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Abstract: The diagonalization of the two-body Hamiltonian has been performed by the Green function method and the 

polariton spectrum has been found. The result is analogous to that found by the Bogolyubov-Tyablikov method of 

diagonalization. Besides, the spectrum of Bose-Einstein condensate (BEC) of the excitons has been calculated. It is shown how 

the spectrum of polaritons is re-normalized when the BEC excitons are present. 
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1. Introduction 

The appearance of powerful sources of coherent radiation 

provides formation of the exciton density of about 10
17

 – 10
18

 

cm
-3

 in the crystals. At the same time, the collective 

properties of excitons become substantial. As excitonic 

excitations of a crystal can be considered as bosons with a 

reasonable degree of accuracy, Bose-Einstein condensation 

should be registered at low temperature and repulsive 

character of exciton-exciton interaction, when the kinetic 

momentum k corresponds to the minimum of the exciton 

branch [1-7]. 

Despite numerous papers [8-11] reporting that the exciton 

condensation has been realized at last, the final consensus has 

not been reached yet. That is why the search for new indirect 

evidences of the existence of BEC excitons stays of 

immediate interest. It should be noted that formation of BEC 

would affect all the characteristics of the crystal, especially 

the polariton spectrum. 

Polariton approach is widely used when studying non-

linear effects in both semiconductors and molecular crystals 

[12]. It is usually supposed that the quadratic terms of 

Hamiltonian related to photon-exciton interaction are large. 

So, diagonalization of the terms is carried out by 

Bogolyubov-Tyablikov transform resulting in the polariton 

spectrum. The rest of the terms of the third order and higher 

describe varied non-linear effects, in particular, Raman 

scattering (RS) etc. The approach suggests that all the 

Hamiltonian terms of the order higher of the second one are 

small to be accounted by the perturbation theory. It should be 

noted that the technique works well at the temperatures near 

zero and a few or absent excitations in the initial state. 

The situation can be changed when the initial state is 

characterized by Bose-Einstein condensate of excitons where 

a macroscopic number of the particles is in the same definite 

state. Due to this fact, single terms of the order higher than 

the second one can be anomalously large, with the related re-

normalization of the spectrum. 

Besides, there are compounds where the Hamiltonian 

terms of the third order are larger of the quadratic ones. In 

this case, Bogolyubov-Tyablikov transform cannot be applied. 

2. Green Function and the Spectrum of 

the Condensed Excitons 

Suppose that in the crystal, on the branch σ, there are 

interacting condensate excitons characterized by quasi-

momentum 0k =
�

. The Hamiltonian of the system can be 

written as 

0 1

0

,

1

;

( ) ( ) ( );

(0) (0) (0) (0),

k

H H V

H E k B k B k

Q
V B B B B

V

µ µ µ
µ

σ σ σ σ

+

+ +

= +

=

=

∑
�

� � �
                (1) 

where Q can be substituted with the constant of the exciton-

exciton interaction found in [12], ( )E kµ

�
 is the exciton 



Journal of Photonic Materials and Technology 2015; 1(1): 10-14 11 

 

spectrum, k
�

 is the quasi-momentum, µ  is the number of the 

exciton band, ,B B
+

 are operators of nucleation and 

destruction of excitons, V is the volume of the crystal. 

Partial Green function N0 can be written as 

( )0 0 0

0 1

( )
( ) (0, ) (0,0)

N N N

H V
D t i T B t Bσ σ σ

+

+
= − ɶ ɶ            (2) 

where 0 1 0 1
( ) ( )

(0, ) exp (0)exp
i H V t i H V t

B t Bσ σ
+ +   = −   

   
ɶ

ℏ ℏ
 

are operators in Heisenberg representation; function (2) is 

averaged over the wavefunctions of the Hamiltonian 
0 1

H V+ . 

The spectrum of system (1) can be calculated by the 

method of the motion equations. It is known [13], that the 

operators in the Heisenberg representation obey the motion 

equation 

0 1

(0, )
(0, ),

B t
i B t H V

t

σ
σ

∂
 = + ∂

ɶ
ɶℏ                      (3) 

Using 0H  yields 

1

(0, )
(0) (0, ) (0, ),

B t
i E B t B t V

t

σ
σ σ σ

∂
 = +  ∂

ɶ
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Differentiation of 0( )
( )

N
D tσ  with respect to the time results 

in 
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0
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After summation of the arithmetic progression, it can be 

written 

0( )

0 0 0 0
(0) ( 1) ( ) ! ( )

NQ
i N E N N D t N t

t V
σ σ δ∂ − − − = ∂ 
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In ω-representation, 

0( ) 0

0 0 0

!
( )

(0) ( 1)

N N
D

Q
N E N N

V

σ

σ

ω
ω

=
− − −ℏ

          (6) 

Thus, the energy of 
0

N  condensate excitons has the form 

0 0 0 0(0) ( 1)N

Q
E N E N N

V
σ= + −              (7) 

So, the chemical potential of the system µ  can be easily 

found, being determined by 

0 01 0(0) 2N NE E E Qnσµ +≈ − = +             (8) 

at zero temperature, where 1

0 0n N V −=  is the density of the 

condensate particles. The energy per a volume unit is 

0 2

0 0
lim (0)

N

V

E
n E Qn

V
σ→∞ = +                (9) 

It is obvious that in the case of repulsion between the 

excitons, 0Q < . So, (0)Eσµ < . 

It should be noted that the results analogous to (9) and (10) 

were reported in [14]. But the use of technique by S.T. 

Belyaev С.Т. is hardly possible in our case, because the state 

of condensate characterized by the kinetic momentum 0k =  

is not the ground state of the crystal. 

3. Spectrum of the System with Bose-

Condensate of Excitons 

First we should consider, how the polariton spectrum can 

be calculated with using Green function. As mentioned above, 

the problem is solved by Bogolyubov-Tyablikov transform 

with account of two-body interaction only. 

The quadratic Hamiltonian of the system of the crystal and 

the field of transverse photons is written in the form 

0 1
H H V= +                                    (10) 

where 

0

, ,

( , ) ( ) ( ) ( ) ( ) ( )j j

k j k

H k j a k a k E k B k B kµ µ µ
µ

ω + += +∑ ∑ℏ     (11) 

is the zero Hamiltonian, k
�

 is the wavevector, j is the number 

of photon polarization, µ is the number of the exciton branch, 

, , ,a a B B+ +  are the field operators of photons and excitons, 

respectively, , Eωℏ  are the spectra of photons and excitons, 

1

, ,

2

0
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4
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∑
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 (12) 

0
ω  is the plasma frequency. 

We consider Green function 

1 1

2 2
0 1

1 1 2 2 1 1
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where 

0 1 0 1
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j j
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a k a k
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Т is the operator of chronological ordering, the average is 

performed over the ground state of Hamiltonian 
0 1

( )H V+  

(10). Proceed to the representation of interaction, (13 ) can be 

rewritten as 
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1 1

1

2 2
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where index св means that only bound diagrams should be 

accounted in (14) 

1

1
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V
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        (15) 

The operator )(1 tV  is found with substitution of ( )ja k  

and ( )B kµ with ( )ja kt  и ( )B ktµ  in (12). In (14), the 

exponent is expanded into a series to be summarized. The 

procedure is illustrated in Fig 1. 

 

Fig. 1. Dashed and solid lines are related to zero Green functions of a 

photon and an exciton, respectively, the criss-cross represents the top of 
2 1

0
(2 )kcω − , the dots denote ( )T kjµ . 

As a result, in ω representation, 

(1)( ) ( ) ( ) ( ) ( )G kj D kj D kj kj G kjω ω ω ω ω= + Π        (16) 

where ( )D kjω  is the zero Green function of a photon. 

The solution of ( ) has the form 

(1)
2 2

2 ( )( )
( )

1 ( ) ( ) ( ) ( )

j

j

kD kj
G kj

kj D kj kj k

ωωω
ω ω ε ω ω ω⊥

= =
− Π  − ℏ

 (17) 

The poles (17) determine the spectrum of the system 

characterized by Hamiltonian 
0 1

H V+  (10). So, 

2 2
( ) ( ) 0

j
kj kε ω ω ω⊥ − =                        (18) 

The spectrum coincides with the spectrum of polaritons 

obtained in [12] by Bogolyubov-Tyablikov transform. 

At ρω ω→ , where ρ  is the number of the polariton 

branch, 

)(
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c
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An analogous spectrum can be obtained, if the following 

Green function is calculated 

1 1

2 2
0 1

1 1 2 2 1 1

2 2
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H V
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ɶ ɶ

ɶ ɶ
   (20) 

The process of summation is presented in Fig. 2. 

 

Fig. 2. Dashed and solid lines are related to zero Green functions of a 

photon and an exciton, respectively, the criss-cross represents the top of 
2 1

0
(2 )kcω − , the dots denote ( )T kjµ . 

The resulting Fourier transform of the diagonal matrix 

element of (20) can be written in the form 

2 2 2

0

2 2 2 2 2

2 ( ) ( )
( )

( ) ( ) ( )

E k kj
G k

E k kj jk

µ

µ

ω ω ω
µω

ω ω ω ε ω
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   − −   

     (21) 

The poles ( )G kµω  coincide with the poles of ( )G kjω . 

When ω  is close to ρω , approximate ( )G kµω  looks like 

[ ] )(
)jk(

)jk()k(E

)kj(T)k(E
\)k(GsRe)k(G

ωω
ω

ωεω
ωεω

µ
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ωω
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ρ
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ρρµ

µ
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−





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



∂
∂+−

=
−

=

=

⊥
⊥

2

81

22

2

                      (22) 

To find the spectrum of the polariton system, when Bose-

Einstein condensate of exciton is present in the crystal, the 

Hamiltonian with the three-body terms should be 

diagonalized. The Hamiltonian has the form of 
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        (23) 

It should be noted, that in this case, the canonical 

transformation, that allows a similar procedure, is absent. 

However, the re-normalized spectrum of the system can be 

found by calculation of the poles of the succeeding (N0 +1)–

body Green function 

1 1

0 0 1 2 3

2 2
0

( 0 0) ( ) ( )

(0, ) (0,0) ( 0) ( 0)

j j

св
N N V V V
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 = − + − 

 − + 

 

After the expansion of the evolution operator into a series, 

it is necessary to sum up the quadratic terms, to transit to the 

polariton variables and to perform diagonalization with 

respect to the three-body terms of the Hamiltonian (23). The 

described procedure is illustrated in Fig.3. It should be noted 

that two virtual processes should be accounted in the course 

of diagonalization. The first process includes the destruction 

of a polariton and the creation of a polariton and a 

condensate exciton (an analogue of Raman scattering). The 

second process implies the destruction of a polariton and a 

condensate exciton and the creation of a polariton. 

 

Fig. 3. To circle and square represents the tops of R(µjkq) and R*(µjkq). 

In an analytical form, the result can be written as follows 
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The resulting equation allows the spectrum calculation: 
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Fig. 4. Spectrum polariton in the presence of BEC excitons. 

Let us suppose that the branches of ( )kρω  are far from the 

σ band with the condensate excitons. So, function 

)k(GsRe µω  can be treated as a constant. In this case, each 

branch of ( )kρω  is split into three curves. One of the 

branches will coincide with the original one (solid lines in 

Fig.4), the rest of them (dashed lines in Fig.4) are located 

above and below by the value determined by the combination 

of Eσ  and )k(GsRe)jk(R µωσ 02 2 . The less the difference 

between the magnitudes, the closer the branches. It should be 

noted that a part of the bottom branch from 0 to k0 is negative 

and it should be omitted, being not physical. 

When the Bose-Einstein condensate of excitons is located 

near the upper polariton branch, the magnitude of the 

effective three-body interaction will vary, with the maximum 

achieved at k=0 due to the presence of the resonance 
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denominator in )k(GsRe µω . When the effective interaction 

increases, the levels approach each other, as shown by the 

dots in Fig.4. 

4. Conclusions 

It has been shown that the fact of formation of BEC 

excitons can be confirmed by the detection of the changes of 

the polariton spectrum. 
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