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Abstract: The value of risk project is usually uncertain, so venture investor must make investment decision based on prior 

estimation of future value of risk projects. This paper constructs a portfolio optimization model of risk projects considering the 

psychological characteristics of venture investors, and proposes a Bayesian method to deal with the uncertainty of value 

estimation in project portfolio selection, and utilizes Monte Carlo method to simulate the model as a linear integer programming 

problem. The study finds that, compared with portfolio selection based directly on ex ante value estimation, Bayesian modeling 

of project estimates of project value uncertainty can provide more accurate value estimates and use the resulting revised 

estimates to make portfolio decisions can help to select a project portfolio with a higher expected utility, eliminate the expected 

interval between the expected pre-expected utility and the expected utility of post-implementation, and reduce the degree of 

disappointment of venture investor's expected decision-making.  
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1. Introduction 

With the intensification of economic globalization and 

market competition, the investment portfolio of risk projects 

has become a hot theoretical and practical topic. It is necessary 

to scientifically make decisions on venture capital investment 

to improve investment efficiency of venture capital 

institutions and accelerate the venture capital industry 

development that has important strategic significance. In 

actual economic activities, in order to minimize investment 

risk or maximize investment return, venture capitalists usually 

invest in different areas, different nature of project portfolio, 

the purpose is to avoid system risk of project operation or 

access to higher rate of investment return. If project is not 

properly selected that will hinder the development of 

individuals or organizations, and even bring catastrophic 

losses. Therefore, it is very important for venture capital firms 

(or venture investors) to allocate limited resources effectively 

and maximize investment return by selecting and executing 

project portfolios. 

Usually, some projects are chosen based on pre-estimate of 

how much value they will provide. Estimates on future value 

of risk projects can be obtained by, for example, net present 

value calculation, internal rate of return (IRR), cost-benefit 

study or multi-attribute decision analysis [1-2]. However, at 

the moment when it is necessary to make an investment 

decision, the true value of the project is unknown and can only 

be given a prediction. Obviously, the higher the predicted 

value, the more likely it is to be selected. In actual investment 

process, risk project is usually due to the associated or rely on 

certain uncertain future events and make its future value is 

uncertain, and venture investors must be given a given 

resources and other relevant constraints, based on the risk 

future value of the project is estimated in advance to make 

investment decisions. In order to reduce uncertainty and 

improve the decision-making process, venture investors will 

seek to obtain predictions about the future value of the project 

from various sources, such as by consulting experts who 
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master the data and can obtain a posteriori estimate based on 

an empirical model. Since these estimates are usually 

uncertain, there is a random error in predicting the future value 

of the project, so it is difficult for the venture investor to 

actually select the portfolio with the highest sum of the ex post 

value after satisfying the relevant budget and other resource 

constraints. In particular, even if the ex ante value is estimated 

to be unbiased, the ex post value of final selected portfolio is 

likely to be lower than the estimated value of items it contains, 

namely the selected portfolio probably may be sub-optimal. In 

other words, at the end of the investment period, when the real 

value of project is realized, the venture investor may suffer 

from the so-called post-decision disappointment [3-4]. 

The existing research on multi-project portfolios is 

primarily based on mean-risk model. For example, Zhang Qun 

et al. [5] discussed the establishment of a mean-risk index 

model for optimal project selection based on expert capital 

budgeting of project's annual cash inflow and outflow and 

initial investment expenditure when the historical data was not 

available. Hall et al. [6] discussed the problem of project 

selection when there was only partial probability distribution 

information for the uncertain income of each project, and 

decision-maker chose a feasible subset of the alternative 

portfolio so that portfolio income could not reach a given the 

risk of the target is minimized. Xu Weijun et al. [7] established 

a multi-project portfolio optimization model with bankruptcy 

risk constraints under the credibility measure. Yu Chao and 

Fan Zhiping [8] proposed a multi-industry to consider the 

decision-maker regret the aversion of venture capital project 

selection method. 

In the field of financial optimization, Bayesian modeling of 

asset uncertainty has been a long history [1, 9]. In particular, 

as a response to recent market information, Bayesian analysis 

is used to correct model parameters to better predict the price 

of securities and to further assist investors in making decisions 

on optimal portfolio of securities [10]. However, securities 

portfolio optimization and projects portfolio selection are 

different in many ways. Firstly, the risk project does not have 

an exact price that can be viewed from the market, and the 

value of project is usually estimated by the expert's evaluation. 

Secondly, the decision variable of project investment is a 

binary 0-1 variable, namely select or reject [11], while the 

portfolio of securities can essentially fund the fractional 

amount of funds for any investment. Finally, although the 

prices of different securities may be relevant, most of the 

investment in securities is not logically interdependent. 

However, in the project investment portfolio, there may be 

multiple forms of interdependence between projects due to 

logical relationships. For example, two projects may be 

mutually exclusive (projects A and B can only choose one) or 

interdependent (projects A and B can only choose one) or 

interdependent (if project B is project A Subsequent projects, 

only B can be selected when A is selected. Because of these 

differences, it is necessary to make a fine analysis of the 

estimated uncertainty when the project portfolio selection. 

Recently, Vilkkumaa et al. [12] demonstrated that Bayesian 

modeling of the uncertainty of risk project estimates and 

applying obtained Bayesian correction estimates to the 

portfolio, compared to direct portfolio selection based on prior 

value estimates the options can: (1) help to select a portfolio of 

projects that may be expected to provide higher value for the 

posterior value; (2) eliminate the expected interval (Gap) 

between the realized value of the portfolio and the estimated 

value of previous portfolio, thereby reducing the decision 

maker may experience the degree of disappointment. However, 

Vilkkumaa et al. [12] assumed that decision makers are risk 

neutral and that the decision objective is to maximize the 

expected value of the project portfolio and to compare the 

project portfolio with intrinsic value uncertainty without 

taking into account the risk of the decision maker attitude. 

Behavioral finance studies have shown that risk appetite of 

venture investors often affects investment performance and 

decision-making behavior. 

The traditional Von-Neumann expectation utility theory 

argues that investors’ feelings are the same when the amount 

of earnings and loss of psychological feelings are the same, 

and the decision-making objective of risk aversion investors is 

to maximize the expected utility of the end of wealth. 

Kahneman and Tversky [13] proposed prospect theory 

(Prospect theory) found that investors are making investment 

decisions, the concern is the end of wealth relative to a given 

reference point changes, namely profit or loss, the feeling of 

investors for the same scale of profit and loss is not the same, 

more sensitive to loss, namely investors are to avoid loss. In 

recent years, the discussion of portfolio problems under 

framework of loss aversion has aroused many researchers’ 

interest [14]. For example, Fulga [15] gives a portfolio 

optimization problem considering the investor's loss of 

preference in the mean-risk model framework. Jin Xiu and 

Wang Jia et al. [16, 17] studied the optimal asset allocation 

and performance of dynamic loss aversion portfolio model. 

Zhang Maojun et al. [18] study fund managers disgusted 

investment decision-making from perspective of risk 

constraints. However, existing portfolio studies based on loss 

aversion are largely confined to securities market, and 

research on other types of asset, such as real estate, and 

general project investment is still rare. 

Since the forecast based on historical data or expert 

assessment of future value of the project in risk environment is 

usually quite different from the value achieved in the project, 

this paper that based on the study literature [3, 4, 12] puts 

forward project optimization by using Bayes method to revise 

project authenticity and prior estimate. This paper proposes a 

solution to project portfolio optimization model based on 

psychological characteristics of venture investors, the model 

of Monte Carlo method can overcome shortcomings of sample 

data in some cases by simulating future value of the project. 

Theoretical analysis and simulation shows that: (1) different 

from the risk-neutral portfolio model of Simith et al. [3], Chen 

and Dyer [4] and Vikkumaa et al. [12], this paper discovers 

that venture capitalist's loss avoidance behavior has an 

important influence on its portfolio strategy; (2) explicit 

Bayesian modeling of the uncertainty of estimated value of 

risk project and applying obtained Bayesian correction 
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estimate to portfolio selection can help venture investor to 

decide investment portfolio that may be expected to provide 

higher combination of post-utility value, reducing the degree 

of disappoint of risk venture investors after decision-making, 

which can decide project portfolio much more effectively. The 

results of this study can provide a theoretical basis and method 

for venture investors' portfolio decision making. 

2. Project Investment Decision Model in 

Risk Environment 

Considering the set of 1, …, m alternative projects, the goal 
of venture investors is to select a subset from these projects to 
maximize the expected utility value of the selected portfolio 
under relevant constraints. For example, the total cost of 
investment cannot exceed the given budget threshold. Other 
possible constraints include mutual exclusion between 
projects (for example, select project A only when project B is 
not selected, and vice versa), or logical dependencies between 
projects (for example, select item A when only item B is 
selected). This portfolio selection can be expressed as a 

decision vector 1[ ,..., ]mz z z=  with a 0-1 element, so that 

only when project i is selected 1iz = .  

The real value of the project is v=[v1,..., vm] T, which is 

random variable V = [V1,..., Vm]T~f (v). Only when these 

projects are executed at the end of investment period, they will 

be realized and observed. In the following part, it is assumed 

that the distribution f (v) is known.  

The utility function of venture investor with a risk aversion 

is defined as following piecewise linear function [14]:  

0 0

0 0

( ),
u( )

( )

X V X V
X

X V X Vλ
− ≥

=  − < ，

           (1) 

Where λ>1 is the loss aversion coefficient, X is the final 

value of the investment portfolio, and V0 is the reference point 

for profit and loss. Formula (1) shows that at the reference 

point attachment, the slope of loss is greater than the slope of 

profit, namely venture investor is more sensitive to the same 

amount of loss than the same amount of profit, and the greater 

of λ the greater degree of disgust for loss. 

Using Z as a set of feasible portfolio that satisfy a given 

constraint, if the venture investor can observe the real value v 

of the project at the time of investment decision, then the 

optimal portfolio z (v) will be determined by solving 

following optimization problem: 

z( ) arg max ( )
z Z

v u zv
∈

=             (2) 

Where u (*) is the risk aversion utility function of venture 

investor that defined by formula (1).  
However, venture investors do not know the future real 

value of these projects at the moment of making investment 
decisions, and usually only get an estimate of 

1 2[ , , , ]E E E E T
mv v v v= ⋅⋅⋅ . Assume that these estimates values are 

an implementation value of a random variable 

( | ) ( | )∼
E EV V f v v  with a known density function 

( | )Ef v v . Further, it may be assumed that this estimate is 

conditional unbiased, that is, 

( | ) ( | )E E E
i i i iE V V v v f v v dv v+∞

−∞= = =∫ . If venture investors 

choose investment project based on these estimates νE, the 

optimal portfolio ( )Ez v  can be obtained by solving the 

following optimization problem:  

( ) arg max ( )E E

z Z
z v u zv

∈
=           (3) 

This paper points out that investment decisions that directly 

based on estimated value Ev  may lead to the selection of a 

non-optimal portfolio without considering the uncertainties 

contained in distribution functions ( )f v  and ( | )Ef v v . For 

example, considering portfolio decision problem with 12 

alternatives P1,..., P12, the real value of these projects is the 

realization value of independent and identically distributed 

random variable Vi~ N (10, 42), i = 1,..., 12. ( | )E
i i iV V v=  = 

i iv + ∆ , and 
2(0,1 )∼i N∆ ，i=1,…, 6, as it is known that 

projects P1 to P6 are traditional projects and their future 

performance can be obtained with a relatively accurate 

estimate. On the other hand, projects P7 to P12 are novel 

"radical" projects, their value is difficult to obtain a reliable 

estimate, the corresponding model is (ViE | Vi=vi)=vi+∆i, 
where ∆i~N (0, 52), i=7,..., 12. As constrain of the total 

investment budget, it is only possible to select 5 projects from 

these 12 projects to invest. In addition, in the model, take the 

loss aversion coefficient r=2.25, profit and loss of the 

reference point selected for the evaluation of the total value of 
five projects V = 50.  

First of all, using the Matlab software, from the Vi~ N (10, 

42) to generate the real value of project P7,..., P12 of a group of 

realization value νi were 9.62, 6.67, 11.18, 4.66, 12.86, 16.49, 

7.65, 18.73, 9.45, according to the model (2), the best 

investment portfolio ( )z v  is the choice of {P4, P5, P6, P8, P11}, 

and the total utility value ( ( ) )u z v v  of the project is 23.53.  

On the other hand, a set of estimated values 
E

iV  for 

generating items P7 to P12 from ( | )E
i i i i iV V v v= = + ∆ , 

∆i~N (0, 12) are 8.93, 7.53, 12.43, 3.06, 11.42, 17.07, a set of 

estimated values 
E

iV  of the items P7 to P12 generated by 

( | )E
i i i i iV V v v= = + ∆ ， I to N (0, 52) are 5.65, 22.18, 13.53, 

14.02, 20.72, 13.58. Based on these estimates, the investment 

utility ( )Ez v  obtained by solving the model (3) is the 

corresponding utility value ( ( ) )E Eu z v v  of {P6, P8, P10, P11, 

P12} is 37.57, and the total expost utility value ( ( ) )Eu z v v  of 

the portfolio is 20.19.  

From this example it can be found that, (a) based on the 

estimated value νE, the ex post facto total utility value (20.19) 

of the project portfolio z(νE) is lower than the total utility value 

achieved 23.53 by the optimal portfolio z (ν); (b) portfolio z 

(νE) contains "radical" projects P10 and P12, which are selected 
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with higher estimates, but they are not selected by optimal 

portfolio z (V); (c) the total value of the portfolio z (vE) is 

estimated to be (87.57), which is 24.8% higher than the actual 

value (70.19) which actually realized, so decision maker will 

experience disappointment after the decision-making.  

Formally, this paper gives following theorem 1, the detailed 

proof process refers to the appendix. 

Theorem 1 Assuming VE to be a conditional unbiased 

estimate of V, then: 

[ ( ( ) ) ( ( ) )] 0E E EE u z V V u z V V− ≤  

While ( )Ez V  is the optimal solution of problem (3). 

Furtherly, assume ( )z V  be to optimal solution of problem (2), 

if ( ( ) ( )) 0EP z V z V≠ > , then [ ( ( )EE u z V V −  

( ( ) )] 0E Eu z V V < . 

Theorem 1 shows that, the total utility value actually 

achieved by the portfolio ( )Ez V  does not exceed its 

previously estimated utility value in average. Moreover, if the 
probability of selecting "wrong" projects (unless entirely 
accurate, otherwise it is always) is greater than zero, the utility 
value of the selected portfolio based on the previous estimate 

is actually utility value ( ( ) )Eu z V V , the expected interval 

between estimated utility value ( ( ) )E Eu z V V  combined with 

the project is strictly less than zero. In particular, even if the 
estimate of true value of the project is unbiased, the utility 
value of the portfolio chosen afterwards will be systematically 
overestimated because the items whose value is overvalued 
are more likely to be selected, investors will experience 
disappointment after the decision. Moreover, the higher 
uncertainty of prior estimates on true value of the project, the 
greater disappoints at end of investment period. 

3. Bayesian Modeling of Uncertainty in 

Project Portfolio 

Smith et al. [3-4, 12] found that, similar to problem of 

selecting only one scenario from multiple alternatives, the 

choice of project portfolio in a risk environment, the 

disappointment of investor decision-making can be achieved 

by applying Bayesian method. The modeling is mitigated by 

correcting estimated value of the project value. 
In particular, given the estimated value VE of a given project, 

the Bayesian rule ( | ) ( ) ( | )E Ef v v f v f v v∝  can be applied 

from prior distribution ( )f v  and the likelihood distribution 

( | )Ef v v  and obtain posterior distribution ( | )Ef v v  of the 

project value ν. Furtherly, given the estimated value Ev , the 

optimal portfolio probability value ( ( ) 1| )E E
iP z V V v= =  of 

project i or the expected value of project i can be calculated by 

using the posterior distribution ( | )Ef v v . Thus, the posterior 

distribution can be used to construct a portfolio optimization 
problem with the goal of maximizing the expected utility of 

portfolio value.  

Given value of Ev , investor's decision-making problem is 

to choose portfolio z, maximizing the loss of aversion function 

( [ | ])E Eu zE V V v= . Therefore, according to the project's 

pre-estimated value Ev , following formula can be used: 

[ | ]E E
ivBi E v v v= =  = ( | )E

i i iv f v v dv+∞
−∞∫      (4) 

Calculate and get Bayesian estimate 1 2[ , ]B B B B T
mv v v v= ⋅⋅⋅ . 

The above formula (4) shows that Bayesian estimate of true 
value of the project i is actually the expected value of posterior 

distribution 1( | )B Ef v v . 

Based on Bayesian estimate Bv , the portfolio that 

maximizes desired utility of venture investors can be 
determined by following optimization issues:  

( ) arg max ( [ | ])B E E

z Z
z v u zE v v v

∈
= = = arg max ( )B

z Z
u zv

∈
   (5) 

Continue to examine the 12 projects of P1,..., P12 in section 2, 

using the real value iv  and the estimated value 
E
iv  of the 12 

projects that generated before, the future value of these 

projects can be calculated according to formula (4), the 

estimated values of the Bayes 
B
iv  are 8.99, 7.68, 12.29, 3.47, 

11.34, 16.65, 8.30, 14.75, 11.38, 11.57, 14.18, 11.40. Based on 

these Bayesian estimates of projects P1,..., P12, and assuming 

that the model parameters and constraints are the same as in 

section 3, the optimal portfolio ( )B
iz v  obtained from solution 

model (5) is {P3, P5, P6, P8, P10, P11}, and the total utility value 

( ( ) )Bu z v v  is 21.13. This indicates that total utility value 

(21.13) of the portfolio ( )Bu v  based on Bayesian estimate 

based on model (5) is higher than the investment portfolio 

( )Ez v  directly based on pre-estimated value Ev , the total 

utility value (20.19).  

Furthermore, in order to examine the performance of 

portfolio optimization model (5), in equation (4), this paper 

utilizes random variable: EV  instead of the observed estimate 

Ev , and define the Bayes value of each project by following 

formula, 1 2[ , ,..., ]B B B T
i mV E V V V=  (random variable):  

[ | ] ( | )B E E E E
i i i i i iV E V V v f v v dv v

+∞

−∞
= = =∫       (6) 

In this paper, it is pointed out that, under fairly general 

assumptions, the post-utility value of portfolio that based on 

Bayesian estimate νB will be at least as much as post-utility 

value realized directly based on pre-estimated value νE. 

Formally, this paper proves the following theorem 2.  

Theorem 2 assuming the meaning of VE, V and z (VE) as 

shown in theorem 1, then:  

[ ( ( ) ) ( ( ) )] 0E BE u z V V u z V V− ≤  
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Among them, VB is given by formula (6), and z (VB) is the 
optimal solution of model (5). Furthermore, if the probability 

that ( ) ( )E Bz v z v≠  occurs is greater than 0, then 

[ ( ( ) ) ( ( ) )] 0E BE u z v V u z v V− < . And: 

[ ( ( ) ) ( ( ) )] 0E BE u z V V u z V V− <  

This is an intuitive result, because according to model (5), 

( )Bz v  maximizes the expected utility of the portfolio. 

Moreover, the Bayesian estimate of ( )Bz v  based on 

Bayesian estimation will result in a strictly higher utility if 

Bayes is used to estimate the probability that  has a 
nonzero probability that leads to a different investment 

portfolio than directly using of the estimated value ( )Bz v . 

In general, there is no closed expression for posterior 
distribution of project value. However, a closed analytical 
expression for Bayesian estimation can be obtained if the 
distribution of true value of the project and the distribution of 
the estimate is a conjugate distribution [3, 12]. For example, 
assume that true value of the project and the estimated value 
are subject to a self-conjugate normal distribution, so for each 

project i there are: actual value: 
2, (0, )∼i i i i iV E E Nµ σ= +  

estimated value: ( | )E
i i i i iV V v v= = + ∆ ， 

2(0, )∼i iN τ∆  

Thus, Bayesian estimate of formula (4) becomes: 

(1 )B E
i i i i iv vα α µ= + −          (7) 

among them: 
2

1

2
(1 )i

i

i

τα
σ

−= +  

Therefore, it is not difficult to find from formula (7) that for 
the normal distribution, the Bayesian estimate of project value 
depends on prior mean µi and observed pre-estimated value 

E
iv , which is weighted average of µi and 

E
iv , depending on 

variance ratio 
2 2/i iτ σ . If variance 

2
iτ  of estimated error ∆i is 

larger than prior variance 
2
iσ , then the weight αi of estimated 

value 
E
iv  is small, namely a priority mean value µi is 

catching more attention at this time. On the other hand, if 

variance 
2
iτ  of estimated error ∆i is smaller than prior 

variance 
2
iσ , then αi will be close to 1, reflecting relatively 

reliable information provided by estimated value 
E
iv  on how 

much value the project i will achieve afterwards [3, 12 ]. 
In practice, in order to describe a normal a priori, decision 

maker needs to determine prior mean µi and variance 
2
iσ . If 

venture investors have location and scale information about 

the value of project i, they can match these µi and square 
2
iσ . 

According to the thumb rule, the vast majority of data points 
(99.7%) of probability distribution are located within the 
interval I=[µi±3σi]. Thus, if venture investor can determine the 

reasonable upper bound and the lower bound of vi , priori 

mean µi and variance 
2
iσ  can be determined, so that these 

upper bounds and lower bounds can correspond to the end 
points of interval I [19]. 

In some cases, prior distribution ( )f v  may not be normal. 

For example, the value of the project may be asymmetric, and 
most of the data points of its probability distribution focus on 
smaller values. For this case, a probable prior distribution is an 
asymmetric triangular distribution [20], which simply 
estimates three parameters of vi, namely the maximum, the 
minimum, and the most probable (the plural). In addition, 
venture investor can also estimate the percentile of the value vi 
of each project i, and then convert the resulting step function 
into a continuous distribution function by applying kernel 
smoothing method [21]. 

According to Vilkkumaa et al. [12], if the estimated error is 
additive, the project is specific and follows the normal 
distribution with mean value is 0, then the likelihood function 
corresponds to the estimate of each project i (i = 1,..., m) error 

variance τi
2. In order to estimate

2
iτ , decision maker can 

specify a maximum range so that he should expect, for 

example, that at least the value of project valuation of 
2
iτ  is 

within this range, then 
2
iτ  can be estimated from this range. 

On the other hand, if the project is evaluated by a number of 
experts, the variance of expert's evaluation of project 

valuation can be interpreted as 
2
iτ . This method has been 

advocated by some scholars [22]. Moreover, since this 
approach does not require expert to evaluate the project to 

directly determine 
2
iτ , it is possible to overcome the 

unaudited tendency of the generally observed individual 
independence to assess the project valuation[22]. 

It can be shown that there is no need to make any specific 
assumptions (eg, normal distributions) for prior distribution 

( )f v  and the likelihood distribution ( | )Ef v v  or relevant 

constraint of the problem, and Bayesian estimate can 
eliminate the selected expected interval between expected 
utility value of the portfolio and expected utility value. In this 
paper, the following theorem 3 is given. 

Theorem 3 assume the meaning of V, VE, VB, and z (•) is as 

the same that shown in theorem 2:  

[ ( ( ) ) ( ( ) ) | ] 0B B B E EE u z v V u z v v V v− = =  

It is right for all vE established, and there are: 

[ ( ( ) ) ( ( ) )] 0B B BE u z v V u z v v− = . 

Theorem 3 shows that expected interval between final 
expected utility value and expected utility value based on 

Bayesian estimate Bv  is zero, based on the portfolio ( )Bz v  

determined by optimization model (5). Even in individual 
cases, Bayesian estimation tends to reduce the degree of 
disappointment after decision-making because extreme Bayes 

correction value 
B
iv  is less likely to occur than extreme 

estimate 
E
iv . 
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In practical applications, if priori distribution and likelihood 
distribution are conjugate, the Bayesian rule can be used to 
obtain analytic expression of the posterior distribution of each 
project i [19]. If the prior distribution and likelihood 
distribution are not conjugate, then posterior distribution 

needs to be approximated. ( )( 1,..., )iv l l L=  is discretized for 

the distribution of Vi, and then corresponding to each of the 

L-sample values ( )( 1,..., )iv l l L=  from prior distribution 

( , )Ev l k , k = 1,..., K from likelihood distribution of 

| ( )E
i iV V v l= . Thus, posterior distribution corresponding to 

initial estimate Ev  can be obtained by marginal distribution 

function caused by 
E

EV v=  and normalized in discrete joint 

distribution. If discretization is sufficiently dense, the value of 
alternative projects is distributed independently, and the 
method works well. However, if the value between the 
alternatives and the estimates are dependent, it is possible to 
extract a sufficiently large amount of data at each point of a 
dense multidimensional grid, which may require considerable 
computational effort. Wei Laisheng et al. [19] and Rup-pert et 
al. [23] give the simulation and numerical integration 
strategies. 

4. Risk Portfolio Optimization Model 

That Based on Loss Aversion 

There are m alternative risk projects, the total investment of 
venture investors is S0, and the investment amount of i-th risk 
project is si. The total capital required for m projects is: 

1

1

m

i

i

S s

=

=∑ , but total investment budget S0<S1, namely 

venture investors can only choose some of the projects to 
invest. If you choose to invest in i-th project, then let zi=1, 
otherwise let zi= 0, i=1,...m. That is, once venture investors 
determine to invest project i, you must invest Si, only to decide 
whether to invest, without the investment amount in 
decision-making. 

It is further assumed that benefit (value) available for 
investment in risk project i is Vi, so project portfolio 
optimization model that takes into account of psychological 
characteristics of loss aversion of venture investors can be 
described as:  

1

max

m

i i

i

Eu z V

=

=∑  

0

1
. .

0 1, 1,2, ;

m

i i

i

i

s z S
s t

z or i m

=


≤


 = = ⋅⋅⋅

∑             (8) 

Where utility function ( )iu  is piecewise linear function 

defined by model (1). 
Since it is often difficult to obtain an analytic expression 

of objective function in model (8), Monte Carlo simulation 

can be considered for solving problems [18, 24]. The basic 
idea of this method is to use random number generation 
algorithm to generate random number representing the 
yield of project according to statistical characters of 
distribution function, mean value and variance of random 
variable, and convert problem (8) into deterministic 
optimization problem, then obtains approximate solution of 
original problem by solving the algorithm of deterministic 
optimization problem. The specific solution to problem (8) 
is given below. 

According to the mean value µi and the standard deviation σi 
of project valuation Vi, the Monte Carlo algorithm can be used 
to obtain corresponding samples ν

1,..., ν
N, where 

1 2( , ,..., )j jj j T
mv v v v= , j=1,..., N, N is the sample size, so the 

objective function of model (8) can be approximated as 
follows:  

0

1

1
( ) ( , )

N
j

j

u z u X V
N =

= ∑  

= 0 0

1 1 1

1
[( ) ( ) ]

N m m
j j

i i i i

j i i

z v V z v V
N

λ+ −

= = =

− − −∑ ∑ ∑     (9) 

Where (t)+ represents the maximum value of 0 and t, and 

( )t −
 represents the maximum of 0 and -t. Using auxiliary 

variables 
ky  to substitute 0

1

( )

m
j

i i

i

z v V +

=

−∑ ，using 
jξ  to 

substitute 0

1

( )

m
j

i i

i

z v V −

=

−∑ , and using the below equation:  

0 0 0( ) ( )j j
jX V X V X V+ −− = − − −  

The model (8) can be transformed into following linear 

mixed integer programming problem:  

1

1
max ( ) ( )

N
j j

N

i

u z y
N

λξ
=

= −∑  

0

1

0

1

. .
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i

m

i i

i

i
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y j N
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ξ

=

=


− = −





≤

 = = ⋅⋅ ⋅
 − ≥ = ⋅⋅ ⋅

∑

∑        (10) 

In addition, in order to examine the impact of venture 

investor's loss aversion on portfolio decision-making, this 

paper also solves following portfolio optimization model for 

maximizing project portfolio total expected value [12]: 
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∑          (11) 

According to models (10) and (11), if investment objective 
of venture investor is expected total value of portfolio, the 
expected value of portfolio at end of investment period is 

( )E zV , and when venture investor is risk aversion, the 

objective function of investment portfolio is 0( )E zV V +− −  

0( )E zV Vλ −− . By comparing these two objective functions, it 

can be seen that under same budget constraint, the loss 
aversion coefficient λ of venture investor is the key factor that 
causes the target of model (10) and model (11) to be different 
under the same budget constraint. That is, the objective 
function in model (8) reflects the pleasure of the same amount 
of profit when the venture investor is faced with a certain 
amount of loss. Therefore, the model established in this paper 
embodies the loss psychological characteristics of the loss of 
venture investors, and the model in literature [12] reflects the 
risk of venture investors in decision-making. 

5. Numerical Examples 

5.1. An Analysis of the Impact of Loss Aversion on Portfolio 

Selection 

In order to test the effectiveness of Bayesian modeling in 
practical application, this paper applies Monte Carlo 

stochastic simulation to generate the value data of alternative 
projects and calculate the value of Bayesian model in portfolio 
optimization model (10) and the uncertainty of project value 
estimation, and calculating the model (10) and model (11) of 
optimal portfolio.  

Considering a venture capital firm with 10 risk projects 
A,..., J for its investment choice [12], the investment amount 
required for these projects were 9, 3, 4, 6, 5, 7, 12, 8, 2, 1 
(unit: million). The total amount fund of investment firm is 
$ 25 million, so it is only possible to select some of projects 
from these risk projects to invest. Assuming that the real 
value vi of these risk projects at end of the investment period 
is the realization value of random variable Vi= µi+Ei, i=A,..., 
J, there are µi=10 and Ei~N (0, 32). It is further assumed that 
projects A to D are traditional projects whose future values 
can be obtained with relatively accurate estimates. The 

estimates are generated by model ( | )E
i i i i iV V v v= = + ∆ , ∆i 

~ N (0, 12). On the other hand, projects E to J are novel 
"radical" projects whose future values are more difficult to 

obtain by model ( | )E
i i i i iV V v v= = + ∆ , ∆i ~ N (0, 2.82) 

generated. Applicate Matlab to generate 200 groups 

observations of iv  and vE
i , and use formula (7) to calculate 

the corresponding vB
i . 

The estimated value 
E
iv  of 10 alternatives obtained by 

above method is substituted into model (10) and model (11) 

respectively with corresponding Bayes correction value 
B
iv

(m=10, N=200). Take λ=2.25, V0=55, the following table 1 
gives the results of the solution. 

Table 1. The Impact of Loss Aversion on Portfolio. 

Portfolio model Project selection results Estimated total value The total value achieved 

Model based on vi
E(10) B, D, E, H, I, J 64.02 62.60 

Model based on vi
E(11) B, C, E, H, I, J 64.50 63.28 

Model based on vi
E(10) A, B, C, E, I, J 63.34 64.13 

Model based on vi
E(11) B, C, D, E, I, J 63.35 63.88 

 

As can be seen from Table 1 above, the portfolio model 
based on loss aversion behavior (10) is not the same as the 
portfolio selected by risk-based neutral portfolio (11), which 
means that the loss of venture investors evasion of psychology 
has an important impact on its portfolio decision making. In 

addition, for both models, the total value ( )Ez v v  of 

post-event project based on estimated value of the portfolio of 
E
iv  is lower than the pre-estimate ( )E Ez v v , and Bayesian 

estimate can be used to improve the portfolio’s total value, 
reduce the degree of disappointment after decision-making. 

5.2. An Analysis of the Impact of Project Estimated 

Uncertainty on Portfolio Selection 

This section will use an example to analyze the impact of 
uncertainty in project valuation on the degree of disappointment 
after decision making. The real value vi of these 100 projects is 

derived from standard normal distribution N(0, 1), and their 

estimates 
E
iv  are estimated by an additive zero mean error 

model (10) 
E
i i iv v δ= + is generated, where the estimated error 

δi~N (0, τ2). The influence of the uncertainty of the project value 
estimation on the degree of disappointment after the decision is 

studied by taking different values of [0,1]τ ∈  for taking 

λ=2.25 and V0 = 0. 
The following figure 1 shows that when the standard deviation 

τ of estimated error changes, run Monte Carlo simulates 1000 

times to solve average utility value ( ( ) )E EEu z V V  estimated by 

the portfolio obtained by model (10) ( ( ) )EEu z V V , it is easy to 

see from figure 1 that the degree of disappointment after the 
decision is increased as standard deviation τ of estimated error δi 
of the project value increases. It is that the greater the uncertainty 
in project estimates, not only makes it difficult for venture 
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investors to identify projects that are of high real value, but also 
make it more likely that venture investors will choose those 
projects with high estimates, the greater the disappointment, 
which is also the numerical simulation of the theorem 1. For 

example, in figure 1, when τ = 0.8, the selected portfolio 
estimates the average utility value of 22.22, which is 64.23% 
higher than the average utility value 13.53.  

 

Figure 1. Estimated error of the standard deviation increases when the model (10) of the portfolio corresponds to the expected utility estimate and the 

implementation value. 

At the same time, in order to test whether the portfolio 
selected based on Bayes correction value can eliminate the 
expected interval between expected utility value and its 
expected utility value, the following figure 2 shows the criteria 
for estimated error of the project value Monte Carlo 
simulation is performed 1000 times, and the Bayes correction 
value vi

B calculated by (7) is used instead of νi in model (10) to 
solve the average utility value of the portfolio obtained by 

model (10) ( ( ) )B BEu z V V and the effect of the average utility 

value ( ( ) )BEu z V V . It is easy to see from figure 2 that 

Bayesian correction of the prior estimate of the project value 
can eliminate the disappointment of venture investor's 
decision, thus supporting the conclusion from theorem 3. 

 
Figure 2. Estimated utility values and expected utility values for the portfolio based on the Bayesian estimate. 

5.3. Analysis on the Impact of Bayes Modeling on Portfolio 

Performance 

In order to further examine the role of Bayes modeling of 
uncertainty in project valuation for portfolio performance, it is 

still considered to select 10 projects from 100 alternative 
projects to invest in the real value of the 100 projects from 
normal distribution N (5, 18 ). These items are divided into 
two subprojects, in which the value of the first type of project 
has a small estimated error variance ∆i~N (0, 42), while the 
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second category has a larger estimated error variance ∆i~N (0, 
32). In model (10), let λ=2.25, V0=50, the following figure 3 
shows that when the number of items with larger estimated 
error variance increases, the pre-estimated value vi

E based on 
the project value is Bayes recommended estimate, vi

B, solves 
posterior utility values achieved by model (10) by portfolio. 

It is easy to see from figure 3 that optimal portfolio based on 

Bayesian estimate 
B
iv  has a higher practical utility value than 

the portfolio chosen directly based on estimated value
E
iv , 

which in fact further supports the rationality of theorem 2. 

 
Figure 3. Shows the performance of the portfolio based on the direct estimate and the Bayesian estimate. 

6. Conclusion 

Traditional portfolio problem is based on Von-Neumann's 

theory of expectation utility. A large number of empirical 

studies have found that investors are deviating from expected 

utility theory when making investment decisions, not 

necessarily completely disgusted with risk, and often show 

such as loss disgust, excessive self-confidence and other 

irrational behavior. The study of behavioral decision theory 

makes people to realize that investor’s behavior plays an 

important role in asset allocation. This paper constructs a 

portfolio optimization model of risk project based on loss 

avoidance decision-making behavior from perspective of 

behavioral finance. Considering the uncertainties in the 

future value of risk projects, Bayesian modeling is used to 

revise the prior value estimates of risk projects. It is found 

that Bayesian correction estimates tend to give more accurate 

estimates of project value. At the same time, based on Monte 

Carlo stochastic simulation algorithm, the constructed 

portfolio model is transformed as easy linear integer 

programming problem. The portfolio model based on loss 

aversion is compared with risk-based portfolio model, and 

the risk is found. Investor's loss to circumvent psychology 

has an important impact on their investment decisions. In 

addition, this paper also theoretically proves, for any prior 

distribution and likelihood distribution, compared with the 

investment based on pre-estimated value, Bayesian modeling 

of the uncertainty of project value estimates and Bayes 

correction value is used to construct a portfolio that can help 

venture investors choose to be able to provide a higher 

post-utility value of portfolio and reduce the potential 

disappointment afterdecision-making, eliminating the 

estimated value of previous utility value between expected 

intervals. Finally, the theoretical results are verified by 

Monte Carlo simulation. 
It should be noted that the analysis of this paper is known 

based on prior distribution ( )f v  and likelihood distribution 

( | )Ef v v  of the assumed project value. Since project 

portfolio is a recurring activity for most of venture capital 
firms, it is possible to have historical data on project valuation 
and valuation estimates so that these historical data can be 
used to estimate the prior distribution and likelihood 
distribution. However, in venture capital practice, certain risk 
projects usually do not have or have only a small amount of 
historical information, and if venture investor does not have 
any prior information about the alternative, then a 
non-informative prior method based on evaluation 
information to calculate posterior distribution. In addition, if 
prior distribution and likelihood distribution are conjugate, the 

closed expression of posterior distribution ( | )E
if v v  of each 

project i can be obtained by Bayes theorem. However, if prior 
distribution and likelihood distribution are not conjugate, then 
Bayes posterior distribution is determined to be calculated for 
high dimensional integrals. In order to reduce computational 
workload, the Markov Chain Mante Carlo (MCMC) method 
can be used to sample the prior distribution, and determine the 
discrete value of posterior distribution. Then the 



100 Liu Xiaobing et al.:  Research on Strategic Analysis and Decision Modeling of Venture Portfolio  

 

approximation is given by statistical inference based on 
discrete valuation [19, 23]. 

This paper only considers single-stage investment 
decision-making problem, and assumes that the investment 
cost of each project is determined. However, in actual 
investment activities, venture capital firms may adopt phased 
investment strategy according to the change of market 
environment in order to avoid or reduce risks, the project 
investment cost may also change over time. Therefore, we can 
further study the multi-stage portfolio problem that also 
considers the uncertainty of project value and cost. In addition, 
there is always a correlation between background risk and 
project risk in the process of project investment. How to build 
a multi-stage project investment decision model that takes into 
account both background and project risks is also worth of 
research questions. 

Appendix 

Proof of theorem 1: 

For given ν and νE, there is:  

 ( ( ) ) ( ( ) ) ( ( ) ) ( ( ) )E E E E Eu z v v u z v v u z v v u z v v− ≤ −  

( ( ) ) ( ( ) )Eu z v v u z v v≤ −             (12) 

Among them, the first inequality holds because z (ν) is the 
optimal solution to problem (2), and the second inequality 
holds because z (νE) is the optimal solution to problem (3). 
Therefore, under the condition of V=ν, the distribution of the 

random variable VE is ( | )Ef v v , and the expectation of (12) 

as follows: 

 [ ( ( ) ) ( ( ) ) | ]E E E EE u z v v u z V V V V v− =  

 [ ( ( ) ) ( ( ) ) | ]E EE u z v v u z V V V v≤ − =  

= ( ( ) ) ( ( )) [ | ]
�������

E E

v

u z v v u z V E V V v

=

− = =0    (13) 

Among them, the last equation is established because the 
assumptions on the value of the project estimates are unbiased 
estimates. Since (13) holds for all v, here can get: 

[ ( ( ) ) ( ( ) )] 0E E EE u z V V u z V V− ≤ .  

In addition, the first inequality of (12) strictly holds for 
some ν and νE if it is possible to choose a non-optimal item 

which means ( ( ) ( )) 0EP z V z V≠ > . Therefore, if the 

probability of occurrence of this event is positive, inequality 
(13) holds strictly for the corresponding v such that 

[ ( ( ) ) ( ( ) )] 0E E EE u z V V u z V V− < . 

Proof of theorem 2: 
For a given νE, the Bayes estimate νB and the optimal 

solutions z (νE) and z (νB) for both problems (3) and (5) are 
fixed, so the conditional expectation of 

( ( ) ) ( ( ) )E Bu z v V u z v V−  is as follows:  

[ ( ( ) ) ( ( ) ) | ]E B E EE u z v V u z v V V v− =  

= ( ( ) [ | ])
�������

B

E E E

v

u z v E V V v= - ( ( ) [ | ])
�������

B

B E E

v

u z v E V V v=  

= ( ( ) ) ( ( ) ) 0E B B Bu z v v u z v v− ≤          (14) 

The second equation is based on the definition of vB. The 

final inequality holds because ( )Bz v  is the optimal solution 

to problem (5). Therefore, it can be obtained that 

[ ( ( ) ) ( ( ) )] 0E BE u z v V u z v V− ≤  by integrating νE. 

If ( ) ( )E Bz v z v≠  is true for some Ev , then for 

[ | ]B E Ev E V V v= = , here it can be obtained that as follows: 

( ( ) ) ( ( ) ) 0E B B Bu z v v u z v v− <  

Therefore, inequality formula (14) holds strictly if 

( ( ) ( )) 0E BP z V z v≠ > , that is as follows:  

[ ( ( ) ) ( ( ) )] 0E BE u z V V u z v V− <  

Proof of theorem 3: 
For a given set of estimates νE, the corresponding Bayes 

estimate νB and the optimal solution ( )Bz v  of problem (5) 

are also fixed, and the conditional expectation of 

( ( ) ) ( ( ) )B B Bu z v V u z v v−  is as follows:  

[ ( ( ) ) ( ( ) )] |B B B E EE u z v V u z v v V v− = = 

( ( ) [ | ] ( ( ) ) 0
�������

B

B E E B B

v

u z v E V V v u z v v

=

= − =  

Since νB is deterministic, the first equation holds, and 
according to the definition of νB, the second equation also 
holds. Integrating of νE, here it can be obtained that: 

[ ( ( ) ) ( ( ) )] 0B B BE u z V V u z V V− = . 
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