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Abstract: The flow of fourth grade fluid flow over a porous plate with heat transfer is considered. By using the 

perturbation techniques, approximate analytical solutions for velocity and temperature profiles have been obtained. 

Comparing with the Newtonian effect, it turns out that if the second grade, third grade and fourth grade effects are small, an 

ordinary perturbation problem occurs. To find fourth grade fluids, velocity and temperature profiles, which are attained, are 

compared with numerical solutions. The approximate solutions run in well with the numerical solutions. This is to 

demonstrate us that the perturbation technique is a robust tool to find great approximations to nonlinear equations of fourth 

grade fluids. Velocity and temperature profiles are calculated for diverse second grade, third grade and fourth grade non-

Newtonian fluid parameters. 
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1. Introduction 

There is a significant industrial application for the heat 

transfer from the surface such as molten plastics, polymers 

or slurries. Theoretical and experimental studies are used to 

have a better understanding of these applications. 

Mathematical models of these applications classified by 

considerably high non-linear ordinary or partial differential 

equations. There are so many studies as to the Newtonian 

fluids. However, even though non-Newtonian fluids have 

heavily used in the industry and technology, they are not 

sufficiently placed important. Having been developed to 

solve the non-linear equations, Non-Newtonian fluid 

mechanics pose a great opportunity to work on the 

mathematical techniques. There are a great deal of models 

to explain the non-Newtonian behavior of the fluids. The 

power-law, differential-type and rate-type models are the 

ones which are gained much recognition. Boundary layer 

assumptions were successfully applied to these models and 

a lot of work has been done on them. Rivlin–Ericksen type 

of fluids which is a non- Newtonian class has gained 

recognition and is used to solve a number of flow problems. 

So-called ‘Third-Grade Fluids’ or “Fourth-Grade Fluids” is 

a particular type of this class. To explain the non-

Newtonian behavior in fluids, fourth grade fluids are not 

commonly used. 

Rajagopal and Fosdick has developed the theory of third-

grade fluids [1]. Rajagopal [2] studied on the stability 

characteristics of such fluids. Szeri and Rajagopal [3] 

observed their flow between heated parallel plates. 

Rajagopal and Szeri [4] worked on a third grade fluid past a 

porous plate. From ordinary perturbation solutions to 

arbitrary orders of approximation alongside with the 

numerical solutions were submitted for the problem. 

Furthermore, by considering heat transfer, Maneschy et al. 

[5] improved the numerical solutions [4]. A similar study 

work has been done [5]. Using homotopy analysis method, 

they were able to solve the porous plate problem and 

brought forward analytical solutions for the generalized 

second grade fluids. It is not until now, Lie Group analysis 

for the boundary layer equations of the modified second 

grade fluid has been submitted [6]. Using perturbation 

method, Pakdemirli et al. [7] figured out the porous plate 

problem and submitted an analytical and numerical 

solutions of modified second grade fluid model. To solve 

the differential equation, perturbation method is mainly 

used. Massoudi and Christie [8] observed the pipe flow of 

third-grade fluids and figured out the momentum and 

energy equations on a numerical basis. Yürüsoy and 
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Pakdemirli [9] examined the third-grade fluid flow in pipes 

again. They presented a perturbation method and solved the 

flow equations in an analytic manner. To study third-grade 

fluid flow over a porous wall, Hayat et al. [10] incorporated 

Lie Group theory with perturbations. 

By using the perturbation method, approximate 

analytical solutions of fourth grade fluids flow a past 

porous plate with heat transfer are submitted and they are 

compared with the numerical solutions in this study. It is 

presumed that the surface temperature is higher than fluid 

temperature. By keeping the constant viscosity, Fourth-

grade fluid has been applied to explain the non-Newtonian 

effect. Motion equations in dimensionless form are 

originated. Comparing with the Newtonian effect, it turns 

out that if the second grade, third grade and fourth grade 

effects are small, an ordinary perturbation problem occurs. 

For the solution, the validity criterion is determined. For 

various non-Newtonian parameters, velocity and 

temperature profiles are calculated. 

2. Equations of Motions 

Mass conservation, linear momentum equation and energy 

equations are 

0div =V                                      (1) 

1

dt

d
div

ρ
=V

T                                   (2) 

2
p

d
c k

dt

θρ θ= ∇ + ⋅T L                              (3) 

where ρ is the fluid density, k is thermal conductivity, cp is 

the specific heat, V is the velocity vector, θ is the temperature 

and T is the Cauchy stress tensor. We have for the fourth 

grade fluid 
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where p is pressure, I is the identity matrix, µ is the viscosity, 

α1, α2, β1, β2, β3, γ1, γ2, γ3, γ4, γ5, γ6, γ7 and γ8 are the material 

constant. A1, A2, A3 and A4 are Rivlin-Ericksen tensors. The 

tensors are defined as 
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For the model, when αi=0, βi=0 and γi=0, the fluid is 

Newtonian. βi=0 and γi=0 equivalent to the second grade 

fluid, γi=0 equivalent to the third grade fluid. 

For the particular case of flow over a porous plate, it is 

presumed that the velocity components are dependent only 

on the y coordinate i.e. u = u(y) and v = v(y). Considering 

this assumption, from the continuity equation (1) 

0v v= −                                          (6) 

where v0 is a constant which represents the suction (v0 > 0) or 

injection velocity (v0 < 0). Inserting the assumed profiles to 

the momentum and the energy equations yields after 

simplifications 
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where the emerging dimensionless variables and parameters are defined by 
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in which U is a reference velocity, θ0 is the wall temperature, 

θ∞ is the temperature of the free stream and ν=µ/ρ is the fluid 

kinematic viscosity. Pr=µcp/k, Ec=U
2
/cp(θ0-θ∞) are 

respectively the Prandtl and Eckert numbers and bars have 

been suppressed throughout. We will solve equations (7) and 

(8) in the domain y∈[0,∞) with the following boundary 

conditions 
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In following section, by using the perturbation theory 

velocity and temperature profiles are figured out. 

3. Perturbation Solutions 

For the system (7) and (8) with boundary condition (10), 

perturbation solutions will be studied. Under the weakly non-

linear assumption, the non-linear terms as well as the non-

homogenous terms of equation (7) are chosen to be small 

when compared to other terms, that is 

1 1 1 1 1 1
ˆ ˆˆ ˆ ˆ, , , ,α εα β εβ β εβ γ εγ γ εγ= = = = =        (11) 

where ε is the perturbation parameter (ε <<1). The 

approximate velocity and temperature profiles can be written 

as 
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Substituting equations (11) and (12) into equations (7), (8) 

and (10) and separating at each order of ε, one has 
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For the first order, the solutions are 
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Substituting these solutions into order ε equations, one finally obtains 
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Substituting (15)-(18) into the expansions given in (12), returning back to the original parameters since ε is artificially 

introduced, one has 
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Perturbation solutions (19) and (20) will be compared with numerical solution in the following section. 
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4. Numerical Results and Comparisons 

In this section, analytical solutions figures will be 

demonstrated. The perturbation solutions will be compared 

with the numerical solutions of the equations. Matlab 

package bvp4c using of finite difference techniques, is 

applied in numerical solutions. 

 

Figure 1. Comparison of perturbation solutions with numerical solutions for the velocity and temperature variations. (v0=1, Pr=1, Ec=1; γ=0.1, γ1=0.1, 

α1=0.1, β=0.1, β1=0.1). 

 

Figure 2. Effect of suction parameter v0 on the velocity and temperature profiles. (Pr=1, Ec=1; γ=0.1, γ1=0.1, α1=0.1, β=0.1, β1=0.1). 

 

Figure 3. Effect of material parameter α1 on the velocity and temperature profiles. (v0=1, Pr=3, Ec=1; γ=0.1, γ1=0.1, β=0.1, β1=0.1). 
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Figure 4. Effect of material parameter β1 on the velocity and temperature profiles. (v0=1, Pr=3, Ec=1; γ=0.1, γ1=0.1, β=0.1, α1=0.1). 

 

Figure 5. Effect of material parameter β on the velocity and temperature profiles. (v0=1, Pr=3, Ec=1; γ=0.1, γ1=0.1, β1=0.1, α1=0.1). 

 

Figure 6. Effect of material parameter γ on the velocity and temperature profiles. (v0=1, Pr=3, Ec=1; β=0.1, γ1=0.1, β1=0.1, α1=0.1). 
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Figure 7. Effect of material parameter γ1 on the velocity and temperature profiles. (v0=1, Pr=3, Ec=1; β=0.1, γ=0.1, β1=0.1, α1=0.1). 

 

Figure 8. Effect of Prandtl number on the temperature profile. (v0=1, Ec=1; 

β=0.1, γ=0.1, γ1=0.1, β1=0.1, α1=0.1). 

 

Figure 9. Effect of Eckert number on the temperature profile. (v0=1, Pr=3; 

β=0.1, γ=0.1, γ1=0.1, β1=0.1, α1=0.1). 

Figure 1 shows the comparison between the Analytical and 

numerical solutions. The harmony there is very well and 

points equivalent to numerical solutions are demonstrated as 

circles to make a distinction between them. As you can see 

there is a separation between the solutions for high values 

of the material parameters, due to the fact that it is 

presumed that the value of material parameters are very low 

for perturbation solutions. Figure 2 shows the effects of a 

suction parameter on the velocity and temperature profiles. 

The more suction parameter increases, the more velocity 

increases. What’s more, the boundary layer thickness for 

the temperature profiles decreases once suction parameter is 

increased. Furthermore, suction parameter gives way to a 

decrease in thermal and velocity boundary layer thickness, 

as well. Therefore, it is concluded that to control the 

boundary layer thickness, the suction on the plate can be 

useful. As a matter of fact, there is relative interest in flows 

with suction or injection for boundary layer control. It is 

clear when we observe in physical fashion that suction and 

injection give way to opposite effects on the boundary layer 

flows. As we have already observed that the suction causes 

thickening of the boundary layer, when the suction velocity 

is robust in a sufficient manner. For that reason, boundary 

layer thickness decreases if we increase the suction 

velocity. Figure (3-7) shows the effects of materials 

parameters (γ, γ1, α1, β, β1) on the velocity and temperature 

profiles. The effects of materials parameters, both the 

temperature and velocity profiles, have opposite effect on 

that suction velocity, for example, the more velocity and 

thermal boundary layer thickness increase the more 

materials parameters are increased. Figure 8 shows the 

effects of Prandtl number on the temperature profiles. When 

an increase occurs in Prandtl number, it decreases 

temperatures. Figure 9 depicts the effects of Eckert number 

on the temperature. If a decrease occurs in Eckert number, 

it increases temperatures. 

5. Conclusion Remarks 

In this study, a comprehensive perturbation analysis for the 

flow and heat transfer of a fourth grade fluid over a porous 
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plate has been demonstrated. By using perturbation method, 

the considerably high non-linear ordinary differential equations 

are figured out in an analytical manner. When compared to 

other terms, in parallel with the weak non-linear assumption, 

the non-linear terms alongside with the non-homogenous terms 

of equations of motion are chosen to be small. The effects of 

non-Newtonian materials respective parameters on the velocity 

and temperature profiles have been discussed. When we 

examine expressed solutions, they are run well with the 

numerical ones in the scope of the validity of the analytic 

solutions. The effects of materials parameters, both the 

temperature and velocity profiles, have opposite effect on that 

suction velocity, for example, the more velocity and thermal 

boundary layer thickness increase the more materials 

parameters are increased. In conclusion, When an increase 

occurs in Prandtl number, it decreases temperatures, but for 

Eckert number, a reverse effect has been observed. 
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