which are

composed of L1 list and L2 list. SL1 is used to represent the

volume of the L1 list which is frequently accessed by

operating system. In addition, SL2 is used to represent the size

of L2 list which is rarely used. The SL is the total of SL1 and

SL2 which is a fixed number in the flash memory. Moreover,

another list called L3 is used to represent the size of the

volume called a ghost list which is used for storing the pages

which are replaced from L2. The volume of SL2 and SL3 is

equal to SL volume. L3 list does not store the page, but retains

metadata of the pages deleted.

In the new algorithm, spare space is required for exchanging

the page information when a page fault occurs. The algorithm

chooses one page from the L2 list as an objective page out of the

L2 list. And the L2 list will have space to be stored for a new

page. In addition, the page will be stored in the L1 list when the

new page is the ghost list before. Page in the L1 list will be

accessed again. With the advantage of three lists, it is fast to

remove a page which is not needed. With the ghost list, it is also

fast to classify different types of pages.

3.2. Replacement Method

The Strategy of CFLRU algorithm is that dirty pages are

stored for long periods in the DRAM memory which is mainly

for reducing the overhead and improving I/O performance

when dirty pages are removed. Cleaning the page early may

cost the lower performance and affect the quality of the system

running. In order to improve the hit ratio, FARS algorithm

makes some optimizations. The main idea is as follows.

1. Determine whether the page is read or write intensively

with the help of pattern detection algorithms

2. The priority of pages which will be removed is fixed, but

when the dirty page is writing intensively, the operation to

remove the page will be delayed.

In order to record the information of the dirty page and

inspired by the classical shadow-paging method, new

algorithm introduced a flag called “RP-flag” to record the

status of the pages [8]. In the operating system, some kinds of

pages like heap and stack pages are changed frequently. In

contrast, a read intensive dirty page is modified once like data

pages. To optimize the overall I/O performance, our proposed

 Journal of Electrical and Electronic Engineering 2016; 4(3): 73-77 76

algorithm maintains pages which are often written in the

NAND flash memory as long as possible. The strategy is

efficient to reduce the number of write operations. To a certain

extent, it can improve the I/O performance. L2 list stores

much information like read-intensive pages and

write-intensive pages which can’t store them for a fixed time

set by people. If the page located in the L2 list for too long

than the fixed time and it will remove the page from the list

because it can make sure the consistency of data in the

memory. That method addresses the program of the data

missed when the power is off or the system is down. Fig. 2

illustrates the changes of the status with RP-flag.

Figure 2. The change of the status.

4. The Evaluation Performance

In this part, trace-driven simulations with real traces are

implemented to evaluate the performance. On the comparison

with other algorithms, the new algorithm is utilized to evaluate

the performance. In order to compare the effectiveness of the

FARS with LRU and CFLRU, the Val-grind which is a

profiling tool of the Linux system can effectively evaluate the

result. Val-grind can run with the Memcheck tool and it can

detect a wide range of memory errors when running [9]. Table

2 shows the results of the characteristics.

Val-grind tool can collect a single process about the trace of

the memory reference and so trace-driven simulations are

performed to assess the single process about the quality of I/O

performance. Fig. 3 shows operation for the number of MP3

players tracking and the number of editing application

performance results. In the results above, FARS algorithm

shows the best performance, so it is effective. Fig. 4 shows

that when the read operation is intensive, CFLRU has a better

performance than the FARS algorithm because CFLRU keeps

dirty pages as long as possible. However, comparing to the

FARS algorithm, CFLRU algorithm costs much I/O execution

time because the number of read times is bigger.

Table 2. Characteristics of mp3 player and document editor.

Workload Memory used
Memory references

Total references Instruction read Data read Data write

xmms (mp3 player) 11.09 MB 1,321,609
80,061 142,985 1,098,563

read: write=1:4.93

gedit (document editor) 12.85 MB 1,599,745
598,245 872,347 129,153

read: write=11.39:1

(a) xmms trace

(b) gedit trace

Figure 3. Number of read operations.

(a) xmms trace

(b) gedit trace

Figure 4. Number of write operation.

77 Hai Jun Zhang and Wan Jun Yu: Page Replacement Algorithm for NAND Flash Used in Mobile Devices

(a) xmms trace

(b) gedit trace

Figure 5. I/O execution time.

Figure 5 shows the results about the execution time. In the

performance results, FARS shows a better performance,

because it reduces the read/write cycles. Trace-driven

simulations show that the proposed algorithm performs

better than the existing page replacement algorithms when

they are performed on different kinds of NAND flash

memories [10, 11].

5. Conclusion

In this paper, a new page algorithm is proposed which can

reduce the execution time and replacement cost. In the new

page algorithm, three lists are applied to improve I/O

performance. In addition, a policy is proposed to detect

whether the dirty pages are written or read more often. In

terms of replacement cost and execution time, the result shows

that proposed algorithm has a better performance than CFLRU

algorithm or LRU algorithm. New algorithm mainly preserves

LRU list. When a page is referenced, the list is responsible to

move the page to a new position. However, what have done

above will lead to another problem. The work not only costs

much spending but it is also hard to implement in the flash

memory. The next work is focusing on reducing the overhead

of list and optimizing the algorithm.

References

[1] Pack, C, Kang, J, U, Park, S. Y, Kim, J. S, "Energy-aware
demand paging on NAND flash-based embedded storages, "In:
Proceedings of the 2004 International Symposium on Low
Power Electronics and Design.2004.

[2] Chul. Lee, Sung Hoon Baek, Kyu Ho Park, "A Hybrid Flash
File System Based on NOR and NAND Flash Memories for
Embedded Devices," IEEE Translation on Computers, vol. 57,
Issue. 7, July. 2008, pp. 102-1008.

[3] Baichuan Shen. "APRA: Adaptive Page Replacement
Algorithm for NAND Flash Memory Storages", 2009
International Forum on Computer Science-Technology and
Applications, 12/2009.

[4] T. Hoshi, K. Ootsu, T. Ohkawa and T. Yokota, "Runtime
Overhead Reduction in Automated Parallel Processing System
Using Valgrind," 2013 First International Symposium on
Computing and Networking, Matsuyama, 2013, pp. 572-576.
doi: 10.1109/CANDAR. 2013.102.

[5] W. Kim and D. Shin, "Non-preemptive demand paging
technique for NAND flash-based real-time embedded
systems," in IEEE Transactions on Consumer Electronics, vol.
56, no. 3, pp. 1516-1523, Aug. 2010.

[6] Megiddo, N, Modha, D," ARC:A Self-Tuning, Low Overhead
Replacement Cache, "In the Proceedings of the 2nd USENIX
Conference on File and Storage Technologies. 2003.

[7] Jiang, S, Zhang, X, "LIRS: an efficient low inter-reference
recency set replacement policy to improve buffer cache
performance," ACM SIGMENTRICS Performance Evaluation
Review archive. 2002.

[8] S. T. On, J. Xu, B. Choi, H. Hu and B. He, "Flag Commit:
Supporting Efficient Transaction Recovery in Flash-Based
DBMSs," in IEEE Transactions on Knowledge and Data
Engineering, vol. 24, no. 9, pp. 1624-1639, Sept. 2012.

[9] S. A. Hussain and A. Mansoor, "FLASH modelling for wear
leveling algorithms," 8th International Conference on
High-capacity Optical Networks and Emerging Technologies,
Riyadh, 2011, pp. 267-272.

[10] J. Liu, S. Chen, G. Wang and T. Wu, "Page replacement
algorithm based on counting bloom filter for NAND flash
memory," in IEEE Transactions on Consumer Electronics, vol.
60, no. 4, pp. 636-643, Nov. 2014.

[11] M. Lin, S. Chen and Z. Zhou, "An efficient page replacement
algorithm for NAND flash memory," in IEEE Transactions on
Consumer Electronics, vol. 59, no. 4, pp. 779-785, November
2013.

