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Abstract: Process of four-particle light scattering in molecular crystals with participation of the exciton Bose-condensate is 

considered. The intensities and tensor of scattering are found for this effect. The frequency and polarization characteristics of 

this process are studies. It is shown that the investigation of the spectrum shapes of scattered radiation allows one to find and 

prove the existence of the Bose-Einstein condensate of excitons. 
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1. Introduction 

Effect of condensation of Bose particles in pulse space was 

predicted by Einstein in 1924-1925 [1, 2]. For the first time, 

the effect was experimentally detected in 1995 [3-5] in 

atomic Bose gases. As a result of this outstanding 

experiment, a branch emerged that dealt with studying of 

Bose-Einstein condensation (BEC) in gases. As a 

consequence, interesting effects were found: stimulated 

reinforcement (“atomic laser”), vortex structures [3-5] etc. 

The existence of three types of the systems associated with 

possible BEC was predicted [6]. The first type included the 

systems where BEC resulted in macroscopic filling of the 

lowest single energy state. The systems of the second type 

were characterized by discrete continuum and a finite number 

of the lowest states. In this case, BEC proceeds in two stages. 

First, at some temperature, all the states of the system were 

filled. At the further temperature drop, BEC took place in the 

lowest state. The third type of the systems was also 

characterized by two-stage BEC. At the beginning, BEC 

occurred in the lowest continuum with the infinite number of 

states that were characterized by macroscopic filling. 

Studying of BEC gases was complicated because very low 

temperatures had to be reached (~ 100 nK), being determined 

by a relatively large weight of gas particles. 

This demerit can be compensated by the study of BEC of 

other Bose particles, e.g. excitons. The mass of quasi-

particles is four-order smaller, so BEC can be registered at 

much higher temperature. Powerful sources of coherent 

radiation provide a possibility of formation of the exciton 

density about 10
17

 – 10
18

 cm
-3

 that makes the collective 

properties substantial. As exciton excitations of a crystal can 

be treated as bosons with a reasonable degree of accuracy, 

Bose-Einstein condensation (BEC) should be detected at low 

temperatures and repulsive excition-exciton interaction when 

the values of the wave-vector 
�
k  correspond to the energy 

minimum [7]. Later a number of papers was published that 

were aimed at detection and testing of BEC excitons. In the 

pioneer works, emergence of a narrow luminescence peak 

was the main evidence of detection of the condensate. But 

the application of this method to three-dimensional crystals 

did not resulted in reliable identification of BEC because of 

short lifetime of excitons. This fact did not allow 

accumulation of sufficiently large amount of quasi-particles 

in the lowest state. The main factors reducing the lifetime 

were various non-radiative relaxation processes. In order to 

extend the lifetime of quasiparticles, attempts of forming 
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BEC within quantum confinements or in composite 

sandwich-like materials were made. For most experiments to 

date, exciton-polariton condensates are produced at 

cryogenic temperatures in the vicinity of ~ 10 K using 

materials such as GaAs and CdTe. However, using other 

materials such as GaN, ZnO, and organic semiconductors, 

polariton condensates at higher temperatures including room 

temperature have been also realized [8-11]. Theoretical 

works dealing with the problem of detection of exciton BEC 

were mostly concerned with the spectrum calculations and 

the following conclusion about the position of the 

luminescence line and the shape of the tails [12, 13]. In [12], 

incorrect application of Belyaev method was made [14], that 

was valid only in the case when the condensate was the 

ground state of the system and BEC of excitons was an 

excited state. The list of possible candidates able to 

demonstrate BEC was recently supplemented with a new 

type of quasiparticles [15]. In particular, it was shown [16] 

that in the case of a two-dimensional system of spin-less 

electrons under quantum Hall effect, so-called composite 

particles (CP) could emerge. These objects are point vortices 

fixed to a bare particle. At certain conditions, CPs obey Bose 

statistics and BEC can be realized. Review [17] was focused 

upon several physical phenomena exhibited by 

excitonpolariton condensates. In particular, the topics related 

to the difference between a polariton BEC, a polariton laser, 

and a photon laser, as well as physical phenomena such as 

superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-

Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics 

were examined. The physics and application of engineered 

polariton structures was also discussed. The results of 

studying of BEC excitons form the basis of application of the 

effect. In particular, a possibility of the existence of an 

exciton dielectric [18] and the related double-wire 

superconducting line [19] is predicted 

Having regard to the above, the existence proof of BEC 

requires additional methods beside luminescence. The related 

opportunity exists because BEC of excitons interacts with 

other subsystems, e.g. phonon and photon ones. As a result, 

the spectrum of the elementary excitations is modified. It is 

demonstrated in [15] that the presence of BEC excitons 

makes possible the appearance of additional polariton states. 

In [20], acoustic methods of testing are suggested to be 

applied. In particular, it is shown that unusual behavior of the 

absorption coefficient of surface acoustic waves is 

determined by BEC exciton gas. Besides, various non-linear 

optical effects can be used [21-23]. They provide BEC 

detection at the state of 0k = . These states cannot irradiate 

because the use of luminescence implies 0k ≠ . But an 

exciton can be drawn out of this state by means of various 

non-linear processes. In particular, in [23, 24], a method of 

double-photon recombination is developed. The main idea is 

radiation of two excitons characterized by the opposite 

impulses of the same moduli. In the present work, one on 

numerous non-linear processes is suggested to be applied to 

the testing and identification of BEC excitons. BEC excitons 

associated with both zero and non-zero impulse can 

participate in the process. 

2. Theoretical Background 

Consider a cubic molecular crystal with one molecule in 

the unit cell. Assume that a Bose – Einstein condensate 

(BEC) of excitons has been created in the crystal on branch σ 

for 0k = and at the temperature of 0K. The energy per one 

BEC quasiparticle [20] is equal to the chemical potential µ . 

Let us investigate a process of nonlinear scattering when a 

polariton of energy 
1

11 ( )
�

ℏ E kρω ≡  and a condensate exciton 

are annihilated, while a scattered polariton 
2

22 ( )
�

ℏ E kρω ≡  

and a supracondensate exciton are born at branch ν . The 

process is represented in Figure 1, where the wavy lines 

stand for polaritons, while the dotted and solid lines 

correspond to the condensate and supracondensate excitons. 

 

Figure 1. The scheme of the four-body process. The wavy lines stand for 

polaritons, while the dotted and solid lines correspond to the condensate and 

supracondensate excitons. 

The problem could be solved within the framework of 

exciton – polariton Hamiltonian which takes into account the 

summands of the third and fourth order terms in operators of 

quasi – particle generation and annihilation. However, the 

use of interaction constants shown in [25, 26] gives a very 

bulky scattering tensor. To simplify the tensor, the method of 

acting field was applied [27, 28]. 

As known [29], in molecular crystals, the electronic 

molecular escitations obey the Pauli statistics. But after the 

transition from the Pauli operators to Bose operators with 

using the procedure developed in [30], the Hamiltonian of the 

system composed by the crystal and the field of transverse 

photons can be represented as 

2

2 20 0

2 2

1

2 4

,
8

�� ��

n f nf cnf

v
H p A q V

c

E H
dV

ω ω
π

π

   = − + + +   
   

 ++   
 

∑

∫

      (1) 

where ,
�� �

nf nfp q  are generalized momentum and the 

coordinate of molecular cell of number n, which are 

expressed through Bose operators 
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here 
�

nfe  is the unit vector; 0ν  is the volume of a crystal unit 

cell; 0ω  is the plasma frequency, fω  is the oscillation 

frequency of number f ; cV  is the Coulomb interaction 

between the molecules in the dipole – dipole approximation 

[28];
��

nA  is the vector potential at site n; ,
�� ���
E H are the 

densities of electrical and magnetic field of the external 

electromagnetic wave, respectively. It should be noted that in 

the Hamiltonian (1), the kinematic interaction [29] is not 

taken into consideration due to non – Bose elementary 

excitations. Such an approximation is justified for the case of 

four – particle processes only for specially taken resonance 

conditions that will be discussed further. If (1) is subjected to 

canonical transformation of the form [31] 

' 1,H UHU −=                               (2) 

where 

exp
�� ��

ℏ
nn

n

i
U d A

c

 
=  

 
 
∑                         (3) 

and 

0
0

4

�� �

n nf

f

v
d qω

π
= ∑                        (4) 

is the dipole moment of site n, the Hamiltonian of a cubic 

crystal can be represented as [32] 

( )

( )

2 2 2

2 2

2

1

2

4 2
.

8 3

ɶ

��� � ���

�� ��

nf f nf

nf

L NL ef
nnL

n

H p q

D H
dV d E

ω

π π
π

= + +

 − Ρ + + − Ρ − 
 
 

∑

∑∫
 (5) 

In (5) the following designations are introduced: 

0 0

4

�� ���ɶ
nnf nf

v
p p A

c

ω
π

= −                            (6) 

is a new generalized momentum; 
���
D  is the vector of 

electrical induction; 
�

LΡ  is the linear part of crystal 

polarization shown by the expression 

( ) ( ),
� � �� � �

L nn

n

r d r rδΡ = −∑                       (7) 

��NL
nd is the nonlinear part of the dipole moment); 

0

4ef ij j
ni ni nm m

m

E E Q d
v

π= − ∑                    (8) 

is a field acting on the molecule, 
��

nE  is the external field 

density at site n;  

1

2

exp ( )

( ) ( )1 1

3 3( )

�

��

� � �

� �� � ��

� ��

ij
n mnm

k

i j

ij ij

g

Q N ik r r

k g k g

k g
δ δ

−  = − × 

  + + 
 × − − 

+    

∑

∑
      (9) 

is the coefficient of the internal field [28]; indices i, j run 

independent of x, у, z values; the summation over 
�
k  and 

��
g  

in (9) is done for the first Brillouin zone and in other zones, 

respectively. 

Within the secondary quantization, the first two summands 

of expression (5) are reduced to diagonal type by transition to 

the states of mechanical excitons [29] and then to polaritons. 

In this case, the last summand of (5), which in the 

approximation of secondary quantization is cubic over the 

operators of quasi – particles, takes the form  

{

}

1 2 31 2 3 1 2 3

1 2 3

1 2 3

1 2 31 2 3 1 2 3

3

(1)2
1 2 3

(2)
1 2 3

( , , )

( , , ) . .
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� � �
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III

k k k

k k k

k k k

H N R k k k A A A

R k k k A A A э с

α α α α α α

α α α

α α α α α α

− += +

+ +

∑
 (10) 

The indices of α run all values corresponding to branches 

of polaritons �
k

A ρ and mechanical excitons �
ks

A . Later on, 

from the whole set of the constants 
(1)R  and 

(2)R , only 

1 2

(1)
s s

R ρ , 
1 2 1

(1)
s

Rρ ρ  and 
1 1 2

(1)
s

R ρ ρ  are required, which are written 

down in the following form: 

( ) 2 3 1
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�
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1
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∑
 (13) 

where 
1 2s sd is a matrix element of the operator of dipole moment 

over the states of mechanical excitons; 
�
�

kρε  is the vector of the 

electric intensity for a polarition wave in the crystal [29]. 
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As the effect is a four – body one, then the summands 

which are cubic over the operators of quasi – particles will 

contribute to the effect of the second order of the perturbation 

theory, while the fourth – order summands are associated 

with in the first-order one. 

The process is schematically shown in Figure 2. Here the 

dotted and the straight lines show the condensate and 

supracondensate excitons, while the wavy line expresses the 

polaritons. On the supposition that one of the following 

resonance conditions is satisfied: 

1 0

1 1 0

2 0

22 0

1) ~ ,

2) ( ) ~ ,

3) ~ ,

4) ~ ( )

s

s

E E

E k E

E E

E E k

σ

ρ σ

σ

σ ρ

ω

ω
ω

ω

+

+

−

− −

ℏ
�

ℏ

ℏ
�

ℏ

.                (14) 

In this case the dominating contribution to nonlinear 

scattering will be formed by the cubic summands of the 

Hamiltonian (10) in the second order of the perturbation 

theory, while the contribution of the fourth – order summands 

may be neglected, a part of which is determined by the 

kinematic interaction. 

 

Figure 2. Thescheme of the four-body process sin the first and second order 

of perturbation theory. The wavy lines stand for polaritons, while the dotted 

and solid lines correspond to the condensate and supracondensate excitons. 

Now the energy flow of scattered radiation S should be 

found. Two different situations are considered. 

1) Let in the final state, alongside with the polariton, a 

mechanical exciton on branch ν emerges. The energy of the 

exciton does not depend on the wave vector [28]. Then, for 

the energy flow of the scattered radiation to the unit solid 

angle dΩ, the following expression is written: 

1 21 2

2

0 1 2 1 2

1 1

( , ) ( , ) ,� �

l l

jnm i
ij k k

n m ij

S
IVn A a

ϖ ν

ρ ρω ω ω ω ε ε
= =

∂ =
∂Ω ∑∑∑  (15) 

WhereI is the intensity of monochromatic pumping of 

frequency 1ω ; 0n  is the exciton density in the condensate; 

,l lσ ν  is the degeneracy multiplicity for the initial 

(condensate) and final (supracondnsate) excitonic states, 

respectively; ω2 is the scattered radiation frequency which 

satisfies the law of momentum conservation  

1 2
1 21 0 2 ( )

( ) ( ) ;� �

� �
ℏ ℏ

k k
k E k Eσ νω ω −+ = +         (16) 

3 2 2
2 0 2

1 2 2 2
1 1 2

4
( , ) ,

ℏ

v n
A

v v c

ωω ω
ω

=                     (17) 

, ( 1,2)i in v i =  is the index of refraction and group velocity of 

the wave at frequency iω ; 
nm
ija  is the scattering tensor; 

indices n and m characterize the initial and final states, 

respectively. 

2) The both quasi – particles emerged at the final state are 

polaritons. Similar to parametric luminescence or generation 

of the second harmonic [25], the flow of energy of scattered 

radiation will highly depend on the scattering angle. Thus, 

the phase synchronism conditions should be taken into 

consideration. 

Let an isotropic crystal be cut out in the form of a parallel-

sided plate of small thickness along OZ axis. Vector 

1 2 3

� � �
k k k− =  is directed along the same axis. Then, the 

expression for the energy flow of scattered radiation to the 

unit solid angle dΩ  in the spectral interval from 2ω  to 

2 2dω ω+  is written as follows 

1 2

3

2
0 1 2

1 2
2 1

2

2
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( , ) *

2
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2
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� �
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a
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k

σ

ρ

ω ω
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ω π =

∂ =
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∆ 
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 

∆

∑∑
 (18) 

where , ,x y zL L L  are linear dimensions of the crystal along 

axes OX, OY, OZ, respectively; 
3

vρ  is the group velocity of 

the polariton associated with wave vector 3

�
k ; 

1 2 3

� � � �
k k k k∆ = − − . For the first resonant situation, tensor 
nm
ija  can be represented as 

1 0

(1) .
ℏ

i j
nm ns sm
ij

ss

d d
a

E Eσω
=

− −∑                  (19) 

For other resonant conditions we have 

( ) ( )( )
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1 21 11 2

2
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2 2 2 2 2
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4
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� �ℏℏ
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0 2
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ℏ
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− +∑                 (21) 
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0 0
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∑
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Let us investigate the tensor of nonlinear scattering. Now 
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the theoretical group analysis of tensor 
nm
ija  is performed. 

Suppose that there is the first resonant situation described 

above. Then (1)nm
ija  can be represented in the form 

( )1 0(1) | |ℏ
nm i j
ija n d E d mϖω=< Λ + >             (23) 

where 

| |
( ) .ℏ

ℏss

s s

E
ω

ω
><Λ =
−∑                           (24) 

In the limit 0
�
k → , operator Λ  is invariant with respect to 

the point group of the crystal. This group is a quotient group 

of the space group of the crystal with respect to the 

translation subgroup. Thus, it is convenient to represent 

tensor (1)nm
ija  in the form 

(1) ~nm
ij n ij ma a dσ νψ ψ τ∫                           (25) 

where ija  is a tensor of rank two; ,n m
σ νψ ψ are the n-th and 

m-th basic wave functions of representations σΓ  and νΓ , 

respectively. Non-zero expression (25) is realized only if 

tensor ija  contains a function transformed in the same way as 

product n m
σ νψ ψ . As the systems of functions 

1 2, ,..., lσ

σ σ σψ ψ ψ , and 1 2, ,..., lν

ν ν νψ ψ ψ , are the basic functions of 

irreducible representations σΓ  and νΓ  respectively, then 

their products are the basis in the general case of a reducible 

representation of dimension l lσ ν  These products are 

irreducible when at least one of lσ  or lν  equals unity. In this 

case, products of the type n m
σ νψ ψ are basic functions of an 

irreducible representation αΓ  determined by the relation 

σ ν αΓ ×Γ = Γ                              (26) 

Projecting tensor ija  onto the basic function of 

representation αΓ , one can determine nonzero components 

of the first summand in expression for (1)nm
ija . 

Now, let both representations σΓ  and νΓ  be other than 

one–dimensional. In this case, the set n m
σ νψ ψ  should be 

expanded in basic functions of irreducible representations 

according to formula [33]. 

,

n m s

s

σ ν α

α
ψ ψ ψ=∑                             (27) 

where 

( )( )* ˆ ,s ss n m

G

l
G G

g

α α σ ναψ ψ ψ= ∑                 (28) 

g  is a number of group elements; Ĝ  is a symmetry 

operation; 
( )
ssG α

 are diagonal elements of transformation 

matrix. Next, as follows from (25) and (26), it is necessary to 

project ija  on every function s
αψ  (27) and to add the 

produced matrices together. 

Tensor (3)ija  (21) is analyzed in the same way. 

Now it is assumed that only the second resonant situation 

is correct. In this case, tensor (2)nm
ija can be represented as  

( )
1

2

1 1 0

| | 0 0 | |
(2) ~

( )

�

�
ℏ

i l l j l

knm
ij

l

n d d d d m
a

E k E

ρ

ρ σρ

ε

ω

< >< >

− −∑  (29) 

As follows from (29), (2)nm
ija is a convolution of two 

second-rank tensors projected on the irreducible 

representation σΓ  and νΓ , respectively. The appropriate 

tables are given in [34]. Analysis of (4)nm
ija should be done 

in the same way. 

As an example, the scattering in crystal of symmetry hT  is 

considered. Let | n >  and | m >  be transformed as the Х - th 

component of the axial vector. Then, product | |n m> >  is 

also transformed as | n > , and tensor (1)nm
ija  will have the 

form [27] 

0 0 0

0 0

0 0

a

a

 
 
 
 
 

                                      (30) 

To establish the type of (3)nm
ija , it is necessary to find the 

square of matrix (30). Thus,  

0 0 0

0 0

0 0

b

b

 
 
 
 
 

                                     (31) 

As seen from (30) and (31), the form of the scattering 

tensor is varied under different resonant situations. 

3. Some Corollaries of Laws of 

Conservation for a Four – Body 

Process 

As follows from expression (18), in the case when 

condensate and supracondensate quasi – particles are at the 

upper polariton branch, the energy flow of scattered radiation 

will be maximal if the laws of conservation operate 

simultaneously. 
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Taking into account [29] that
�

i
i ik n

c

ω
=  (where 

( )i in n ω= is the index of refraction at the appropriate 

frequency), from system (32), scattering angle θ  is found, 

which satisfies the conditions of phase synchronism 
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ω ω
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In (33), nσ  corresponds to frequency 
3

1 �ℏ
k

Eσ σω −= . 

3 0
�
k

E Eσσ >  then in direction of the maximal intensity of 

scattered radiation, the scattering spectrum is similar to that 

represented in Figure 3, where I is an intensity of scattered 

radiation; lines of frequencies 
1

1( )ℏEνω −−  and 2ω  respond 

to ordinary combination scattering and condensate – aided 

scattering, respectively. Moreover, due to the δ  - shaped 

function of the condensate exciton distribution over the quasi 

– impulses, there is a coincidence in the spectral forms of 

incident and scattered radiation, in the case of narrow band 

pumping. 

 

Figure 3. Frequency spectrum of the process. I  is the intensity of the 

scattered radiation; the lines at the frequencies of 
1

1( )ℏEνω −−  and 2ω  

are associated with conventional combination scattering and scattering with 

the condensate involved. 

Now the case is considered when an exciton originates in 

the final state. In the crystal, the energy of real excitons 

depends on the wave vector. Therefore it is necessary to take 

into account the presence of synchronism and to determine 

directions of the largest energy transformation by using the 

system (32). To be definite, it is assumed that the law of 

exciton dispersion is parabolic, i.e. 

2 2

( ) (0) ,
2

� ℏ q
E q E

m
= +                      (34) 

where m  is effective mass. For polaritons, the relation 

1
�
k cnω −=  is still used 

 

Figure 4. Spectrum in the case of 0
�
q

E Eσν < . 

Let us study some cases. 

1. Condensate and supracondensate excitons belong to 

different branches σ  and ν . According to the law of energy 

conservation, for 0
�
q

E Eσν > , the scattering spectrum will 

look like that of Fiure 3. For 0
�
q

E Eσν < , the spectrum is 

shown in Figure 4. 

Similar to the effect of second – harmonic generation [35], 

the cases of collinear and vector phase synchronisms are 

probable. Let us first consider the collinear phase 

synchronism. 

1. Forward scattering. In this case, the wave vectors of 

pumping and of scattered radiation are collinear and 

unidirectional. Then, by elimination of one equation from 

system (32) with condition of (34) taken into account, we 

have 

[ ]
2

2

1 1 2 2 1 2 0 02

2
( , ) ( , )

mc
n n E Eσ νω θ φ ω θ φ ω ω− = − + −   ℏ ℏ

ℏ
 (35) 

where θ  and φ  are polar angles characterizing the direction 

of wave vectors. In formula (35), the left – hand part is a 

function of θ  and φ , while the right –hand one is not. As, in 

the general case, ( , )n θ φ  is a rather complex surface, it is 

clear that (35) will be satisfied only in preferred directions of 
�
k  that should be calculated for each crystal with using 

parameters determining the shape of the surface of indices. In 

a cubic crystal, the surface ( , )n θ φ  is spherical and equation 

(35) can only be exceptionally satisfied for specially selected 

values of 1 2 0, , Eσω ω . 

2. Back scattering. Wave vectors 1

�
k  and 2

�
k  are collinear 

as well but their direction is opposite. From (32) after simple 

transformations, we have  

[ ]
2

2

1 1 2 2 1 2 0 02

2
( , ) ( , )

mc
n n E Eσ νω θ φ ω π θ π φ ω ω+ − − = − + −  ℏ ℏ

ℏ
                                    (36) 

(36) and (35) are satisfied only in certain directions. Hence, in cases of collinear arrangement of wave vectors 1

�
k  and 2

�
k , 

the intensity of scattered radiation will be essentially dependent on the angles between 1

�
k  and optical axes.  
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It should be noted that in the case when the energy of a “supracondensate “exciton is independent of the wave vector, i.e. 

m = ∞ , the system of equations (32) has got the solution for any directions of incident and scattered radiation. 

3. Vector synchronism. In this case, the solution of system (32) is of the form 

1 22 1
2 1 2 0 1 1 2 2

1 2 1 2

( ) ( )2
sin

2 4

E n nmc

n n

σ νω ω ω ω ωθ
ω ω

−−  + − − − −=  
  

ℏℏ

ℏ
                                                   (37) 

To study the nonlinear effect in cubic crystals, equation 

(37) was used for finding the scattering angles. Let the 

frequency of incident radiation be 
15 1

1 3.66 10 smω −= ⋅ . Then, 

for crystals of ZnTe type (where n=3.23; 
282.83 10m g−= ⋅ ; 

15 13.61 10 smσω −= ⋅ ), the following results are obtained (see 

Table 1). 

Table 1. The dependence of the scattering angle of the frequency vector in 

synchronism. 

θ (degree) 15 1
2 10

−⋅ smω  θ (degree) 15 1
2 10

−⋅ smω  

24,08 3.66215 102.04 3.6615 

34,4 3.66210 154.8 3.6611 

49,3 3.6620 169.7 3.66105 

As it can be seen from the table, the scattering angle is 

highly dependent on frequency 2ω , i.e. the scattered radiation 

is very much dispersed. 

II. Condensate and supracondensate excitons are at 

identical branches.  

The case of m = ∞  is excluded. If this requirement is 

satisfied, then, as it follows from the first equation in (32), 

1 2ω ω=  and the line with the participation of condensate 

would coincide with the Rayleigh one. Suppose that 

/ 0E qν∂ ∂ > . Then the scattering spectrum will be similar to 

that in Figure 3. Analogously to it. 1, system (32) not always 

has got the solution in this case. The angles associated with 

the collinear phase synchronism with forward and backward 

scattering are determined from equations (35) and (36). In the 

right - hand parts of those equations, it is assumed that 

σ ν= . When / 0E qν∂ ∂ < , the spectrum is similar to the 

represented in Figure 4. 

Let the case of “easy” excitons be considered. Then lines 

of 1ω  and 2ω  (Figure 3 and 4) will be very close. They 

could only be distinguished in the case when the frequency 

shift 1 2( )ω ω−  is higher than the instrument resolution ∆ν, 

i.e. when the inequality 

1 2 2 2 2
1 1 2 2 1 2 1 2(2 ) ( 2 cos )ℏ mc n n n nπ ω ω ω ω θ ν− + − > ∆       (38) 

is satisfied. Here θ  is the scattering angle. From (38) it 

follows that the most favorable conditions for the effect of 

nonlinear scattering with the participation of condensate are 

the backward geometry and low effective masses of a 

supracondensate exciton. 

4. Shape of a Scattered Radiation Line 

Above, only the frequency dependence of scattering 

tensors was considered. However, near the bands of exciton 

absorption, the question of the spectral shape of scattered 

radiation line becomes very important. 

As it is known [36], within the interaction representation, 

time dependence of probability amplitudes in state | n >  is 

determined by the formula  

1
( )

( ) ( )
ℏ

ℏ n mi E E t
n nm m

m

i b t V b t e
−−=∑            (39) 

where nmV  is a matrix element of perturbation operator; t  is 

time. Suppose that the first resonance situation is valid. Then 

the effect goes as follows: first, condensate exciton 0Eσ and 

polariton 1ℏω  are annihilated. Because of this fact, a 

mechanical exciton 
1s

E  is created. After that it is 

decomposed to polariton 2ℏω  and exciton sE . In this case, 

the energy 1 0ℏ Eσω +  coincides with that of mechanical 

exciton 
1s

E . To solve (39), we use a Fourier transform 

( ){ }1
0

1
( ) ( ) exp

2
ℏn n nb t dEG E i E E t

iπ

+∞
−

−∞

= − −∫          (40) 

For convenience, the multiplier 00G  is separated, then  

0 0 00( ) ( ) ( ) ( ) ( 0)n n nG E u E G E E E nς= − ≠           (41) 

where 

( ) ( )
P

E i E
E

ς πδ= −                                (42) 

P means that the corresponding expression is taken in the 

sense of the principal value. For function 0nu , the relations 

resulting from substitution of (41) into (40) are valid: 

1 1 1 1 1 2 2 2

2

, , , 0 ( ) ( ),s s s s s s

s

u H H u E E Eσρ σρ ρ ρ ρ
ρ

ς= + −∑     (43) 

2 1 2 1 1 1 1, , , ( ) ( )s s s s su H u E E Eρ σρ ρ σρ ς= −               (44) 

Substituting (44) into (43), we find 

2 1 1 1 1 1 1, , ,( ) ( ) ( ),
2

ℏ
s s s s

i
u E H u E E Eρ σρ σρ σρ

γ ς= − −      (45) 

where 

2 1 2

2

2

,( ) ( ).
2

ℏ
s s s

s

E i H E Eρ ρ
ρ

γ ς= −∑             (46) 
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Multiplying (45) by 
1s

E E− ,  

1 1 1

1 1

1

,

,

( )
( ) ,

( ) ( )
2

ℏ

s s

s

s

E E H
u E

i
E E E

σρ
σρ

γ

−
=

− +
              (47) 

and from (44) 

2 1 1 1

1 1

1

, ,

, ( ) ,

( ) ( )
2

ℏ

s s s

s

s

H H
u E

i
E E E

ρ σρ
σρ

γ
=

− +
               (48) 

Hence, for t → ∞   

1 1 1

1

1 1 1

, ( )
( )

( )
2
ℏ

s s

s

s s

u E
b

i
E E E

σρ

σρ

∞ =
− + Γ

                 (49) 

2 1 2

2

2 1 2

, ( )
( )

( )
2
ℏ

s s

s

s s

u E
b

i
E E E

ρ σρ ρ
ρ

ρ σρ ρ

∞ =
− + Γ

              (50) 

Where 

2 1

1 1

1 1
1

1 0 1

2

,

, ,

( )
2

( )
2

ℏ ℏ

ℏ

ℏ

s s

s

s
s

E E E E

H
E i

i
E E E

ρ σρ σ

σρ

ρ

ω ω

γ

= + = +

Γ =
− +

∑
         (51) 

With (50) squared, the scattering probability is 

2 1 1 1

2

2 1 2 2 1 2

2 2

2 , ,

2 2
( )

( ) ( )
2 2

s s s

s

s s s s s

H H
b

i i
E E E E E E

ρ σρ
ρ

ρ σρ ρ ρ ρ

∞ =
   − + Γ − + Γ      

ℏ ℏ

                                  (52) 

As it follows from (43), for 
1

~ sE E , magnitude γ  is, in 

fact, a probability of decomposition of exciton 
1s

E  into 

polariton 2ℏω  and exciton sE . It determines the radiation 

broadening of excitonic levels 1s . Magnitude ( )EΓ  (51) is a 

broadening of 
1

Eσρ  state due to its finite lifetime for 

1
E Eσρ= . It follows that the real and imaginary parts of Γ  

and γ  are responsible for the broadening of the related levels 

and the shifts, respectively. The latter values are not of 

interest. Now, we replace γ  and Γ  with their real parts and 

denote them as γ and Г once again. Then 

2 1 2 2 2 1

2

1 1

1

1

2 2

, , 2

2

,

2 2
2,

2 2
( ) ( ) ( ) ( ),

( ) .

( )
4

s s s s s s s

s

s

s
s

E H E E d d H E

H
E

E E

ρ ρ ρ ρ
ρ

σρ

ρ

π πγ δ ρ ρ ω

γ
γ

= − = Ω Ω

Γ =
− +

∑ ∫

∑

ℏ
ℏ ℏ

ℏ

                           (53) 

Here nΩ  is a solid angle with the emitted quantum nE ; ( )nEρ is the density of states. 

Now two cases are studied. 

1. A crystal is exposed to broad – band radiation of intensity I which is the constant in the region of radiation broadening of 

level s. As I  is constant,

1ρ
∑ can be replaced by the integral. In the limit of 0γ → , with only one levels taken into account, 

we have 

( )
( )

1 1 1 1 1 1

2 2
3 0

1 , , 12 2
1 1

2
( ),

2
s s s

IVnV
d k H E E H

v
σρ σρ σρ

πδ ρ ω
ωπ

Γ = − =∫
ℏ

                                    (54) 

where ( )ρ ω  is density of states; I is primary intensity; 

11 0ℏ sE Eσω = − ; 1v  is the group velocity of polariton ħω1. 

Expression (54) performs the total probability of polariton 

1ℏω  and condensate exciton 0Eσ  absorption per unit time. 

So, Γ  could be considered to be small enough. As follows 

from (52), for small Γ , the first multiplier of denominator is 

a δ - function. Thus, the difference 
2 1

( )sE Eρ σρ−  is different 

from zero only by ℏΓ , i.e. the law of energy conservation is 

valid for scattering. 

Consider now the shapes of absorption and scattering lines. 

For probability of emission, it follows from (52) and (54): 
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2 1

1

1
2 1

2

2 ,

2 2
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s
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H
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E E

ρ
ρ

ρ
ρ

γ
∞ =

− +
∑             (55) 

The expression coincides with the shape of line for 

spontaneous irradiation. For absorption probability we have 

2 1

2

2
2 1

2

2 ,

2 2
2

( )

( )
4

ℏ

s s

s

s s

H
b

E E

ρ
ρ

ρ
ρ

γ
γ

∞ =
Γ

− +
∑            (56) 

As seen from (55), (56) the shapes of absorption and 

emission lines coincide. It can be concluded that when 

primary intensity is a broad – band and constant in the region 

of radiation broadening of the resonance level 
1s

E , the 

process behaves in the same way as in the case of two 

independent processes, i.e. absorption and emission (as 

compared to the shape of the absorbed and emitted lines). 

However, the formula (52) for probability of the process does 

not coincide with the product of emission and absorption 

probabilities, since it does not connect energies 
1

Eσρ  and 
1s

E  

by a δ  - function. 

2. A crystal is exposed to narrow – band radiation, the 

linewidth being small as compared to radiation broadening 

level 1s . Then it can be supposed that the primary intensity is 

nonzero only at frequency 1ω . The intensity of emitted line is 

obtained by making the summation (52) over 1ρ . In 

denominator, the first multiplier is a δ  - function. Hence, 

2 1sE Eρ σρ= . The integration gives  

( )
2 1 1 1

2

1

1 1

2 2

2 1 , ,

2 22
2

1

2 ( ) ( )
( )

4

ℏ
ℏ

s s s

s

s

I n H H
b

v E E

σ ρ σρ
ρ

ρ
σρ

π ω ρ ω

γ
∞ =

 
Γ − + 

  

∑     (57) 

It follows from (57) that as the denominator is constant in 

the area where ( )I ω  is nonzero, the shape of emission line is 

defined by the primary intensity. The emitted line should be 

of the same width as pumping. Thus, it can be concluded that 

during the excitation by a narrow spectral line, the scattering 

process should be considered as a single act, not two 

consecutive independent acts. 

Some other resonant situations could be considered in 

this way. But in the case of conditions №2 and №4, in the 

intermediate state, a polariton wave originates and this fact 

should be taken into account. In those cases, the 

corresponding small denominator is provided by the choice 

of both the pumping frequency and the direction of 

radiation propagation. The value similar to γ  (46) will 

characterize the line shape for a wave originating in the 

intermediate state. 

The calculations similar to the present ones confirm that if 

a narrow – band radiation is falling (incident) on the crystal 

and none of frequencies satisfies the conditions of 

synchronism, the process should be treated as a single one. If 

one of the frequencies satisfies the conditions of synchronism 

and pumping is broad – band and of constant intensity in the  

region of wave broadening in the intermediate state, the 

process should be treated as a cascade one. 

5. Conclusions 

After obtaining of exciton polariton condensates in the 

scientific community, an intense studies both theoretical and 

experimental aspects of this phenomenon are developed [38- 

43]. Experimental observation of the considered four-body 

process in the crystal requires BEC of excitons to be formed. 

At the same time, conditions of collinear and phase 

synchronisms should be taken into account. As a 

consequence of theoretical group analysis of the scattering 

tensor, both dipole excitons that are able to interact with the 

light (polaritons) and dipole-less excitons can participate in 

afour-body process. Besides, detection of BEC in the state of 

k=0 becomes possible, contrary to the case of luminescence 

application. It should be noted that non-linear effects can be 

also applied to the existence proof of excitons BEC in one-

dimensional non-ideal array of coupled microcavities 

containingquantum dots [44] where the minima of the 

polaritons energy in the states of 0k ≠  are identified. 
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