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Abstract: In the student programming examination, the program must be automatically evaluated. It can be not give a 

reasonable score to the wrong program by comparing the output results of the dynamic evaluation method. Only by using the 

static analysis of the program can it give more accurate results. In this paper, the ratio of the length of the program feature vector 

and the Token sequence are introduced in two static analysis algorithms of attribute count and the longest common subsequence, 

and the optimum weight of various algorithms is determined by experiments. The experimental results show that the score given 

by the algorithm is very close to the teacher's score, which proves that the algorithm is an effective automatic scoring method. 
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1. Introduction 

With the development of network communication and 

computer technology, more and more online automatic 

grading is used in the evaluation of programming test. At 

present, dynamic judgment is used in most of the domestic 

MOOC systems and some contest systems such as Online 

Judge. They compares the running results of the program to 

be tested and the correct program, so the judgment results 

can only be correct and incorrect. This scoring method can 

quickly judge the correctness of the program. However, if it 

is introduced into the online examination of programming 

courses in colleges and universities, it may not accurately 

reflect the students' programming thinking and programming 

level. So, it is more reasonable to use static analysis method 

to judge the student program. There are currently many static 

analysis algorithms, such as attribute counting method [1], 

longest common sequence (LCS) algorithm [2], token 

sequence [3], abstract syntax tree [4], system dependency 

graph [5] and so on. Among them, abstract syntax tree [6] 

and system dependency graph [7] have good performance in 

program static analysis, but their time and memory 

performance is usually unable to meet actual needs [8]. The 

attribute counting method and the LCS algorithm measure 

the similarity between the student program and the correct 

answer from the view of the program properties and structure 

respectively, and they are complementary to each other. At 

the same time, they meet the actual performance 

requirements. 

In this paper, an online automatic scoring method based on 

the two static analysis algorithms which are attribute 

counting method and LCS algorithm is proposed. In the 

attribute counting method, the values of angle cosine and 

length ratio of the program feature vectors are calculated, and 

in the LCS algorithm, the subjective identifiers such as 

user-defined variables are processed by Token sequence, and 

the similarity value is calculated. Finally, the optimal weights 

of the above three values are determined by experiments. 

2. Program Preprocessing 

Programs typically contain comments, header introduction 

statements, macro definitions, blank lines, spaces, enter and 

Tab characters [9], and the comments include line comments 

and block comments. The preprocessing needs to remove 

these non-logical parts and obtain a program that contains 

only the logical parts. 

It reads the program code in units of line, and if the first 

non-space character of this line code is ‘#’, this line code is a 

header file introduction statement or macro definition. If this 

line of code contains the string ‘//’, it contains line comments. 

Finally it scans this line code and get blank lines, spaces, enter 



 Journal of Electrical and Electronic Engineering 2018; 6(2): 53-58 54 

 

and Tab characters. 

When scanning the program, it also need to remove 

block-level comments which are the contents in the middle of 

the string ‘/*’ and ‘*/’. According to obtain the index values of 

the string /*’ and ‘*/’, the block-level comments are identified. 

The preprocessed program is passed to the test procedure as 

a string. Attribute counting method and LCS longest public 

string method will take the preprocessed string as the analysis 

basis and carry out similarity analysis. 

The algorithm to get rid of the line comments: 

while ((line = br.readLine() ) != null)  

{ 

int index=line.indexOf("//"); 

if (index>=0){ 

//This line contains line comments 

line=line.substring(0, index); 

} 

if (line!=null&&line.length()>0){ 

//Add this line to the code 

code=code+" "+line; 

} 

} 

The algorithm to get rid of the block comments: 

int pre_index,next_index; 

while((pre_index=code.indexOf("/*"))!=-1) { 

//There is only “/*” but not “*/” 

next_index=code.indexOf("*/"); 

if(next_index<0){ 

//Get rid of the part from “/*” to the end of the code 

str=str.substring(0,pre_index); 

break; 

} else{ 

//Get rid of the part from “/*” to “*/” 

str=Attribute.remove(str,pre_index,next_index+2); 

} 

} 

3. Attribute Counting Method 

Code variants include complete copy of code, replacement 

of function name and variable name, disordering of statements, 

type redefinition and so on. At present, software homology 

detection technology is mainly divided into binary programs 

and source code. The computer language has fewer 

components, and only a limited number of keywords, so the 

software homology detection technology based on code level 

has the advantages of simple implementation and high 

efficiency. 

Attribute counting method is the earliest proposed method 

of program code detection. According to this method, the 

program source code is regarded as the same as general 

entities which have some characteristics, such as vocabulary, 

code lines, the number of variables and capacity, and so on. 

Attribute counting is the statistics of these special attributes of 

program source code. The number of these attributes statistics 

varies from program source code to program source code. But 

the same or similar program source code of these attributes 

statistics are not very different. 

The attribute of program refers to the intrinsic nature of the 

program, which is extracted from the program code, and does 

not vary with the form of expression [10]. Attribute counting 

is the program attributes that can be measured by statistics, 

such as the number of program lines, the number of characters, 

and so on. 

3.1. Selecting Program Properties 

Attribute refers to the nature or characteristics of things that 

do not change with the form of expression. In the case of 

program code, the attributes are usually physical attributes and 

structural attributes. Physical properties include inherent 

features of program source code, such as unmeasurable 

programming languages, program functions, measurable lines 

of code, words, characters. Structural attributes refer to all 

operands and operators in a program, including variables, 

constants and symbols, which are collectively called 

identifiers. The attribute feature vector must have typical 

features that uniquely represent the source code of the 

program and it can be distinguished from other programs, so 

that the attributes which act as the elements in the vector need 

to be carefully selected. The first step is to select measurable 

physical properties, which are the most basic measures of 

program code to describe the size of source files. Since 

structural attributes describe a source file more accurately than 

physical attributes, structural attributes are also essential 

elements to form attribute feature vectors. To sum up, the 

elements of the attribute feature vector of a program code file 

are generally composed of physical attributes and structural 

attributes, in which the physical attributes include the number 

of lines of code, the total number of words, the total number of 

characters, and the structural attributes include the total 

number of identifiers, number of keywords, number of 

user-defined identifiers, operators, numeric constants, word 

strings and character constants. 

By analyzing the program, select the type of the program 

identifier and the frequency of their occurrence to identify the 

program [11]. The identifiers in the program are divided into 

two categories: system predefined identifiers and user-defined 

identifiers. System identifiers include keywords, operators, 

and library function names. User identifiers include user 

defined variables, numbers, and user-defined function names. 

Through the above statistics, the attributes such as the total 

number and vocabulary of identifiers can be obtained. 

3.2. Spliting Program 

In order to get the type and number of various identifiers in 

the program, the program needs to be split. The program can 

be completely decomposed by searching, counting and 

removing the identifiers one by one. First, the system 

operators are stored in the database in the correct order, and 

the operators are separated according to this certain order, 

which can improve the efficiency. For example, the operator 

‘++’ should be separated first and then the operator ‘+’ is 

separated. After counting and removing the operators, it 

replace the operators with spaces to prevent the other parts 
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from joining together. For example, the statement "int 

sum=a+b;", after removing the operator, will become "int 

sumab". If it is not replaced with a space, and then no longer 

can distinguish three attributes of sum, a, b. So the space 

replacement operator is necessary. And it counts the types and 

numbers of other identifiers in the same way. In the end, the 

values of all key attributes are obtained and combined to form 

an attribute vector, then it calculate the distance between 

attribute vectors to get the value of program similarity. 

3.3. Computing the Distance of Attribute Vector 

The feature vector model can be used as a vector expression 

of source code. Some feature attributes form space vector to 

represent source code information, and it transforms the 

source code into a structured data form which can be easily 

processed by computer. The distance of attribute vector 

includes two parts: the angle cosine of attribute vector and the 

ratio of length of attribute vector. 

The angle cosine between the feature vectors is calculated, 

as shown by formula (1), where m represents the dimension of 

the vector. 

1
( , ) cos

2 2

1 1

m
V Vki kjk

simCos V V θiji j m m
V Vki kjk k

∑ ×
== =

∑ ∑×
= =

       (1) 

When the angle between the two vectors is small, the cosine 

function value is larger, and the calculated similarity value is 

also larger, which is generally more than 0.9. Therefore, it is 

not comprehensive to identify the program similarity only by 

the spatial angle cosine of attribute vector. 

The ratio of the length between the attribute vectors is also 

a quantitative index of the program similarity. For example, 

the vector V1(1, 1, 1) and vector V2(2, 2, 2) are in the same 

angle with the vector V3 in space, but the vector length is 

different, so the programs they represent are not similar. In 

order to control the similarity between 0 and 1, the larger 

length of the vector is the denominator when it calculates the 

ratio of the length between the attribute vectors, which is 

shown in formula (2). 
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4. LCS Algorithm 

LCS is the longest common subsequence, which is the same 

character sequence with the longest length after two given 

strings are deleted zero or more characters, respectively. For 

example, the longest common subsequence of the string 

"abcfg" and "bffg" is "bfg". The principle is that the string of 

program statements is dynamically matched to find similar 

programs, and it is also known as structural measurement. By 

using LCS algorithm to identify similar codes, the source code 

can be used as the detection object, which can avoid the 

dependence on the compiler of the program, and can be 

compared intuitively with the similar code at the same time. 

The LCS algorithm calculates the code similarity from the 

view of program text and structure. At first, the source 

program is preprocessed, then it is transformed into Token 

sequence by lexical analysis. Finally, it figured out the longest 

common subsequence of Token sequence. 

4.1. Common Subsequence 

The location of the characters in the subsequence can be 

discontinuous in the original string, but the order of characters 

must be consistent with the characters in the original string [8]. 

In general, there are multiple common subsequences. The 

mathematical definition of the common subsequence of 

strings X and Y is like the formulas (3) - (8): 

0 1 1 0 1sub(X) sub(x x x ) x x xm i i ik= =−⋯ ⋯        (3) 

0 1 1 0 1sub(Y) sub(y y y ) y y yn j j jk= =−⋯ ⋯         (4) 

In formulas (3) and (4), the following conditions are 

satisfied: 

mink (m, n)<                   (5) 

The character subscripts in the subsequence sub(X) satisfy 

the following conditions: 

0 0 1 1i i ... ik m≤ < < < ≤ −           (6) 

The character subscripts in the subsequence sub(Y) satisfy 

the following conditions: 

0 0 1 1j j ... jk n≤ < < < ≤ −            (7) 

If the characters which have the same subscript in the sub(X) 

and sub(Y) are equal, the sub(X) or sub(Y) is a common 

subsequence of X and Y, that is: 

0x y , t kit jt= ≤ ≤            (8) 

The longest common subsequence is longest in all common 

subsequences, and it may also exist more than one. 

4.2. Program Token 

Lexical analysis is the first step in the compilation process. 

The main task of lexical analysis of program is to recognize 

words one by one from the source program according to the 

lexical rules of language. The source program in string form is 

converted into word form, and each word is converted into 

their internal representation, which is called token, and the 

lexical rule is checked. For a complete lexical analysis module, 

it mainly includes three parts: input, processing, output. the 

part of input is advanced language source program. the part of 

output is Token List, and Token is an internal representation of 

a word, usually composed of two parts: word category and 

semantic information. This category is used to distinguish 

different kinds of words, usually can be encoded with integers, 
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and semantic information is also dependent on the 

convenience of future processing (as the content of words). 

Due to the program contains user-defined identifiers, if the 

input strings are the standard program and student program, 

the accuracy of the result will be not high. So before the 

detection, the source programs need to be transformed into the 

Token sequences, and the subjective codes of program 

statements are eliminated such as user-defined identifiers. For 

example, the program statement "*s++ = 0" is transformed 

into the Token sequence "<*>, <var, s>, <++>, <=>, <num, 

0>". In the Token sequence, var is user-defined variables and 

strings, num is numbers, func is the name of user-defined 

function. After processing the program statement, the 

sequence of "* var = num" was obtained. In order to further 

improve the accuracy of the result, the sequence "* 1 = 2" can 

be obtained by using the number 1-3 to replace var, num and 

func. After the above processing, the standard program and the 

student program become two new program strings, and the 

accuracy of the detection result is improved when the input 

becomes the two new program strings. 

4.3. Calculate the Length of the LCS 

The length of the two program strings is m and n 

respectively. The array len(m+1, n+1) records the length of all 

the longest common subsequences, The array sign(m+1, n+1) 

records the order number of the sub-problem from which len(i, 

j) is obtained. The first row and column of the two arrays are 

initialized to zero owing to the need of this algorithm. The 

problem of the algorithm can be divided into three categories, 

and the recursive formula is as follows where strA(i) is the i 

character of the string strA and strB(j) is the j character of the 

string strB: 

1

2 1 1

3 1 1

, strA(i) strB(j);

sign(i, j) , strA(i) strB(j), len(i, j ) len(i , j);

, strA(i) strB(j), len(i, j ) len(i , j).

=
= ≠ − > −

≠ − <= −





   (9) 

The problem is decomposed into three sub-problems. The 

length of the longest common subsequence is computed by 

recursive calls, as shown in formula (10): 

1 1 1 1

1 2

1 3

len(i , j ) , sign(i, j) ;

len(i, j) len(i, j ), sign(i, j) ;

len(i , j), sign(i, j) .

− − + =
= − =

− =





      (10) 

As mentioned above, if strA(i) and strB(j) are the same, 

len(i,j) is the length of the longest common subsequence of 

strA(1...i-1) and strB(1...j-1) plus 1, and it is marked as the 

first sub-problem. If the two characters are different, the 

length of the longest common subsequence is the maximum 

value of len(i,j-1) and len(i-1,j); and if len(i,j-1) is greater than 

len(i-1,j), it is marked as the second sub-problem, otherwise it 

is marked as the third sub-problem. 

4.4. Calculate Similarity 

The concept of similarity comes from the requirement of 

source code similarity measurement. Similarity is used to 

quantify the degree of correlation between two source codes. 

It is usually represented by a numeric sim (0≤sim≤100%). The 

larger the value, the higher the degree of similarity between 

the two source codes. On the contrary, the smaller the value, 

the lower the degree of similarity between the two source 

codes. It calculate the similarity between the standard code 

and the detected code [12], as shown in formula (11): 

2* length(LCS)
simLcs

m n
=

+
             (11) 

Where m and n represent the length of the two program 

strings, and length (LCS) represents the length of the longest 

common subsequence. 

5. Weights of the Algorithms 

In this study, it calculate the similarity of the codes by using 

the attribute counting method and the LCS algorithm, in which 

the calculation result of the attribute counting method includes 

the angle of the attribute vector and the length ratio of the 

attribute vector, so there are three results: the cosine value of 

the angle between attribute vectors simCos, the length ratio 

between attribute vectors simLen and the LCS algorithm 

similarity simLCS. The three kinds of static evaluation 

methods have their own advantages and disadvantages. In 

order to judge the score of the program more accurately and 

get more precise automatic evaluation results, the weights 

need to be reasonably distributed among the three similarity 

values. The method is shown in the formula (12): 

1 2 3sim ω simCos ω simLen ω simLCS= × + × + ×       (12) 

The reasonable weight distribution is based on the fitting 

degree of automatic evaluation and teacher evaluation. It 

follows the steps: 

1) Collect simple codes which are composed of 173 student 

codes and 173 reference codes provided by the teacher, and 

the similarity between student codes and teachers' standard 

codes was calculated by the three methods. Considering the 

flexibility of programming, the teacher's reference code has 

many versions, and the student program's similarity 

calculation takes the maximum of the similarity degree 

compared with the multiple reference programs, and it obtains 

Ssystem(i) in the formula (13). 

2) The teacher marks the student program code, in which 

the score adopts the percentile system. And it takes the score 

as the reference. 

3) An enumeration algorithm is used to distribute the weights 

in the similarity values of the three algorithms in units of 1%. 

After selecting a certain weight combination, it calculates the 

automatic evaluation scores of 173 student programs, which are 

also rated on a percent basis. Finally, the absolute error standard 

deviation is calculated. The formula is as follows: 

, 1AE S (i) S i nsystem teacher= − ≤ ≤         (13) 

1

1

n
MAE AE

in
∑=
=

              (14) 
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1 2

1

n
DAE (AE - MAE)

in
∑=
=

            (15) 

where Ssystem is the automatic evaluation result of the system, 

Steacher is the teacher’s evaluation result, n is the number of the 

programs, and there are 173 samples in this experiment, AE is 

absolute error, MAE is mean absolute error and DAE is 

absolute error standard deviation. MAE can better reflect the 

actual situation of the prediction error. DAE can further 

reflects the distribution of prediction error. 

The algorithm pseudo code for determining the weight is as 

follows. In all variables, minStdDeviation is the smallest 

standard deviation. w1, w2 and w3 is the weight of attribute 

cosine, attribute length and LCS respectively. 

minStdDeviation = MAX; 

for（w1=0; w1<=100; w1++） 

for(w2=0.00; w2<=100-w1; w2++) { 

w3 = 100-w1-w2; 

for (i=0; i<173; i++) { 

scoreSystem[i]=w1*(SimCos[i])+w2*(SimLen[i]) 

+ w3*(SimLCS[i]); 

AE[i] = abs(scoreTeacher[i]-scoreSystem[i]); 

} 

DAE = CountStandardDeviation(AE, 173); 

if (DAE < minStdDeviation) { 

Record this combination of weight; 

minStdDeviation = DAE; 

} 

} 

4) It takes the minimum value of the absolute error 

standard deviations of all weight combinations and get the 

most reasonable weight values. As shown in Table 1, in all 

of 5151 weight combinations, the maximum absolute error 

standard deviation is 11.26, and the minimum absolute 

error standard deviation is 5.60. Finally, the cosine value of 

the angle between attribute vectors simCos, the length ratio 

between attribute vectors simLen and the LCS algorithm 

similarity simLCS is determined, which are 39, 17 and 44 

respectively. 

Table 1. The DAE of the weight combination. 

Sequence 

number 

Weight of 

Attribute Cosine 

Weight of 

Attribute Length 

Weight 

of LCS 
DAE 

1 39 17 44 5.6027976 

2 39 18 43 5.6044927 

3 40 16 44 5.6045443 

4 40 15 45 5.6069386 

5 39 16 45 5.6069387 

6 38 19 43 5.6080240 

7 40 17 43 5.6083072 

8 39 19 42 5.6087979 

9 38 18 44 5.6089869 

10 38 20 42 5.6106077 

…… …… …… …… …… 

5149 0 2 98 11.0691197 

5142 0 5 95 10.7972424 

5143 2 0 98 10.8692535 

5150 0 1 99 11.1625563 

5151 0 0 100 11.2563356 

6. Experimental Result 

In accordance with the above algorithm, we use Java 

language to develop the "C/C++ programming online exercise 

and examination system". The flow chart of the program 

evaluation is shown in Figure 1. 

 

Figure 1. Flow chart of the program evaluation. 

Then one class of Department of Computer Science in 

TJUFE carried out the mid-term examination with the system. 

We selected 100 student programs randomly and got the score 

of the system evaluation. At the same time, teachers are 

requested to make an artificial judgement on these 100 

programs. Figure 2 compares the automatic scoring of the 100 

codes with the teacher's score. It can be seen that the absolute 

error of the system automatic score and the teacher's score is 

less than 10%. This shows that the algorithm in this paper has 

higher accuracy in automatic program evaluation. 
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Figure 2. Comparison of system automatic score and teacher score. 

7. Conclusion 

The program automatic scoring method based on static 

analysis makes up for the deficiency of dynamic evaluation 

method and has important theoretical and practical value. 

Meanwhile it improves the attribute counting method and LCS 

algorithm. This method is not only applicable to the evaluation 

of C/C++ program, but also can be used to judge other 

programming languages such as Java. 

However, it is important to note that the evaluation of the 

program code is subjective, and the criteria of evaluation of 

each school may be different. So the optimal weight may be 

different, and some test data should be trained to find the 

appropriate optimal weight. On the other hand, the correct 

code of each test question can also be given more. The score of 

student program can be selected the highest similarity with 

these correct codes. 
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