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Abstract: Research in hotel revenue management system design has not paid much attention to the demand forecasting 

side of the system. And the research that has examined forecasting has tended to focus on the comparison of specific 

forecaster methodologies, as opposed to prioritizing how a total system should be parameterized: how far in the future 

should projections be, how much data to use to update each specific parameter, which measure of forecast error to use, 

and how long to freeze each parameter/forecast before updating. This paper fills this prioritization void by utilizing a 

full-functionality hotel reservation system simulation validated by the revenue management staff of a major hotel chain 

as the basis for running screening experiments on an exhaustive set of forecaster parameters with regards to their impact 

on bottom-line system performance (average nightly net revenue, where net revenue refers to total room rate receipts 

minus an overbooking per person penalty that estimates the discounted lost sales of future revenues). A screening 

experiment is run for each general type of operating environment (demand intensity, degree of market segment 

differentiation) that a property might face. We find that only two parameters are significant: the final combined forecast 

horizon length and how long that final forecast is frozen before updating. We find that these two factors interact in a 

negative fashion to influence net revenue. 

Keywords: Forecasting, Simulation, Capacity Analysis, Statistics 

 

1. Introduction 

According to Kummumkal ad Talluri, revenue 

management is the forecasting and allocation of perishable 

assets across assorted market segments to maximize expected 

revenue over a short-term planning horizon. [1] A perishable 

asset—a hotel room, rental car, airline seat, broadcast 

advertising time slot, theatre seat, cruise line space, for 

instance—is an asset whose value drops to zero instantly at 

some point in time. Rather than depreciating in value 

gradually, like many physical goods. For example, once a 

stayover night has passed, an unsold hotel room’s lost 

revenue can never be recaptured. Revenue maximization is 

the objective since in the short-run the associated cost 

structures (e.g., hotel physical configuration, salaried and 

hourly employees to serve guests) cannot be changed. 

The bottom-line benefits of revenue management are 

substantial. In Zhang and Weatherford’s work, a new 

optimization algorithm that involved forecasting would 

generate an estimated $10 million in additional revenue. [2] 

Druckman reported 8.7% increase in revenues due to 

installing a revenue management system for rental properties 

has been made at one property management system. [3] 

Assorted algorithms have been proposed to implement the 

goals of revenue management. Vives et al. in the resort 

industry emphasized the importance of demand forecasting. 
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[4] Rather, according to Duffy forecasts of market segment 

demand for these assets are done over the planning horizon 

as inputs to the subsequent allocation algorithms. [5] A 

stochastic network optimization was developed by Lai and 

Ng and is a common approach to allocate the various hotel 

rooms to customers with different price sensitivities (i.e., rate 

classes), arrival dates, and lengths-of-stay. [6] Where the 

objective is to maximize expected revenue (net of 

cancellations and no-shows) over some planning horizon. 

Such an optimization can be modified to not only do the 

allocation across the assorted rate classes, but to also to 

approximately overbook the hotel to account for 

cancellations and no-shows. 

The approaches to forecasting demand has received much 

less attention in the literature. And much of this forecasting 

literature has compared-contrasted assorted quantitative 

forecasting techniques, rather than how a given set of 

techniques should best be implemented. For instance, 

Weatherford and Kimes evaluated assorted demand 

forecasting methods on Marriott data—exponential 

smoothing, moving average, regression approaches, booking 

profile methods and combination forecasts. [7] But they did 

not closely examine how their best methods (exponential 

smoothing, moving average) should be implemented in terms 

of (a) how much data to use in parameter estimation, (b) how 

long to freeze the forecasts before updating them, (c) how 

long should the forecasting horizon be, and (d) what metrics 

to use to evaluate forecast accuracy (e.g., root mean square 

error to penalize large errors versus mean absolute deviation). 

Our paper focuses on the best forecasting implementation 

for (a)-(c) using the current industry standard forecasting 

techniques from Duffy. [5] We do this by developing a 

complete simulation model of a hotel revenue management 

system: customer reservation patterns, uncensoring of 

observed demand, demand forecasting of uncensored 

demand, overbooking and optimization simultaneously, 

acceptance/rejection of individual reservation requests based 

on the overbooking-optimization outputs. All of the 

components of this system reflect best industry practice 

today, except that our simultaneous overbooking-allocation 

algorithm extends best practice in Duffy by doing these two 

activities jointly. [5] 

We use a Plackett-Burman screening approach to 

determine the most impactful forecast implementation factors 

on the revenue-generating capability of this system. 

The only two articles that deal with the optimal 

implementation of revenue management forecasting methods 

are Weatherford and Belobaba and Weatherford et al. [8, 9]. 

Weatherford and Belobaba were focused on airline data [8]. 

They compared the revenue impact of the accuracy of the 

forecast point estimate relative to the accuracy in estimating 

forecast error variability. But they did not evaluate the 

amount of data for estimating parameters, length of frozen 

period, or measure-of-merit used when updating parameters, 

or forecast horizon length. Likewise Weatherford et al. also 

did not consider these four factors that we are evaluating in 

this paper. [9] 

2. Materials and Methods 

Azadeh et al. have developed a taxonomy of assorted 

methods used in practice to estimate “true demand”, as 

opposed to “observed demand”). [10] Our method used 

matches that used in practice today per Duffy, so it can be 

thought of as a control variable. [5] The core of our 

unconstraining method is implemented in a the choice model 

of van Ryzin and Vulcano.[11]. Yukel has augmented the 

forecasting techniques that we use with a Delphi method 

override of forecasts in a real time hotel environment in 

Ankara. [12] For the purposes of seeing patterns in optimal 

data amount, frozen period, horizon length, and measure-of-

merit, omitting user overrides acts as another control. 

Weatherford and Belobaba determined that forecast point 

estimates are more important than limiting forecast error 

sizes. [8] Weatherford et al. determined that in a hotel 

environment disaggregated forecasts by rate class and 

duration are more accurate than aggregating over these 

dimensions. [9] Our paper always works with the 

disaggregated data, except in the overbooking algorithm. 

Our overbooking method is contained in Huang et al. that 

is in an airline multi-leg context. [13] We aggregate all rate 

class-duration-arrival date combinations that cover a given 

control date. Phumchurri and Maneesephon have developed a 

closed-form dynamic programming solution to at most a two 

rate class hotel overbooking problem. [14] But real world 

overbooking situations often involve eight or more rate 

classes according to Duffy. [5] 

Our allocation algorithm has the same functionality as Lai 

and Ng. [6] Except that we use a nonlinear programming 

solver rather than a network solver. Fouad et al. have 

developed an optimization in simulation approach to 

overbooking like we have, except that they ignore the 

allocation portion. [15] 

Koch does integrated overbooking-allocation, but their 

context is choice modeling. [16] 

We develop a simulation of a hotel reservation system, 

with revenue management system embedded, that accounts 

for all of the reservation and revenue management activities 

in practice according to Duffy, except for group bookings. [5] 

We have simply scaled it down to two rate classes, a three 

day maximum length-of-stay, and a fourteen day maximum 

booking horizon to permit extensive computational 

experiments for this study. 

One replication of the simulation will be 113 nights, with 

the first 21 nights of revenue ignored since initial condition 

bias was present then. 

The overall essence of this simulation is, on each day, to 

(1) perform true net demand forecasts for the planning 

horizon from historical estimated true demand, (2) run 

genetic algorithm to simultaneously do overbooking and 

allocation—the ultimate output are the bid prices, (3) 

generate true demand (see Pimentel et al. for terminology) 

from the Poisson demand processes, (4) use the bid prices to 

accept/reject each reservation request, (5) convert the 

reservations that get accepted to estimated historical true 
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demand by considering how often each rate class-duration-

arrival date combination was open for sale, (6) convert the 

estimated historical true demand to estimated historical true 

net demand by applying cancellation and no-show 

probabilities, (7) count revenue and overbooking penalties 

for the night, (8) return to step (1) unless the 113 night 

simulation window is hit. [17] 

Here are the complete functional details of the simulation, 

listed step-buy-step: 
Step 1: Initialize the system. First, the hotel has to be 

booked. The sum of the Poisson true demands (not estimated 
true demand) at the bottom of The data tables in Pimentel et 

al. should be used, filling up the hotel by highest rate class 
first, followed by longest to shortest duration. [18]. The Holt-
Winter’s trend term should be set to 0 for all rate class-
duration-arrival date combinations. The Holt-Winter’s base 
term should be set to the mean weekly true demand from 
Pimentel et al., minus cancellation and no-show probabilities, 
for each rate class-duration-arrival date combination [18]. 
The Holt-Winter’s seasonal indices should all be set to 1 for 
each rate class-duration-arrival date combination. The initial 
data value in the booking profile forecast should be the top 
intensity from [18]. The booking profiles for each rate class-
duration-arrival date combination should be based on the 
Pimentel et al. cumulative Poisson intensities. The weights 
assigned to the booking profile forecast and Holt-Winter’s 
forecast to make up the final combined forecast should be 0.5 
and 0.5. The shape and scale parameters of the gamma 
forecast error probability density function should be derived 
via the method of moments assuming a coefficient of 

variation of 
�

√�
, where � is the sum of the Poisson intensities 

across all days until first stayover from Pimentel et al. for a 

given rate class-duration-arrival date, and � is the mean. The 
first day of the simulation is Monday. [17] 

Step 2: Based on the most recent true net demand 

estimates, perform the Holt-Winter’s true net demand 

forecast for each given arrival day-of-the-week out until the 

end of the planning horizon for each rate class-duration 

combination. Note that estimated true demand equals actual 

true demand at simulation initialization. 

Step 3: Based on the most recent true net demand, perform 

the booking profile true net demand forecast for arrivals for 

the next day, the following day,…, the final day in the 

planning horizon. For each rate class-duration combination. 

Step 4: For each booking profile true net demand forecast 

in step 3, execute the corresponding final true net demand 

forecast by doing a linear combination of the Holt-Winter’s 

forecast and booking profile forecast. 

Step 5: Execute the genetic algorithm from Pimentel et al. 

Given the most recent true net demand forecasts across the 

planning horizon. The outputs of this algorithm are the bid 

prices. [17] 

Step 6: For each cell entry in Pimentel et al., sample from 

the Poisson distribution using the intensity as the mean to 

obtain true demands for each rate class-duration-arrival date 

combination across the planning horizon. [17] 

Step 7: For each true demand from Step 6, accept it as a 

booking if and only if the bid price is less than or equal to the 

sum of the corresponding nightly revenues from Baker and 

Collier. [18] 

Step 8: For the historical bookings time series by arrival 

day-of-week for each rate class-duration combination, divide 

by the fraction of the time across all reading periods that this 

rate class-duration-arrival date combination was open for sale 

(i.e, the sum of bid prices was less than or equal to the sum of 

nightly revenues). This will give you the estimated true 

demand. 

Step 9: For these estimated true demands, now multiply by 

(1 – cancellation rate)**(planning horizon length)*(1 – no-

show rate) to obtain estimated true net demand. 

Step 10: Given the accepted bookings that would like to 

stayover on this night, book as many as possible who arrive 

on this night until physical capacity is reached. Count the 

total night’s revenue, and compute net revenue by subtracting 

the number overbooked times the overbooking penalty. 

Step 11: Re-optimize the parameters of the Holt-Winter’s 

forecaster and their relative weights in the final forecast. Do 

this reoptimization based on minimizing either RMSE or 

MAD from prior forecasts via enumeration. 

Step 12: Recalculate the shape-scale parameters of the 

forecast error distribution. Recalculate the booking profile. 

Step 13: If we are at day 113, stop—this simulation 

replication has been completed. Otherwise, move to the next 

day and go to Step 2. 

3. Calculation 

We wish to do an exploratory study to determine (1) 

patterns in the optimal number of historical data points to use 

in updating assorted forecaster parameters, (2) patterns in the 

optimal amount of time to freeze (i.e., leave unchanged) 

various forecaster parameters, (3) patterns in the best 

measure of merit for updating assorted forecaster parameters, 

and (4) patterns in how long a forecast horizon should be. By 

“optimal”, we mean finding the best number of historical 

data points-frozen intervals-horizon lengths to maximize the 

expected net revenue. Thus, forecaster accuracy, measured by 

root mean squared error or mean absolute deviation, is not 

the ultimate goal in optimizing the design of the forecasting 

system; rather, the ultimate measure of merit is the average 

net revenue that the design will generate across a number of 

independent simulation replications. This is the most relevant 

measure of merit for designing a forecasting system since it 

is the “bottom-line” for any revenue management system. 

However, within the forecast parameter updating system, a 

more focused measure must be used for updating the 

parameters. This is why we will compare the root mean 

squared error with the mean absolute deviation as candidate 

focused measures. We have selected these two focused 

measures since they are designed to emphasize avoiding 

different types of errors; root mean square error places a 

much greater emphasis on avoiding large errors than mean 

absolute deviation. We do not consider relative measures 

such as mean absolute percentage error since the demand 
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time series values do not change much from one portion of 

the simulation to the next. 

Note that all forecast errors compare the forecast point 

estimate with the “actual” data value. The “actual” data value 

is obtained from the Poisson intensities and the appropriate 

cancellation and no-show probabilities from Baker and 

Collier. [18] Thus, all forecast errors involve comparing true 

net demand predictions with “actual” true net demand. So, 

“actual” true net demand is the sum of the Poisson intensities 

across all reading periods times (1 – cancellation 

rate)**(number of reading periods) times (1 – no-show 

probability). 

Also, note that the purpose of this study is to generate 

insights, not absolute numbers for later use. Since the 

specific simulation parameter values from one hotel property 

to the next will vary from our mainline numbers, their best 

values to use for frozen periods, number of data points, 

internal measure of merit, and horizon length will likely 

differ from ours. What should generalize from this study, 

though, are the qualitative patterns in the optimal frozen 

periods-number of data points-measure of merit-horizon 

length used. For instance, it may be that the base smoothing 

constant in the Holt-Winter’s forecaster is far more important 

to control tightly than the trend or seasonal constants. 

Likewise, it might be more important to freeze the Holt-

Winter’s smoothing constants longer than the booking profile 

percentages. Unlike the smoothing constant updates, where 

there is no a priori (from the literature or first principles) 

reason to hypothesize any outcome, one would expect a 

longer optimal frozen period for the Holt-Winter’s forecaster 

than the booking profile forecaster. Since the booking profile 

forecaster is designed to be more reactive to recent trends. 

But for the most part, there are no a priori expectations about 

the results of this study. Below in the Factor Description 

section, we will discuss any a priori expectations about the 

results. Therefore, it is exploratory in nature; we will discern 

patterns in the results and then generate tentative 

explanations for them. That can be tested more formally in 

future research. 

We have identified 16 of these data volume/frozen interval 

length/measure-of-merit/horizon length factors that could 

impact the revenue-generating performance of a revenue 

management system. From the baseline forecasting system 

that is standard in practice today (see Duffy), these 16 

comprise all of the possible variables that could be changed 

to alter a parameter/frozen interval/measure-of-merit/horizon 

length in the system. [5] We will run a 16 factor Plackett-

Burman screening design to isolate the most influential 

factors on revenue generating performance. Once the final 

regression equation is formed, we will explore it to generate 

insights about ideal forecaster settings. All main effects and 

two-way interactions will be evaluated via this screen. 30 

independent replications will be performed for each point in 

the design, and the final uniform numbers in the simulation 

random number stream from one design point will be used as 

the starting seeds for the next design point to ensure 

independence. 

3.1. Factor Descriptions 

Here is the list of all 16 forecaster system variables that the 

revenue management system manager has control over to 

influence forecast errors directly, and thereby net revenue 

indirectly. In order to fit the size constraints of the 

QuikSigma software used to do the analysis, we have 

eliminated two of these factors from consideration based on 

judgment over relative impact on net revenue. [19] Thus, the 

factors with letters A-N are the ones that we will use for 

analysis. These names then translate to the initial two sets of 

Plackett-Burman runs detailed in Tables 1-2. The low values 

for all factors correspond to one week. Given that the 

seasonal cycle is one week on these data, the minimum 

amount of time between specific (rda combination) forecast 

parameter updates is one week. Therefore, our minimum 

factor level for all factor updates is one week. Since the 

number of reading periods equals two weeks of data, our 

maximum factor level must exceed that. So, we have chosen 

five weeks in general for our maximum factor level 

Factor 1 (A): How many arrival build-ups (i.e., complete 

reading period sets) to use in estimating true net demands for 

the booking profile per rate class-duration-arrival day-of-

week (rda) combination. Since opening/closing rdas for sale 

only happens once per reading period, it is best to use 

multiple build-ups to deal with the case where an rda was 

closed for sale during a reading period—the average 

observed demand when the rda was open across the buildups 

is then used as the true demand estimate for the reading 

period when the rda was closed. Note that if the rda is closed 

during all build-ups, then true net demand is estimated to be 

0 for that rda. We use one arrival for the low value, five 

arrivals for the high value. 

Factor 2: For how many future arrival build-ups are the 

averages in Factor 1 held constant before being updated 

again. We use every week for the low value, and every five 

weeks for the high value. 

Factor 3 (B): Booking profile data points. Each reading 

period in a booking profile corresponds to an estimate of the 

cumulative fraction of total true net demand that typically 

occurs by the end of that reading period. The issue is how 

many data points to use in computing that fraction. Our low 

value is one data point, and our high value is five. 

Factor 4 (C): Booking profile frozen interval. How often 

should the booking profile be updated, by rate class-duration-

arrival day-of-week? We use once a week as the low value, 

and once every five weeks as the high value. 

Factor 5 (D): Holt-Winter’s base smoothing constant data 

points. When optimizing the base smoothing constant via 

enumeration with regards to either the root mean square error 

or mean absolute deviation, how many historical forecasts 

are used? The low value is one, and the high is five. 

Factor 6 (E): Holt-Winter’s base smoothing constant 

frozen interval. How often is this smoothing constant 

updated, per rate class-duration-arrival day-of-week 

combination? The low value is every week, and the high 

value is every five weeks. 
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Factor 7 (F): Holt-Winter’s trend smoothing constant data 

points. When optimizing the trend smoothing constant via 

enumeration with regards to either the root mean square error 

or mean absolute deviation, how many historical forecasts 

are used? The low value is one, and the high is five. 

Factor 8 (G): Holt-Winter’s trend smoothing constant 

frozen interval. How often is this smoothing constant 

updated, per rate class-duration-arrival day-of-week 

combination? The low value is every week, and the high 

value is every five weeks. 

Factor 9 (H): Holt-Winter’s seasonal smoothing constant 

data points. When optimizing the seasonal smoothing 

constant via enumeration with regards to either the root mean 

square error or mean absolute deviation, how many historical 

forecasts are used? The low value is one, and the high is five. 

Factor 10 (I): Holt-Winter’s seasonal smoothing constant 

frozen interval. How often is this smoothing constant 

updated, per rate class-duration-arrival day-of-week 

combination? The low value is every week, and the high 

value is every five weeks. 

Factor 11 (J): Forecast error measure. The low value here 

means that the root mean square error (RMSE) is used, high 

value is mean absolute deviation (MAD). 
Factor 12 (K): Final forecast booking profile weight. The 

weight between 0 and 1 to be put on the booking profile 
forecast is  

1
����	
�	
���	��	��������	�����

1
����	
�	
���	��	���������	����� +

1
���� −�	
�������������	�����

 

These forecast errors are obtained from either the root 
mean square error or the mean absolute deviation. These 
errors are computed for each rate class-duration-arrival day-
of-week combination. The question is how many forecasts to 
use in this computation? The low value is one, and the high 
value is five. 

Factor 13 (L): Final forecast frozen interval. Once a 

forecast booking profile weight has been recomputed, how 

many weeks does it remain constant? The low value is one 

week, and the high value is five weeks. 

Factor 14 (M): Final forecast error coefficient of variation 

data points. For each rate class-duration-arrival day-of-week, 

how many true net demand final forecasts are compared with 

the “actual” true net demands? One forecast is the low value, 

and five forecasts the high value. 

Factor 15: Final forecast error coefficient of variation 

frozen interval. Once a coefficient of variation has been 

recomputed, how many weeks must elapse before the next 

recomputation? The low value is one week, and the high 

value is five weeks. 

Factor 16 (N): Forecast coverage length. How many weeks 

should each forecast—booking profile, Holt-Winter’s, and 

final—go out into the future? The low value is one week, and 

the high value is two weeks. The high value is two weeks 

since the number of reading periods covers two weeks. 

3.2. Data Analysis 

For each of the 14 design points in Table 1, we will run 30 

replications on the simulation to generate the regression 

dependent variable value as the mean net revenue. Likewise 

for the 14 design points in Table 2. Note that per Plackett-

Burman methodology the signs for each factor are reversed 

between Table 1 and Table 2. This is done to generate a 

contrast for each of the 14 factors. Thus, once the mean 

revenues for those 32 design points has been generated, we 

will examine the QuikSigma output to determine (a) which 

main effects and two-way interactions had regression 

coefficient signs that switched from Table 1 to Table 2, (b) 

which main effects and two-way interactions had statistically 

insignificant coefficient signs on either Tables 1 or 2, and (c) 

which main effect and interactions had the wrong signs from 

either Tables 1 and 2. [19] Only those main effects-

interactions whose signs remain consistent, correct, and 

significant across both Tables 1 and 2 will be considered 

further. Moreover, any confounding between coefficients will 

be resolved with further design points using judgment to 

determine the factor effect that underlies the coefficient. 

Once all of these steps have been performed, a final 

regression using all of the data generated thus far on the 

surviving main effects and two-way interactions will be 

performed. We will then use this final regression equation to 

do exploratory analysis on, so that insights about optimal 

forecast system design can be generated. 

We will repeat these steps for a 2�  full factorial 

experiment, where the two factors are the demand intensity 

from Pimentel et al. and a gap measure from a concatenation 

of [18]. A low gap represents both peak gap and revenue gap 

at their low levels, and a high gap represents both of these 

factors at their high levels. We decided to collapse peak gap 

and revenue gap into one dimension since one replication of 

the simulation takes about 12 hours of computing time on the 

following computer: Intel Corel 15-4590 CPU @3.30 GHZ 

processor; 8.00 GB of installed RAM; 64-bit operating 

system x64-based processor. Since peak gap and revenue gap 

tend to move together in practice according to Duffy these 

four design points cover the complete range of operating 

conditions that a property might face. [5] 

4. Results 

4.1. High Demand Intensity-High Gap Case 

The first round of the Plackett-Burman screen revealed 

only one factor that is statistically significant in predicting 

nightly net revenue: a factor where A * C, D * F, E * G, H * 

J, I * K, L * N, and M * C are all confounded with one 

another. Round 2 also reveals that this factor with these 

confounded elements is the only significant factor. For 
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Round 3, we decided to replicate the Round 2 design with 

factor L’s sign flipped so that L * N would not be confounded 

with any of these other interactions. The rationale for 

isolating on L * N in Round 3: a process of elimination. A * 

C represents the interaction of how often the observed 

bookings to true demand conversion is performed with the 

length of the frozen interval on the booking profile forecast. 

Since these two factors are unrelated, this interaction has no 

interpretation. D * F represents the interaction of the amount 

of data to use in updating the Holt-Winter’s base smoothing 

constant with the amount of data to use in updating the Holt-

Winter’s trend smoothing constant. There is no practical 

interpretation of this interaction. E * G represents the 

interaction between the length of the frozen period for 

updating the Holt-Winter’s base smoothing constant with the 

corresponding trend frozen period length. No interpretation 

here. H * J represents the interaction between the amount of 

data used in the Holt-Winter’s seasonal smoothing constant 

and whether to use RMSE or MAD as the forecast error 

measure. Again, these two factors are unrelated, so this 

interaction has no interpretation. I * K represents the 

interaction between the Holt-Winter’s frozen interval length 

for updating the seasonal factor and the amount of data to use 

in optimizing the final forecast weight to put on the Holt-

Winter’s method relative to the booking profile method. No 

interpretation of I * K makes sense. Finally, M * C represents 

the interaction between amount of data used in the update of 

the coefficient of variation for the final forecast and the 

length of the frozen interval for the booking profile forecast. 

No interpretation is possible. 

Thus, the only remaining interaction is L * N. This 

interaction between the length of the final forecast frozen 

interval and the final forecast planning horizon. This 

interaction should be negative since shorter horizons are 

more accurate and stable, so freezing that short horizon 

forecast makes the overall forecasting scheme less reactive to 

noise. However, longer forecasting horizons mean more error 

overall, so there is more of a need to update these forecasts 

more often. 

The result of Round 3 was that the regression coefficient 

signs on A * C, D * F, E * G, H * J, I * K, and M * C all 

switched from Round 2. This means that these interactions 

are unreliable as true predictors of nightly net revenue, so 

that leaves us with L * N as the lone factor that is significant 

in predicting net revenue. 

The adjusted R^2 is 24.45% when one concatenates the 

data from Rounds 1-3 and regresses average nightly net 

revenue against L * N. 

4.2. High Demand Intensity-Low Gap Case 

Rounds 1-3 progressed in identical fashion to the High 

Intensity-High Gap case in terms of significant factors and 

the set of confounded interactions that comprise each factor. 

Thus, at the end of Round 3, only the L * N interaction was 

left as meaningful. The concatenation of Rounds 1-3 for the 

final regression yielded both L and L * N as significant 

factors, with an adjusted R^2 of 47.37%. The sign on L * N 

was negative as in the High Demand-High Gap case. The 

sign on L is positive, indicating that longer frozen periods for 

the final forecast are more desirable in general. 

4.3. Low Demand Intensity-High Gap Case 

Rounds 1-3 proceeded in identical fashion as the prior two 

cases in terms of significant effects and confounding 

interactions at each Round. The regression model with 

Rounds 1-3 concatenated yielded an R^2 of 30.7% with only 

the L * N term significant. And with the negative coefficient. 

4.4. Low Demand Intensity–Low Gap Case 

Rounds 1-3 proceeded as in the other three scenarios. The 

final regression model had an R^2 of 14.95% with only the L 

* N term significant, and with a negative coefficient. 

5. Discussion 

We utilize a simulation model of a hotel reservation 

system, validated by Duffy, that has all of the functionality of 

a real world revenue management system for transient 

customers. [5] The size of the simulation is proportionately 

scaled down to permit computational experiments in a 

reasonable timeframe, without compromising the full 

richness of interactions between all system components. 

The demand forecasting component of a hotel revenue 

management system has received scant attention in the 

literature. What little that has been published focuses on 

specific techniques of forecasting, rather than how the 

forecasting system as a whole should be parameterized. This 

study fill this void by exhaustively compiling and analyzing 

all of the parameters of a current real world forecasting 

system, with the objective of separating the critical few 

parameters from the not-so-critical many. And then obtaining 

some insights about forecaster parameterization. 

We executed a 2�  full factorial design, where the two 

factors are the level of capacity saturation and the degree to 

which market segments differ in terms of price points and 

booking patterns. Thus, the full range of operating 

environments in a hotel are considered, according to Duffy. 

[5] 

Within each design point, we ran a Plackett-Burman 

screening experiment on the list of 14 forecasting system 

parameters that effectively completely define the operations 

of such a system. The screen shows that only two parameters 

really influence the revenue generation performance of the 

system: how long the final combined forecast is frozen for, 

and the final forecaster planning horizon length. These 

interact strongly to influence net revenue generation. The 

negative interaction is due to the fact that shorter forecasting 

horizons lead inherently to more accurate and stable 

forecasts, so freezing these forecasts for more time makes 

sense—there is no need to update the forecasts more 

frequently to compensate for large errors. Whereas the longer 

forecasting horizons yield more error, so a shorter frozen 

period will enable faster corrections to these errors. 
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Thus, we have essentially prioritized efforts on improving 

forecasting systems. The other parameters besides final 

forecast horizon length and frozen period do not need to be 

scrutinized; they can be left at default settings. These 

parameters include the amount of historical data to use for (1) 

all three Holt-Winter’s smoothing constants, (2) the booking 

profile, (3) the estimation of true demand from censored 

bookings, (4) the short-term versus long-term forecaster 

weights, and (5) the construction of forecast error coefficient 

of variation. Also, how long various forecasts and their 

associated parameters are frozen for do not need to be 

considered: (1) all Holt-Winter’s smoothing constants, (2) all 

booking profile forecasts, (3) all Holt-Winter’s forecasts, and 

(4) the forecast error measures. 

6. Conclusion 

We have utilized a hotel reservation system simulation as 

our method for estimating nightly net revenue, as a function 

of assorted forecasting system characteristics. This 

simulation was validated by a major hotel chain. For each of 

four combinations of hotel capacity saturation and degree of 

market segment differentiation, we ran a screening design on 

16 forecast system parameters. Our results indicate that the 

vast majority of parameter settings can be ignored in practice, 

so long as they stay within the broad range of reasonable 

settings detailed in our analysis. Thus, (a) the booking profile 

(i.e., short-term, reactive forecaster component) settings—

how much data to use in updating, how often to update—are 

irrelevant, (b) all three parameters of the long-term 

forecaster—base term, trend term, seasonal term—can have 

both their volume of data for updating and frequency of 

updating settings ignored, (c) which measure of merit in 

evaluating the relative importance of long-term versus short-

term forecasting efficacy for the purpose of combining them 

into a final forecast—the choice of measure is immaterial, (d) 

the amount of data used to weigh the relative importance of 

long versus short-term forecaster importance in the final 

forecast is irrelevant, (e) the amount of data and frequency of 

update of the forecast error coefficient of variation (for 

eventual input into the room allocation optimizer) is 

immaterial. 

Therefore, this analysis greatly simplifies the focus the 

analyst must have in tuning the forecasting system. They 

only have to be concerned with conditions involving the final 

forecast (that combines the long-term and short-term 

forecasts): the length of the final forecast horizon, and how 

long the corresponding this final forecaster is frozen for. 

Although the current state-of-the-art generally involves 

relatively simple techniques--the Holt-Winter’s three 

parameter exponential smoothing model for long-term 

forecasts, and the booking profile forecast for short-term 

forecasts—exploration of more advanced techniques is 

warranted for future research. These simple techniques often 

work well because they do not exacerbate forecast errors due 

to overfitting to noise. A good topic for future research would 

be to see under what specific conditions overfitting is not 

such a problem, so that more advanced techniques such as 

causal methods and artificial intelligence based approaches 

might work better. 

Appendix 

Table 1. Factor Levels for first 16 Plackett-Burman screening design runs. 

(-1 denotes the factor at its low level, 1 at its high level) 

A B C D E F G H I J K L M N  

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 

-1 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 

-1 -1 -1 1 1 1 1 1 1 1 1 -1 -1 -1 

-1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 1 

-1 1 1 1 1 -1 -1 -1 -1 1 1 1 1 -1 

-1 1 1 1 1 -1 -1 1 1 -1 -1 -1 -1 1 

-1 1 1 -1 -1 1 1 1 1 -1 -1 1 1 -1 

-1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 

1 1 -1 -1 1 1 -1 1 -1 -1 1 1 -1 -1 

1 1 -1 1 -1 -1 1 1 -1 -1 1 -1 1 1 

1 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 

1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 1 

1 -1 1 1 -1 1 -1 1 -1 1 -1 -1 1 -1 

1 -1 1 -1 1 -1 1 1 -1 1 -1 1 -1 1 

1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
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Table 2. Factor Levels for second 16 Plackett-Burman screening design runs. 

(-1 denotes the factor at its low level, 1 at its high level) 

A B C D E F G H I J K L M N   

               

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 

1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 1 1 1 1 

1 1 1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 

1 -1 -1 -1 -1 1 1 1 1 -1 -1 -1 -1 1 1 

1 -1 -1 -1 -1 1 1 -1 -1 1 1 1 1 -1 -1 

1 -1 -1 1 1 -1 -1 -1 -1 1 1 -1 -1 1 1 

1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 

-1 -1 1 1 -1 -1 1 1 -1 -1 1 1 -1 -1 1 

-1 -1 1 1 -1 -1 1 -1 1 1 -1 -1 1 1 -1 

-1 -1 1 -1 1 1 -1 -1 1 1 -1 1 -1 -1 1 

-1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 1 -1 

-1 1 -1 -1 1 -1 1 1 -1 1 -1 -1 1 -1 1 

-1 1 -1 -1 1 -1 1 -1 1 -1 1 1 -1 1 -1 

-1 1 -1 1 -1 1 -1 -1 1 -1 1 -1 1 -1 1 

-1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 
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