

Journal of Electrical and Electronic Engineering
2018; 6(2): 53-58

http://www.sciencepublishinggroup.com/j/jeee

doi: 10.11648/j.jeee.20180602.13

ISSN: 2329-1613 (Print); ISSN: 2329-1605 (Online)

Research of Automatic Scoring of Student Programs Based
on Static Analysis

Dongmei Yan, Xiangyuan Qi, Wenyue Yang

Department of Information Science and Technology, Tianjin University of Finance Economics, Tianjin, China

Email address:

To cite this article:
Dongmei Yan, Xiangyuan Qi, Wenyue Yang. Research of Automatic Scoring of Student Programs Based on Static Analysis. Journal of

Electrical and Electronic Engineering. Vol. 6, No. 2, 2018, pp. 53-58. doi: 10.11648/j.jeee.20180602.13

Received: April 20, 2018; Accepted: May 17, 2018; Published: June 20, 2018

Abstract: In the student programming examination, the program must be automatically evaluated. It can be not give a

reasonable score to the wrong program by comparing the output results of the dynamic evaluation method. Only by using the

static analysis of the program can it give more accurate results. In this paper, the ratio of the length of the program feature vector

and the Token sequence are introduced in two static analysis algorithms of attribute count and the longest common subsequence,

and the optimum weight of various algorithms is determined by experiments. The experimental results show that the score given

by the algorithm is very close to the teacher's score, which proves that the algorithm is an effective automatic scoring method.

Keywords: Automatic Scoring, Static Analysis, Attribute Counting, Longest Common Subsequence

1. Introduction

With the development of network communication and

computer technology, more and more online automatic

grading is used in the evaluation of programming test. At

present, dynamic judgment is used in most of the domestic

MOOC systems and some contest systems such as Online

Judge. They compares the running results of the program to

be tested and the correct program, so the judgment results

can only be correct and incorrect. This scoring method can

quickly judge the correctness of the program. However, if it

is introduced into the online examination of programming

courses in colleges and universities, it may not accurately

reflect the students' programming thinking and programming

level. So, it is more reasonable to use static analysis method

to judge the student program. There are currently many static

analysis algorithms, such as attribute counting method [1],

longest common sequence (LCS) algorithm [2], token

sequence [3], abstract syntax tree [4], system dependency

graph [5] and so on. Among them, abstract syntax tree [6]

and system dependency graph [7] have good performance in

program static analysis, but their time and memory

performance is usually unable to meet actual needs [8]. The

attribute counting method and the LCS algorithm measure

the similarity between the student program and the correct

answer from the view of the program properties and structure

respectively, and they are complementary to each other. At

the same time, they meet the actual performance

requirements.

In this paper, an online automatic scoring method based on

the two static analysis algorithms which are attribute

counting method and LCS algorithm is proposed. In the

attribute counting method, the values of angle cosine and

length ratio of the program feature vectors are calculated, and

in the LCS algorithm, the subjective identifiers such as

user-defined variables are processed by Token sequence, and

the similarity value is calculated. Finally, the optimal weights

of the above three values are determined by experiments.

2. Program Preprocessing

Programs typically contain comments, header introduction

statements, macro definitions, blank lines, spaces, enter and

Tab characters [9], and the comments include line comments

and block comments. The preprocessing needs to remove

these non-logical parts and obtain a program that contains

only the logical parts.

It reads the program code in units of line, and if the first

non-space character of this line code is ‘#’, this line code is a

header file introduction statement or macro definition. If this

line of code contains the string ‘//’, it contains line comments.

Finally it scans this line code and get blank lines, spaces, enter

 Journal of Electrical and Electronic Engineering 2018; 6(2): 53-58 54

and Tab characters.

When scanning the program, it also need to remove

block-level comments which are the contents in the middle of

the string ‘/*’ and ‘*/’. According to obtain the index values of

the string /*’ and ‘*/’, the block-level comments are identified.

The preprocessed program is passed to the test procedure as

a string. Attribute counting method and LCS longest public

string method will take the preprocessed string as the analysis

basis and carry out similarity analysis.

The algorithm to get rid of the line comments:

while ((line = br.readLine()) != null)

{

int index=line.indexOf("//");

if (index>=0){

//This line contains line comments

line=line.substring(0, index);

}

if (line!=null&&line.length()>0){

//Add this line to the code

code=code+" "+line;

}

}

The algorithm to get rid of the block comments:

int pre_index,next_index;

while((pre_index=code.indexOf("/*"))!=-1) {

//There is only “/*” but not “*/”

next_index=code.indexOf("*/");

if(next_index<0){

//Get rid of the part from “/*” to the end of the code

str=str.substring(0,pre_index);

break;

} else{

//Get rid of the part from “/*” to “*/”

str=Attribute.remove(str,pre_index,next_index+2);

}

}

3. Attribute Counting Method

Code variants include complete copy of code, replacement

of function name and variable name, disordering of statements,

type redefinition and so on. At present, software homology

detection technology is mainly divided into binary programs

and source code. The computer language has fewer

components, and only a limited number of keywords, so the

software homology detection technology based on code level

has the advantages of simple implementation and high

efficiency.

Attribute counting method is the earliest proposed method

of program code detection. According to this method, the

program source code is regarded as the same as general

entities which have some characteristics, such as vocabulary,

code lines, the number of variables and capacity, and so on.

Attribute counting is the statistics of these special attributes of

program source code. The number of these attributes statistics

varies from program source code to program source code. But

the same or similar program source code of these attributes

statistics are not very different.

The attribute of program refers to the intrinsic nature of the

program, which is extracted from the program code, and does

not vary with the form of expression [10]. Attribute counting

is the program attributes that can be measured by statistics,

such as the number of program lines, the number of characters,

and so on.

3.1. Selecting Program Properties

Attribute refers to the nature or characteristics of things that

do not change with the form of expression. In the case of

program code, the attributes are usually physical attributes and

structural attributes. Physical properties include inherent

features of program source code, such as unmeasurable

programming languages, program functions, measurable lines

of code, words, characters. Structural attributes refer to all

operands and operators in a program, including variables,

constants and symbols, which are collectively called

identifiers. The attribute feature vector must have typical

features that uniquely represent the source code of the

program and it can be distinguished from other programs, so

that the attributes which act as the elements in the vector need

to be carefully selected. The first step is to select measurable

physical properties, which are the most basic measures of

program code to describe the size of source files. Since

structural attributes describe a source file more accurately than

physical attributes, structural attributes are also essential

elements to form attribute feature vectors. To sum up, the

elements of the attribute feature vector of a program code file

are generally composed of physical attributes and structural

attributes, in which the physical attributes include the number

of lines of code, the total number of words, the total number of

characters, and the structural attributes include the total

number of identifiers, number of keywords, number of

user-defined identifiers, operators, numeric constants, word

strings and character constants.

By analyzing the program, select the type of the program

identifier and the frequency of their occurrence to identify the

program [11]. The identifiers in the program are divided into

two categories: system predefined identifiers and user-defined

identifiers. System identifiers include keywords, operators,

and library function names. User identifiers include user

defined variables, numbers, and user-defined function names.

Through the above statistics, the attributes such as the total

number and vocabulary of identifiers can be obtained.

3.2. Spliting Program

In order to get the type and number of various identifiers in

the program, the program needs to be split. The program can

be completely decomposed by searching, counting and

removing the identifiers one by one. First, the system

operators are stored in the database in the correct order, and

the operators are separated according to this certain order,

which can improve the efficiency. For example, the operator

‘++’ should be separated first and then the operator ‘+’ is

separated. After counting and removing the operators, it

replace the operators with spaces to prevent the other parts

55 Dongmei Yan et al.: Research of Automatic Scoring of Student Programs Based on Static Analysis

from joining together. For example, the statement "int

sum=a+b;", after removing the operator, will become "int

sumab". If it is not replaced with a space, and then no longer

can distinguish three attributes of sum, a, b. So the space

replacement operator is necessary. And it counts the types and

numbers of other identifiers in the same way. In the end, the

values of all key attributes are obtained and combined to form

an attribute vector, then it calculate the distance between

attribute vectors to get the value of program similarity.

3.3. Computing the Distance of Attribute Vector

The feature vector model can be used as a vector expression

of source code. Some feature attributes form space vector to

represent source code information, and it transforms the

source code into a structured data form which can be easily

processed by computer. The distance of attribute vector

includes two parts: the angle cosine of attribute vector and the

ratio of length of attribute vector.

The angle cosine between the feature vectors is calculated,

as shown by formula (1), where m represents the dimension of

the vector.

1
(,) cos

2 2

1 1

m
V Vki kjk

simCos V V θiji j m m
V Vki kjk k

∑ ×
== =

∑ ∑×
= =

 (1)

When the angle between the two vectors is small, the cosine

function value is larger, and the calculated similarity value is

also larger, which is generally more than 0.9. Therefore, it is

not comprehensive to identify the program similarity only by

the spatial angle cosine of attribute vector.

The ratio of the length between the attribute vectors is also

a quantitative index of the program similarity. For example,

the vector V1(1, 1, 1) and vector V2(2, 2, 2) are in the same

angle with the vector V3 in space, but the vector length is

different, so the programs they represent are not similar. In

order to control the similarity between 0 and 1, the larger

length of the vector is the denominator when it calculates the

ratio of the length between the attribute vectors, which is

shown in formula (2).

2 2

1 1
() min()

2 2

1 1

i

m m
V Vki kjk k

simLen V ,V ,
j m m

V Vkj kik k

∑ ∑
= ==
∑ ∑
= =

 (2)

4. LCS Algorithm

LCS is the longest common subsequence, which is the same

character sequence with the longest length after two given

strings are deleted zero or more characters, respectively. For

example, the longest common subsequence of the string

"abcfg" and "bffg" is "bfg". The principle is that the string of

program statements is dynamically matched to find similar

programs, and it is also known as structural measurement. By

using LCS algorithm to identify similar codes, the source code

can be used as the detection object, which can avoid the

dependence on the compiler of the program, and can be

compared intuitively with the similar code at the same time.

The LCS algorithm calculates the code similarity from the

view of program text and structure. At first, the source

program is preprocessed, then it is transformed into Token

sequence by lexical analysis. Finally, it figured out the longest

common subsequence of Token sequence.

4.1. Common Subsequence

The location of the characters in the subsequence can be

discontinuous in the original string, but the order of characters

must be consistent with the characters in the original string [8].

In general, there are multiple common subsequences. The

mathematical definition of the common subsequence of

strings X and Y is like the formulas (3) - (8):

0 1 1 0 1sub(X) sub(x x x) x x xm i i ik= =−⋯ ⋯ (3)

0 1 1 0 1sub(Y) sub(y y y) y y yn j j jk= =−⋯ ⋯ (4)

In formulas (3) and (4), the following conditions are

satisfied:

mink (m, n)< (5)

The character subscripts in the subsequence sub(X) satisfy

the following conditions:

0 0 1 1i i ... ik m≤ < < < ≤ − (6)

The character subscripts in the subsequence sub(Y) satisfy

the following conditions:

0 0 1 1j j ... jk n≤ < < < ≤ − (7)

If the characters which have the same subscript in the sub(X)

and sub(Y) are equal, the sub(X) or sub(Y) is a common

subsequence of X and Y, that is:

0x y , t kit jt= ≤ ≤ (8)

The longest common subsequence is longest in all common

subsequences, and it may also exist more than one.

4.2. Program Token

Lexical analysis is the first step in the compilation process.

The main task of lexical analysis of program is to recognize

words one by one from the source program according to the

lexical rules of language. The source program in string form is

converted into word form, and each word is converted into

their internal representation, which is called token, and the

lexical rule is checked. For a complete lexical analysis module,

it mainly includes three parts: input, processing, output. the

part of input is advanced language source program. the part of

output is Token List, and Token is an internal representation of

a word, usually composed of two parts: word category and

semantic information. This category is used to distinguish

different kinds of words, usually can be encoded with integers,

 Journal of Electrical and Electronic Engineering 2018; 6(2): 53-58 56

and semantic information is also dependent on the

convenience of future processing (as the content of words).

Due to the program contains user-defined identifiers, if the

input strings are the standard program and student program,

the accuracy of the result will be not high. So before the

detection, the source programs need to be transformed into the

Token sequences, and the subjective codes of program

statements are eliminated such as user-defined identifiers. For

example, the program statement "*s++ = 0" is transformed

into the Token sequence "<*>, <var, s>, <++>, <=>, <num,

0>". In the Token sequence, var is user-defined variables and

strings, num is numbers, func is the name of user-defined

function. After processing the program statement, the

sequence of "* var = num" was obtained. In order to further

improve the accuracy of the result, the sequence "* 1 = 2" can

be obtained by using the number 1-3 to replace var, num and

func. After the above processing, the standard program and the

student program become two new program strings, and the

accuracy of the detection result is improved when the input

becomes the two new program strings.

4.3. Calculate the Length of the LCS

The length of the two program strings is m and n

respectively. The array len(m+1, n+1) records the length of all

the longest common subsequences, The array sign(m+1, n+1)

records the order number of the sub-problem from which len(i,

j) is obtained. The first row and column of the two arrays are

initialized to zero owing to the need of this algorithm. The

problem of the algorithm can be divided into three categories,

and the recursive formula is as follows where strA(i) is the i

character of the string strA and strB(j) is the j character of the

string strB:

1

2 1 1

3 1 1

, strA(i) strB(j);

sign(i, j) , strA(i) strB(j), len(i, j) len(i , j);

, strA(i) strB(j), len(i, j) len(i , j).

=
= ≠ − > −

≠ − <= −





 (9)

The problem is decomposed into three sub-problems. The

length of the longest common subsequence is computed by

recursive calls, as shown in formula (10):

1 1 1 1

1 2

1 3

len(i , j) , sign(i, j) ;

len(i, j) len(i, j), sign(i, j) ;

len(i , j), sign(i, j) .

− − + =
= − =

− =





 (10)

As mentioned above, if strA(i) and strB(j) are the same,

len(i,j) is the length of the longest common subsequence of

strA(1...i-1) and strB(1...j-1) plus 1, and it is marked as the

first sub-problem. If the two characters are different, the

length of the longest common subsequence is the maximum

value of len(i,j-1) and len(i-1,j); and if len(i,j-1) is greater than

len(i-1,j), it is marked as the second sub-problem, otherwise it

is marked as the third sub-problem.

4.4. Calculate Similarity

The concept of similarity comes from the requirement of

source code similarity measurement. Similarity is used to

quantify the degree of correlation between two source codes.

It is usually represented by a numeric sim (0≤sim≤100%). The

larger the value, the higher the degree of similarity between

the two source codes. On the contrary, the smaller the value,

the lower the degree of similarity between the two source

codes. It calculate the similarity between the standard code

and the detected code [12], as shown in formula (11):

2* length(LCS)
simLcs

m n
=

+
 (11)

Where m and n represent the length of the two program

strings, and length (LCS) represents the length of the longest

common subsequence.

5. Weights of the Algorithms

In this study, it calculate the similarity of the codes by using

the attribute counting method and the LCS algorithm, in which

the calculation result of the attribute counting method includes

the angle of the attribute vector and the length ratio of the

attribute vector, so there are three results: the cosine value of

the angle between attribute vectors simCos, the length ratio

between attribute vectors simLen and the LCS algorithm

similarity simLCS. The three kinds of static evaluation

methods have their own advantages and disadvantages. In

order to judge the score of the program more accurately and

get more precise automatic evaluation results, the weights

need to be reasonably distributed among the three similarity

values. The method is shown in the formula (12):

1 2 3sim ω simCos ω simLen ω simLCS= × + × + × (12)

The reasonable weight distribution is based on the fitting

degree of automatic evaluation and teacher evaluation. It

follows the steps:

1) Collect simple codes which are composed of 173 student

codes and 173 reference codes provided by the teacher, and

the similarity between student codes and teachers' standard

codes was calculated by the three methods. Considering the

flexibility of programming, the teacher's reference code has

many versions, and the student program's similarity

calculation takes the maximum of the similarity degree

compared with the multiple reference programs, and it obtains

Ssystem(i) in the formula (13).

2) The teacher marks the student program code, in which

the score adopts the percentile system. And it takes the score

as the reference.

3) An enumeration algorithm is used to distribute the weights

in the similarity values of the three algorithms in units of 1%.

After selecting a certain weight combination, it calculates the

automatic evaluation scores of 173 student programs, which are

also rated on a percent basis. Finally, the absolute error standard

deviation is calculated. The formula is as follows:

, 1AE S (i) S i nsystem teacher= − ≤ ≤ (13)

1

1

n
MAE AE

in
∑=
=

 (14)

57 Dongmei Yan et al.: Research of Automatic Scoring of Student Programs Based on Static Analysis

1 2

1

n
DAE (AE - MAE)

in
∑=
=

 (15)

where Ssystem is the automatic evaluation result of the system,

Steacher is the teacher’s evaluation result, n is the number of the

programs, and there are 173 samples in this experiment, AE is

absolute error, MAE is mean absolute error and DAE is

absolute error standard deviation. MAE can better reflect the

actual situation of the prediction error. DAE can further

reflects the distribution of prediction error.

The algorithm pseudo code for determining the weight is as

follows. In all variables, minStdDeviation is the smallest

standard deviation. w1, w2 and w3 is the weight of attribute

cosine, attribute length and LCS respectively.

minStdDeviation = MAX;

for（w1=0; w1<=100; w1++）

for(w2=0.00; w2<=100-w1; w2++) {

w3 = 100-w1-w2;

for (i=0; i<173; i++) {

scoreSystem[i]=w1*(SimCos[i])+w2*(SimLen[i])

+ w3*(SimLCS[i]);

AE[i] = abs(scoreTeacher[i]-scoreSystem[i]);

}

DAE = CountStandardDeviation(AE, 173);

if (DAE < minStdDeviation) {

Record this combination of weight;

minStdDeviation = DAE;

}

}

4) It takes the minimum value of the absolute error

standard deviations of all weight combinations and get the

most reasonable weight values. As shown in Table 1, in all

of 5151 weight combinations, the maximum absolute error

standard deviation is 11.26, and the minimum absolute

error standard deviation is 5.60. Finally, the cosine value of

the angle between attribute vectors simCos, the length ratio

between attribute vectors simLen and the LCS algorithm

similarity simLCS is determined, which are 39, 17 and 44

respectively.

Table 1. The DAE of the weight combination.

Sequence

number

Weight of

Attribute Cosine

Weight of

Attribute Length

Weight

of LCS
DAE

1 39 17 44 5.6027976

2 39 18 43 5.6044927

3 40 16 44 5.6045443

4 40 15 45 5.6069386

5 39 16 45 5.6069387

6 38 19 43 5.6080240

7 40 17 43 5.6083072

8 39 19 42 5.6087979

9 38 18 44 5.6089869

10 38 20 42 5.6106077

…… …… …… …… ……

5149 0 2 98 11.0691197

5142 0 5 95 10.7972424

5143 2 0 98 10.8692535

5150 0 1 99 11.1625563

5151 0 0 100 11.2563356

6. Experimental Result

In accordance with the above algorithm, we use Java

language to develop the "C/C++ programming online exercise

and examination system". The flow chart of the program

evaluation is shown in Figure 1.

Figure 1. Flow chart of the program evaluation.

Then one class of Department of Computer Science in

TJUFE carried out the mid-term examination with the system.

We selected 100 student programs randomly and got the score

of the system evaluation. At the same time, teachers are

requested to make an artificial judgement on these 100

programs. Figure 2 compares the automatic scoring of the 100

codes with the teacher's score. It can be seen that the absolute

error of the system automatic score and the teacher's score is

less than 10%. This shows that the algorithm in this paper has

higher accuracy in automatic program evaluation.

 Journal of Electrical and Electronic Engineering 2018; 6(2): 53-58 58

Figure 2. Comparison of system automatic score and teacher score.

7. Conclusion

The program automatic scoring method based on static

analysis makes up for the deficiency of dynamic evaluation

method and has important theoretical and practical value.

Meanwhile it improves the attribute counting method and LCS

algorithm. This method is not only applicable to the evaluation

of C/C++ program, but also can be used to judge other

programming languages such as Java.

However, it is important to note that the evaluation of the

program code is subjective, and the criteria of evaluation of

each school may be different. So the optimal weight may be

different, and some test data should be trained to find the

appropriate optimal weight. On the other hand, the correct

code of each test question can also be given more. The score of

student program can be selected the highest similarity with

these correct codes.

Acknowledgements

This thesis is supported by the undergraduate research

training program of Tianjin University of Finance Economics.

Project name is automatic scoring method for programming

questions based on semantic understanding.

References

[1] Basit H A, Puglisi S J, Smyth W F, “Efficient token based clone
detection with flexible tokenization,” Proceedings of the the
6th joint meeting of the European software engineering
conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2007[C]. Dubrovnik:
ACM, 2007, pp. 513-516.

[2] YU Hai-ying, “Research and Implementation of Program Code

Similarity Measurement”, Computer Engineering, 2010, 36(4),
pp. 45.

[3] GU Ping, ZHANG Feng, ZHOU Hai-tao, “Method of Program
Source Code Similarity Measurement, Computer Engineering,
2012, 38(6), pp. 37.

[4] CUI Shuning, WU Ning, YE Dan, “Grade C++ code judge
with constructing abstract syntax tree model,” Journal of
Computer Application, 2015, 35(S1), pp. 183.

[5] Wang Tiantian, “Research on Program Recognition Approach
Based on Structural Semantic Similarity,” unpublished.

[6] ZHANG Li-ping, LIU Dong-sheng, LI Yan-chen, “AST- based
code plagiarism detection method,” Application Research of
Computer, 2011, 28(12), pp. 4616.

[7] Kim J, Choi H, Yun H, “Measuring Source Code Similarity by
Finding Similar Subgraph with an Incremental Genetic
Algorithm,” Proceedings of the Genetic and Evolutionary
Computation Conference 2016, Denver: ACM, 2016, pp.
925-932.

[8] LIU Yun-long, “Token-based structured code matching
homology detection technology,” Application Research of
Computers, 2014, 31(6), pp. 1841.

[9] LIU Yun-long, “A Homology Detection Technology Based on
Improved Edit Distance and LCS,” Journal of Beijing Institute
of Technology, 2017, 37(2), pp. 168.

[10] ZHANG Peng, “Research and Realization of Recognition
Method on C Program Similar code,” unpublished.

[11] Jones E L, “Metrics based plagiarism monitoring,” Proceedings
of the sixth annual CCSC northeastern conference on the
journal of computing in small colleges, 2001[C]. Middlebury:
Consortium for Computing Sciences in Colleges, 2001, pp.
253-261.

[12] ZHANG Jiujie, WANG Chunhui, ZHANG Liping, “Clone
code detection based on Levenshtein distance of token,”
Journal of Computer Application, 2015, 35(12), pp. 3536.

