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Abstract: There are many methods related to data fitting, and each method has its distinctive features. The article discusses the 

method of data fitting function under integral criterion. Since the estimate fitting parameters are complicated, the article 

combines algorithm of simulated annealing and neural network algorithm to solve the integral with neural network algorithm and 

solve the unknown parameters with simulated annealing algorithm. By case analog computation of household per capita 

consumption expenditure of urban and the rural residents in China, it proves that the combination of simulated annealing 

algorithm and neural network algorithm has strong reliability and high accuracy in terms of new method for least absolute 

integral data fitting. 
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1. Introduction 

There are n groups of observational data 

( , ), 0,1, . ,
i i

x y i n= ⋅⋅⋅  and they are the values of n nodes of 

( )f x . 

The form of general linear regression model is 

( , )
i i i

y g x β ε= + , where ( , )g x β  is a fit function, which 

could be a linear function or a nonlinear function. 

1 2( , , , )pβ β β β= ⋅⋅⋅  is a p-dimensional parameter vector and 

ε  is a random error variable which meets 

2~ (0, )Nε σ , ( , )
i i i

y g xε β= −  

There are three frequently-used ε  norms: 
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Apparently, 
1

minε →  pertains to least absolute method; 

2
minε →  pertains to least square method; while 

minε
∞

→  pertains to regression fitting under the least 

most rule. 

Since we have regarded the observational data 

0
( , ), 0,1, . , , ,

i i n
x y i n x a x b= ⋅⋅ ⋅ = =  as the points in the interval 

[ , ]a b  defined by ( )f x , we assume ( ) ( )f x g x、  are all 

continuous functions. Actually what we need is only 

integrabel and the fitting function ( )g x  we are looking for 

are not discrete points. Due to ( ) ( ) ( )e x f x g x= − , and the 

definition is 
1 1

( ( ) ) ( ( ) ( ) )
p pb b

p p

p a a
e e x f x g x= = −∫ ∫ . 

Thus the parameters in ( )g x  have been determined, let 

min
p

e → . 

In general, p  equal to 1, 2, or ∞ . Since we hereby want 

to study the situation in case 1p = , namely 

( ) ( ) ( ) ( , )
b b

a a
E e x dx f x g x dxβ β= = −∫ ∫  

reaches the minimum. This method is referred to as least 

absolute integral method in this article and the geometric 
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meaning is the minimum area enclosed by curves of 

( ), ( )f x g x  within the interval of [ , ]a b . Since the ( )f x  is 

unknown and only the values at the nodes are available, in 

addition, the integrand is an absolute value function, therefore 

the commonly used methods for seeking extreme value are 

invalid. In case the ( )f x  is substituted by interpolating 

function, the calculation of the minimal value will be 

complicated. Especially, in case the ( )g x  is an essential 

nonlinearity function, the calculation of the minimal value 

will be more complicated. Consequently, the article provides 

simulated annealing and neural network algorithms to find the 

solution to the integration with neural network algorithm [1-5]. 

It is feasible to integrate the functions which are complicated 

and hard to be integrated as well as the functions which only 

have a series of data without clear analytic expressions. The 

unknown parameters can be solved with revised simulated 

annealing algorithm [6-10]. The validity, reliability and 

accuracy of this method have also been proved by 

computation example.  

2. Method and Model of Simulated 

Annealing and Neural Network 

Algorithm 

2.1. Integrate with Neural Network Algorithm 

2.1.1. Trigonometric Function Neural Network Model 

If β  is given (the β  optimizing process is derived from 

simulated annealing algorithm—refers to 2. 2), then, 

( ) ( ) ( )
b b

a a
E e x dx f x g x dx= = −∫ ∫  

has been confirmed and here the calculation of integral is done 

by using trigonometric function neural network model. Since 

the integrand is an error function ( )e x  and it has the 

fluctuation characteristic of little variation, it can be 

approximated by superimposed trigonometric functions. 

Therefore, the trigonometric function neural network model is 

mentioned in the article [11-15], the integral value is 

approximated by output integration of the neural network 

based on trigonometric functions basis funciton. 

In consideration of possible cycles, the fluctuation series 

could be expressed by 

0

2 2
( ) ( cos sin )   ,  ( 2 )

m

k k

k

x a kx b kx n m
n n

π πδ
=

= + =∑ , 

therefore, the hidden neuron excitation function is  

2 2
( ) cos( ), ( ) sin( )

k k
c x kx s x kx

n n

π π= = . 

The number of hidden neurons is 1m + . 

The excitation matrix is  

0 1

0 1

( ) ( ( ), ( ), , ( )),

( ) ( ( ), ( ), , ( )).

m

m

C x c x c x c x

S x s x s x s x

= ⋅⋅⋅
= ⋅⋅ ⋅

 

Set the weight matrix as 
0 1 0 1

( , , , ), ( , , , )
m m

A a a a B b b b= ⋅⋅ ⋅ = ⋅ ⋅ ⋅ . 

Then the output of neural network: 

0

( ) [ ( ) ( )]
m

T T

k k k k

k

x a c x b s x AC BSδ
=

= + = +∑  

The error function: ( ) ( ) ( ),     ( 0,1, , )k kk e x x k nρ δ= − = ⋅⋅⋅ . 

The number of samples is 1n + , ( ) ( ) ( )
k k k

e x f x g x= − , 

set the error matrix as [ (0), (1), , ( )]W nρ ρ ρ= ⋅⋅⋅ , the 

performance index is 

22

2
0

1 1
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n

k

J k Wρ
=

= =∑  

where 
2

2
⋅  is the square of Euclidean norm. Weight 

adjustment: 

( )( )
( ) ( )

( ) ( )

k

k

k

xJ J k
B k S x

B k x B

δρµ µ µρ
ρ δ

∂∂ ∂ ∂∆ = − = − =
∂ ∂ ∂ ∂

 

( 1) ( ) ( ) ( ) ( )
k

A k A k A A k k C xµρ+ = + ∆ = +  

( 1) ( ) ( ) ( ) ( )
k

B k B k B B k k S xµρ+ = + ∆ = +  

where µ  is the learning rate and 0 1µ< < . 

2.1.2. Convergence Conditions of Trigonometric Function 

Neural Network Algorithm 

Learning rate has significant influence on the 

convergence of trigonometric function neural network 

algorithm. Over low learning rate may slow down the 

convergence speed of trigonometric function neural 

network algorithm, while increasing the computation 

volume. By contrast, over high learning rate may lead to 

oscillation, rather than convergence. In order to ensure the 

absolute convergence of neural network algorithm, in the 

following, convergence condition of trigonometric function 

neural network algorithm is listed, acting as a theoretical 

basis for selection of learning rate. 

Set µ
 

as the learning rate, Lyapunov function is 

defined by 

21
( ) ( )

2
V k kρ=  

Then, 2 21 1
( ) ( 1) ( )

2 2
V k k kρ ρ∆ = + − , 

( 1) ( ) ( )

( ) ( )
( ) .

T T

k k k

k k
k A B

A B

ρ ρ ρ

ρ ρρ

+ = + ∆

∂ ∂   = + ∆ + ∆   ∂ ∂   

 

Moreover, 
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where 
2

2
⋅ is the square of Euclidean norm, so that: 

2 2
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In order to make the neural network algorithm convergent, 

there shall be ( ) 0V k∆ < , and the following inequality must be 

true: 

2 2
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As 0µ > , i.e.: 
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Hereby 
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So that, when learning rate is set to be 
2

0
1m

µ< <
+

, the 

neural network algorithm would be convergent. 

2.1.3. Calculation of Integral Based on Trigonometric 

Function Neural Network Algorithm 

Since we know the weight of neural network ,
k k

a b  and the 

integral value will be: 
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2.2. Estimated Parameters of Simulated Annealing Algorithm 

2.2.1. The General Steps of Simulated Annealing Algorithm 

The simulated annealing algorithm i.e. SA algorithm [16-20] 

was put forwarded by Kirkpatrick and the annealing process 

of solid was made analogy with combinatorial optimization 

problems. The purpose of this method is to seek the optimal 

solution of function or approximate optimal solution by 

utilizing the method of achieving minimum energy balance 

during annealing process. The evaluation function is 

equivalent to energy E  while the predefined one set of β  

parameters correspond to a physical state. The control 

parameters during the whole optimizing process are 

equivalent to the temperature T  during annealing process, 

while the SA algorithm can be inverted for optimizing. The 

concrete steps of algorithm include: 

(1) Set the initial temperature 
0

T  and minimum 

temperature fT . Provide the ranges of each parameter 

and select an initial model 0 01 02 0( , , , )pβ β β β= ⋅⋅⋅
randomly within this range. The corresponding 

objective function value 
0

( )E β  will be calculated. 

(2) Disturb the current model parameters to generate a new 

model. Let 01 1 02 2 0( , , , )p pβ β τ β τ β τ= + + ⋅⋅⋅ + . 

Similarly, the corresponding objective function value 

( )E β  will be calculated, such will get 

0
( ) ( )E E Eβ β∆ = − . 

(3) If 0E∆ < , the new model can be accepted; if 0E∆ > , 

the new model β  will be accepted based on 

probability exp( / )P E T= −∆ ,where T  is the 

temperature. In case of the model being accepted, set 

0 0
, ( ) ( )E Eβ β β β= = . 

(4) At the temperature T , reiterate the disturbance and 

acceptance processes for certain times, i.e. , repeat the 

steps of (2) and (3). 

(5) Decrease the temperature T  slowly. 

(6) Repeat steps (2) and (5) until fT T<  or ( )E β ε< , 

where the ε  is the predetermined smaller positive 

number. 

(7) The final solution obtained is the most optimal solution, 

i.e., the parameter values we are seeking for. 

2.2.2. The Improvement of Simulated Annealing Algorithm 
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During the application of the algorithm, to get the 

parameters faster and more accurately following improvement 

could be made: 

(1) Model disturbance 

The author analyzes disturbance improvement strategy for 

simulated annealing algorithm and puts forward an algorithm 

which intensifies the local search ability. The algorithm 

drawlessonsfroms the idea of non-uniform mutation in genetic 

algorithm and generates new model parameters after 

disturbing the current model parameters with non-uniform 

mutation strategy, namely: 

,max ,min

,max ,min

( )  

  or   ( ),

(1 ) sgn( 0.5).

i i i i i

i i i i

i
r t N rλ

β β ϕ β β
τ ϕ β β

ϕ

′ = + −

= −

= − −
 

where 
i

β  is No. i  parameter in current model, 
i

β ′  is No. 

i  parameter after disturbance, 
i

ϕ is No. i  parameter 

disturbance factor, ,min ,max,i iβ β  are values range of No. i  

parameter, r is a random number within (0,1) , t  is current 

temperature, N  is the maximum iteration(related to 

maximum temperature and minimum temperature), λ  is the 

constant to confirm non-uniformity and sgn  is a sign 

function. 

The above equation has showed that the search range is 

relatively broad in case of high temperature; however, the 

search range narrows gradually with the decrease of the 

temperature. The value of 
i

ϕ  decreases gradually with the 

increase of iterations (i.e. the decrease of the temperature) thus 

the search range also narrows, which intensifies the local 

search ability. In the process of actual computation, the value 

of λ  must be controlled reasonably—it is prone to be fallen 

into local extremum in case the value is too big. Generally 

speaking it is better to be located within [2,5] . The new 

accepted model will get closer to the actual model to be solved 

with the decrease of the temperature. Therefore, intensifying 

local search is more favorable to improve the convergence 

performance of the algorithm. 

(2) Cooling method 

As for annealing plan, the practice shows that the changing 

pattern of T  exponentially is more suitable to the nature of 

annealing. In consideration of the fact that temperature drops 

very fast at the beginning then slow down at last in annealing 

method, the author adopts the modified index curve which is 

more suitable to the decreasing characteristic, namely 

0( ) k

fT k T Tξ α= +  

where 
0

T  is the initial temperature, ξ  is the given constant 

and 0 1ξ< < , α  is the speed factor, k  is the iterations. 

With the increase of k , the temperature drops very fast at the 

beginning then slow down at last. Such the large-scaled rough 

search is utilized at the beginning and then refined search is 

utilized locally at last.  

3. Example Application 

At present, China economic is rapid growth. Researching 

on developing trend of household per capita consumption 

expenditure of urban and the rural residents in China is of vital 

significance. What the increasing regularity of household per 

capita consumption expenditure of urban and the rural 

residents in China and what kind of development tendency 

will be presented in the future? The article chooses Gaussian 

model based on the characteristics of growth for household 

per capita consumption expenditure of urban and the rural 

residents in China during 1991-2010. The information refers 

to Table 1.  

The form of model: 

2 21 2

1 2

( ) ( )

1 2
ˆ( , )

x b x b

c c
g x y a e a eβ

− −
− −

= = +  

Table 1. Information about household per capita consumption expenditure of urban and the rural residents in China and relevant outcome. 

Time (year) x  y  (Yuan) Predicted value Relative error (%) Time (year) x  y  (Yuan) Predicted value Relative error (%) 

1991 1 1453.81 1409.893 3.0208 2001 11 5309.01 5356.252 -0.8899 

1992 2 1671.73 1806.887 -8.0849 2002 12 6029.88 5842.035 3.1152 

1993 3 2110.81 2295.847 -8.7662 2003 13 6510.94 6461.218 0.7637 

1994 4 2851.34 2843.249 0.2838 2004 14 7182.1 7201.305 -0.2674 

1995 5 3537.57 3388.491 4.2142 2005 15 7942.9 8045.821 -1.2958 

1996 6 3919.47 3865.783 1.3698 2006 16 8696.55 8981.852 -3.2806 

1997 7 4185.64 4235.898 -1.2007 2007 17 9997.47 10001.8 -0.0433 

1998 8 4331.61 4508.229 -4.0774 2008 18 11242.85 11102.01 1.2527 

1999 9 4615.91 4737.806 -2.6408 2009 19 12264.55 12280.74 -0.1320 

2000 10 4998.0 4999.384 -0.0277 2010 20 13471.45 13536.67 -0.4842 

 
By utilizing the method in the article, the trigonometric 

function neural network model will take performance index 
6

10J
−= . The number of hidden layers of neural network

1 11m + = , the learning rate 
1.2

0.1091
1m

µ = =
+

, the sample 

training rate is { }| ( ), 0,1, ,20k kx e x k = ⋅⋅⋅ . 

The parameter setting of simulated annealing algorithm is: 

initial temperature 
0

100T = , minimum temperature 

0.001fT = , the length of Markov chains is 10, temperature 

drop factor 0.90α = ,the non-uniformity degree constant of 

model disturbance 2.5λ = , 
1 6

,min ,max[ , ] [10 ,    10 ]i iβ β −=  and 

the 0.5ξ =  in cooling method. 
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By software programming with Matlab, we get 

1 2 1 1 1 2 2 2( , , , ) ( , , , , , )

    (48763.1424,46.8122,23.6843,1374.7020,6.3931,4.1466)

p a b c a b cβ β β β= ⋅⋅ ⋅ =

=
 

namely 

2 246.8122 6.3931
( ) ( )

23.6843 4.1466ˆ( , ) 48763.1424 1374.7020
x x

g x y e eβ
− −− −

= = +  

4. Summary 

The simulated annealing and neural network algorithm has 

been applied in data fitting least square integral method. The 

numerical simulation results show that the method is feasible 

and valid. The simulated results of simulated annealing neural 

network algorithm are desirable by judging from the test 

amount . However, the major defect of the algorithm is the 

contradiction between the precision of solution and long 

solving time. The solving time will increase greatly with the 

increase of inverting parameters. In addition, the scope of 

variation interval of each parameter has relatively great 

influence on the convergence rate of algorithm. Consequently, 

how to confirm effectively the ranges of parameters and some 

initial parameters of the algorithm so as to increase the 

convergence rate of algorithm is still to be further studied and 

discussed. 
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