

Mathematics and Computer Science
2022; 7(1): 1-8

http://www.sciencepublishinggroup.com/j/mcs

doi: 10.11648/j.mcs.20220701.11

ISSN: 2575-6036 (Print); ISSN: 2575-6028 (Online)

An Overview of Metrics for Evaluating the Quality of Graph
Partitioners

Mustapha Abdulkadir Sani
1, *

, Abdulmalik Ahmad Lawan
1
, Ayaz Khalid Mohammed

2
,

Abdulkadir Ahmad
1
, Yusuf Haruna

1

1Department of Computer Science, Kano University of Science and Technology, Wudil, Nigeria
2Department of Computer Science, University of Zakho, Kurdistan, Iraq

Email address:

*Corresponding author

To cite this article:
Mustapha Abdulkadir Sani, Abdulmalik Ahmad Lawan, Ayaz Khalid Mohammed, Abdulkadir Ahmad, Yusuf Haruna. An Overview of

Metrics for Evaluating the Quality of Graph Partitioners. Mathematics and Computer Science. Vol. 7, No. 1, 2022, pp. 1-8.

doi: 10.11648/j.mcs.20220701.11

Received: January 12, 2022; Accepted: February 3, 2022; Published: February 16, 2022

Abstract: Nowadays, many applications that involve big data can be modelled as graphs. In many cases these graphs may be

too large to be loaded and processed on a single commodity computer. This necessitated the development of frameworks that

allow processing large graphs by distributing the graph among nodes in a cluster. To process a graph using these frameworks,

first, the graph is partitioned into smaller components called subgraphs or partitions, and then assign these smaller subgraphs to

different nodes for parallel processing. Depending on the type of processing (example, computing pagerank, counting number

of triangles etc.), there will be some communication between nodes during the execution, this communication affects execution

time. Therefore, graph partitioning is an important step in distributed graph processing. Being able to determine the quality of a

partition prior to processing is important as this will allow us to predict the execution time before the actual processing. A

number of metrics for evaluating the quality of a graph partitions exist, but studies show that these metrics may not serve as

accurate predictors in many cases. In this work, we reviewed published papers about graph partitioning and we were able to

identify and defined more metrics in order to have a catalogue of these metrics.

Keywords: Graph, Graph Partitioning, Partitioning Algorithms, Metrics

1. Introduction

Nowadays big data is represented as graphs which is often

too large to load and process on a single machine. Examples

of applications that are modelled as graphs include online

social networks (like Facebook, Twitter, Instagram, LinkedIn,

MySpace, etc), and web graphs. In the case of online social

networks vertices are used to represent users while edges are

used to represent the relationship between users, while in the

case of web graphs web pages are represented as vertices,

and links between them are represented the edges of the

graph. The most well-known web graph is www, which

contains more than 50 billion vertices (web pages) and more

than 1 trillion edges (links) [1].

Most of popular online social networks consist of millions

of vertices and billions of edges. As at December, 2014

Facebook has 1.39 billion active users (vertices) with more

than 400 billion relations (edges). Likewise in case of twitter,

as at March, 2015 twitter has 288 million active users

(vertices) with an estimated total of 60 billion followers

(edges) [2]. These graphs are normally stored in a text file

before performing computation on the graph. In many cases,

the size of a graph file may be in hundreds of gigabytes,

making it almost impossible to load and process the graph

using a single computer [3].

Although some frameworks that enable processing large

graph using single computer exists, but the traditional way to

handle large graph is to use a cluster of nodes. First, the

graph is partitioned into smaller components called partitions

or subgraphs, and then assign each partition is assigned to a

node in the cluster. Each node will process a subset of the

2 Mustapha Abdulkadir Sani et al.: An Overview of Metrics for Evaluating the Quality of Graph Partitioners

graph in parallel [4]. Unlike normal parallel data processing

where a large database can be partitioned and each partition

is processed independent of each other, in parallel processing

of partitioned graph, the nodes need to periodically share

intermediate computation result during execution. This

sharing of computation results introduces communication

overhead which has a significant impact on the execution

time [4]. By partitioning the graph in an efficient manner, we

will be able to mitigate this communication overhead, which

will also lead to reduction of total execution time. In view of

this it is essential to maintain the locality of information

while distributing the graph among the multiple nodes by

trying to have a minimum number of vertices or edges that

are cut during partitioning. It is also important to partition the

graph into equal subsets so as to distribute the computational

load evenly among nodes [5]. In practice partitioning a graph

into subgraphs is a hard problem, existing Partitioning

Algorithms rely on heuristics to find to find good enough

tradeoffs between balance (splitting the graph into equal

subsets) and communication (minimizing number of edges or

vertices that are cut) [4].

1.1. Organization of the Paper

The paper is organized as follows; Section one gives the

general introduction, in section two we discussed two

classical techniques of graph partitioning (i.e. edge-cut

partitioning and vertex-cut partitioning). The problem

statement of graph partitioning is presented in section three.

We presented the motivation of the study in section four.

Overview of identified metrics is presented in section five,

and finally, we draw conclusion in section six.

1.2. Our Contribution

Our major contribution is that we were able to compile and

document a considerable number of evaluation metrics which

are used by so many and different researchers in the area of

graph processing to evaluate the quality of graph partitions

produced by their graph partition algorithms. Our work is

going to be useful to researchers who want to propose a new

graph partition algorithm or those researchers that want to

use existing one. To the best of our knowledge, we are the

first to conduct this type of study.

2. Techniques of Graph Partitioning

There are two major techniques for partitioning a graph

into subgraph depending on weather the subgraphs are

composed of disjoint set of vertices or disjoint set of edges.

The former is known as edge-cut partitioning and the latter is

known as vertex-cut partitioning.

2.1. Edge-cut Partitioning

This technique also called vertex partitioning [6], is the

classical way of partitioning graphs [4, 5]. In this approach,

vertices of a graph are divided into disjoint sets of nearly the

same size, while minimizing number of edges that span over

separated sets. An edge is cut if its vertices are assigned to

two different partitions [4].

While a good edge cut partitioning can reduce

communication overhead and can also balance the number of

vertices in each subgraph, some studies [4, 5, 7] show that it

does not produce good partitions on real world graphs which

normally follow power-law degree distribution.

2.2. Vertex-cut Partitioning

It was proved in Gonzalez [7] that real-world graphs like

online social networks can be partitioned efficiently if vertex

cut approach also known as edge partitioning [6] is used. In

vertex cut approach, edges of a graph are split into different

disjoint sets of nearly the same size while minimizing

number of vertices that are cut. In this approach vertices may

be cut and thus replicated in more than one partition due to

the distribution of their edges across different partitions. A

good vertex cut is the one that achieve minimum replica

while maintaining the balanced number of edges among

partitions. Some graph processing frameworks like GraphX,

Power Graph are based on vertex-cut technique [4, 6, 8, 9].

Figures 1(a) and 1(b) corresponds to edge-cut and vertex-cut

partitioning respectively.

Figure 1. Partitioning a graph into three partitions [10].

3. Problem Statement

As we have mentioned in section 2 that there are to major

techniques of partitioning a graph which are vertex-cut and

edge-cut portioning, in this section we give the problem

statement for the two techniques.

3.1. Problem Statement for Edge-cut Partitioning

In the case of vertex-cut partitioning, the graph partitioning

problem is defined as:

Given an input graph G = (V, E), where V is the set of

vertices and E is the set of edges, a vertexcut partitioning

divides the set of edges E into N disjoint subsets of nearly

equal size, E1, E2,… EN. Each partition also has a subset of

vertices that hold at least one of the edges in that partition.

This means that a vertex is part of a partition Ei if it is either

source or destination of an edge in Ei. This implies that an

edge can only be in one partition but a vertex can at least

belong to one partition or at most to N partitions. This

problem targets minimizing the number of vertices that are

cut while maintain balance [4].

 Mathematics and Computer Science 2022; 7(1): 1-8 3

3.2. Problem Statement for Edge-cut Partitioning

Similarly, in the case of edge-cut partitioning the

partitioning problem is defined as:

Given an input graph G = (V, E), where V is the set of

vertices and E is the set of edges, an edgecut partitioning

divides the set of vertices into N disjoint subsets of nearly

equal size V1, V2,…VN. Using this partitioning a vertex can

only belong to one partition but edges can cross the boundaries

of partitions. The problem always targets minimizing the

number of edges that cross boundaries while maintaining

balanced number of vertices among partitions [5].

3.3. Metrics for Evaluating the Quality of Partition

Several metrics for evaluating the quality of partitions

produced by partitioning algorithms were considered in

Mykhailenko [4] and Mykhailenko [6]. These metrics are

categorized into two categories namely, execution metrics

and partition metrics [6].

3.3.1. Execution Metrics

Execution metrics are those metrics that can only be used

after processing the graph. Examples of execution metrics

include partitioning time, processing time, number of rounds

performed by the partitioner, and network communication

overhead. According to Mykhailenko [6], a limitation of

execution metrics is that they are tightly coupled to specific

applications and execution environments, making them not

suitable for general comparisons. Another limitation according

to them is that they can also be costly to evaluate and measure.

3.3.2. Partition Metrics

Due to limitations of execution metrics mentioned above,

another category of metrics known as partition metrics has

been proposed [4], [6]. Partition metrics enable us to

evaluate the quality of partitions produced prior to actual

graph processing. Partition metrics are suitable for general

comparison and are less costly to evaluate and measure.

More importantly partition metrics can be used to predict

execution time in some cases, although findings from

Mykhailenko [4] shows that, known partition metrics may

not serve as good predictors of execution time in some other

cases, we are going to elaborate in this section. In this work

we are going to focus on partition metrics.

Mykhailenko [4] defined and studied six (6) partition

metrics. The main objective of their study was to investigate

and find out if it is possible to predict execution time prior to

actual graph processing by evaluating the quality of a

partitions produced using the partition metrics. According to

them, this answer will be useful for a data analyst who wants

to choose a particular partitioner suitable for his/her graph

and for a developer who wants to proposed more efficient

partitioner. To answer this question, they experimented with

Apache GraphX, and performed accurate statistical analysis.

The following are the partition metrics they considered.

Balance which they denoted as BAL was used to measure

the ratio between maximum number of edges in one partition

and average number of edges in all subsets. It is defined as:

Normalized standard deviation denoted as NSD shows the

standard deviation of a partition size. They defined it as:

Largest Partition which was denoted by LP was used to

show the number of vertices in the largest subset. It is

defined as:

� � = � � � � =1….� |(�)|

Vertex Cut which was denoted as VC was used to show the

number of verities that were cut during the partitioning. It is

defined as:

Replication Factor denoted as RF shows the ratio between

the total number of vertices in the portioned graph and the

main graph.

Communication Cost denoted as CC represented the total

number of frontier vertices among all the subsets.

Mykhailenko [4] refer to the vertices that appear in more

than one partition as frontier vertices. Each frontier vertex is

cut at least once.

Mykhailenko [4] further divided these partition metrics

into two categories with each category containing three set of

metrics. The first three metrics targeted on quantifying how

uniform are the sizes of partitions and how processing can be

balanced across the nodes in the cluster. The second category,

which contains the last three metrics, targeted the

communication overhead by considering the vertices that are

replicated in different partitions. According to them Apache

GraphX does not have built-in functions which compute

these metrics, that is why they have implemented new

GraphX functions to compute them.

4. Motivation of the Study

The findings in Mykhailenko [4] show that there is still need

to investigate and find more metrics, since the metrics they

considered do not capture all properties of graph. These six

metrics may not serve as accurate predictors of execution time in

some cases, especially if the graph we are processing has some

features that are not captured by these metrics. The main

motivation of this research is to study large volume of published

papers on graph partitioning with a view to define and analyze

4 Mustapha Abdulkadir Sani et al.: An Overview of Metrics for Evaluating the Quality of Graph Partitioners

more partition metrics which may likely capture the features of a

graph that were not captured by the known metrics.

To accomplished the task so many papers about graph

partitioning were studied, but we discovered that there are a

very few research work dedicated to vertex-cut partitioning.

Majority of the published work focus on edge-cut partitioning.

In this section we present what we found from the papers

studied. Among all the papers, we studied that only two are

based on vertex cut partitioning.

5. Overview of Identified Metrics

In this section, we give a detailed overview of the metrics

we identified in the course of the research. A lot of papers

were studied, we categorized the papers into two categories,

those that focus on vertex-cut partitioning and those that

focus on edge-cut partitioning.

5.1. Vertex Cut Metrics

In this sub-section we present our findings from papers

that talked about vertex-cut partitioning.

Kim [11] proposed partitioning algorithm based on vertex-

cut. The main aim of their algorithm was to ensure that the

resulting partitions are well balanced (i.e of the same size)

and at the same time cutting minimum number of vertices.

Their algorithm was able to find a set of vertices which are

used to efficiently and effectively partition a directed graph.

In their work they came up with the idea of defining what

they termed as “balance vertices” and showed how to find

and use these balance vertices to get a vertex cut of a graph

which is balanced. According to them a vertex v is said to be

a balance vertex of a graph if and only if that vertex is distant

from source and sink and at the same time and the vertex is

connected to source and sink.

Relying on the fact that a vertex cut that passed through

the balance vertices will result into two partitions which are

balanced, their algorithm first finds the set of balance vertices

that can be used as vertex cut, and the graph is then

partitioned in a hierarchical manner by recursively applying

structurally balanced cuts.

They formulated the problem and defined two quality

measures (metrics) namely expansion and modularity to

evaluate the partitioning solutions.

Expansion is the number of vertices through which the two

partitions � � and �
 are split.

They defined it as follows:

The above definition is applicable in a situation where

only two partitions and �
 are involved.

It can be extended to handle more than two partitions as

defined below.

They observed that the above definition does not account

for edge distributions in the resulting clusters. An alternative

definition which directly accounts for the edge distribution is

given below:

Similarly, this can also be extended to be use in the context in

which more than two partitions are involved as defined below.

Where: |� � , 	 | is the number of edges in the partition � � .

In this scenario, the size of the vertex-cut is normalized in

relation to the sizes of the partitions in terms of their numbers

of edges. According to them, like expansion, modularity is

also defined in two ways, i.e either based on the number of

vertices or based on the number of edges within a partition.

The first definition is given below:

Where: denotes the number of vertices in the graph

that are common between partitions Pi and Pj and

denotes the number of vertices in partition Pi.

Below is the second definition which is based on the

number of the edges in the partitions.

Whereas before denotes the number of edges in

partition Pi. According to them, the higher the modularity is

the better is the partitioning.

In a similar work by Rahimian [5], they considered the two

techniques of partitioning graph (i.e. vertex-cut and edge-cut

partitioning), and proposed fully distributed algorithm called

JA-BE-JA. The proposed algorithm is completely parallel,

the operation of the algorithm is not coordinated centrally,

each vertex is processed independently, and only adjacent

neighbors of a vertex and some few random subset of

vertices in the graph need to be known locally. They reported

that their algorithm computes very low vertex cut which are

proved to be more efficient than edge-cut for processing real

world graphs. Their algorithm can be use in both vertex-cut

as well as edge-cut partitioning.

In their work they defined two variations of the partitioning

problem, namely edge-cut and vertex-cut partitioning.

In the case of vertex-cut partitioning, they consider the

following partition metrics to evaluate the quality of partition

produced by their partitioner.

Vertex-Cut: This metric finds the number of times that

graph vertices are cut. A vertex which is cut once will be

replicated in two partitions, and a vertex that is cut twice will

be replicated in over three partitions. They added that this

 Mathematics and Computer Science 2022; 7(1): 1-8 5

metric is important one because if we want to use the

partitioned graph, (for example let us assume we want to run

page rank algorithm on the partitioned graph). If a particular

vertex is replicated in several partitions, every computation

that involves a modification to that vertex, should be

propagated to all other replicas of that vertex in order to have

consistency. Therefore, Vertex-Cut directly affects the cost of

communication imposed by the partitioned graph. The more

the number of replicas the more the communication overhead.

The target is therefore to minimize this metric.

Normalized Vertex Cut: They used this metric to calculate

the vertex-cut of the final partitioning relative to random

partitioning, thus, it shows to what extent their algorithm can

reduce vertex-cut.

Standard Deviation of Partition Sizes: They used this

metric to measure the Standard Deviation of normalized size

of the partitions. To be more precise, they first measured the

size of the partitions, in terms of number of edges, relative to

average size. They added that in a perfect balanced partition,

the normalized size should be 1. They then calculated how

much the normalized size deviates from 1.

Chen [12] proposed a new hybrid vertex-cut partitioning

algorithm that uses differentiated partitioning for low and

high degree vertices. They observed that existing vertex cut

algorithms normally target at reducing the replication factor

of all vertices, however, according to them the key is, instead

of reducing replication factor of low degree vertices, since

high degree vertices inevitably need to be replicated in most

of the partitions. Majority of current vertex cut heuristics

have a bias towards high degree vertices while paying little

attention to low degree vertices. They proposed a balanced p-

way hybrid-cut that focuses on reducing replication factor of

low degree vertices. Their algorithm uses differentiated

partitioning to low degree and high degree vertices. In their

work they targeted minimizing replication factor metric

while maintaining the balance metric. In addition to these

two metrics they also used communication cost metric.

These three metrics are already defined in Mykhailenko [4]

which we reported earlier.

5.2. Edge Cut Metrics

In this sub-section we present our findings from papers

that talked about edge-cut partitioning.

The study of partitioning a billion-node problem can be seen

in the works of Wang [1] and [13]. Wang [1] proposed a

multilevel propagation partitioning technique that can partition

billion-node graph within some hours on distributed cluster

consisting of several nodes. They evaluated the quality of the

partition produced by their approach using the following

metrics: Size of edge cut denoted by EC defined as follows

EC(P) = ∑EC(v)

where EC is the number of neighbors of v that are not part of

v’s partition. Their goal is to minimize this metric, because

according to them in distributed systems moving along cut

edges means doing remote access, and too much of that

results in costly communication overhead. By minimizing

this metric, communication overhead will be reduced which

will result in the reduction of the execution time.

Communication volume of Partitions denoted as CV

defined as follows:

CV(P) = ∑CV(v)

where CV denotes the number of partitions excluding v’s

partition that contains the neighbors of v. Their goal is to

minimize this metric. According to them this metric is

important because in some cases the total number of cross-

partition edges may not be the goal to minimize. Example in

BSP, for each loop, individual messages between two

machines are assembled into a single message, which will

incur a single network communication. This makes sense

because the communication cost most of the times comes

from the number of network communications not size of the

individual messages. Therefore, instead of minimizing the

total number of edges that crossed partition, there is also a

need to minimize total communication volume.

Balance: They also measured the quality of a partition by

its balance, a partition P is balanced if each partition has

almost the same number of vertices. This metric is defined

for given k partitions. It is expected the graph should be

distributed equally among the partitions. i.e each partition is

expected to approximately has vertices. But generally

relaxation is allowed so that the number of vertices in a

single partition is with 0 < � � 1.

Meyerhenke [14] developed a new fast method for the

improvement of graph partitioning. On how to measure the

quality of a partition they reported that this depends on the

application in most cases. Beside the popular edge-cut metric

(denoted by ext in their work), they also measured total

number of boundary node (which they denoted as bnd) which

is used to measure communication costs. To access the

partition shapes, they also included the results on the

partition diameter (denoted by diam).

For a given partitioning P, they defined the metrics as:

Cut edges:

(
) = |� = {� , � } ∈ 	 : Π(�) =
 �Π(�) ≠ � |

Boundary nodes:

(
) = |� ∈ � : Π(�) =
 ��{� , � } ∈ 	 :Π(�) ≠
 |

According to them this metric is important because it

measures communication costs in parallel numerical

simulations more accurately.

Diameter:

(
) = max {� (� , �) = Π(�) = Π(�) ≠ � }

According to them this metric is important because for

some applications, the shape of the partitions, in particular

small aspect ratios but connectedness and smooth boundaries

play an important role.

Hendrickson [15] observed that Edge Cut metric used by

6 Mustapha Abdulkadir Sani et al.: An Overview of Metrics for Evaluating the Quality of Graph Partitioners

standard graph partitioning methodology is a wrong one,

according to them it lacks expressibility, it is only

approximation of the total communication volume. They

suggested a more appropriate metric Boundary Cut, which is

number of external partitions in which vertex Vi has

neighbors. It is defined as

� � � � � � � � � � � = ∑� �

Where bi is the number of external partitions in which

vertex vi has neighbors.

Tsourakakis [16] proposed a unifying framework for

graphs partitioning and they evaluated their algorithm by

measuring two quantities from the resulting partitions. In

particular, for a fixed partitioning P they used the measures of

the fraction of edges cut denoted by λ and the normalized

maximum load denoted by ρ defined as follows:

Martella [17] proposed graph partitioning algorithm which

is a scalable and also adaptive based on label propagation.

They evaluated the quality of the partitions produced by their

algorithm based on two metrics which are locality and

balance. They measured locality as the ratio of local edges

denoted by � and balance as the maximum normalized load

denoted by ρ defined as follows:

Where k denotes the number of partitions, # local edges

denotes the number of edges that connect vertices which are

assign to the same partition, and maximum load is the number

of edges assigned to the partition which is most loaded. The

maximum normalized load metric is used to measure

unbalance and represent the difference in percentage of the

partition which is most loaded from a perfectly balanced one.

According to them locality is an important metric because

typically, graph processing systems vertices are distributed

across machines, and because communication in such systems

is as a result of graph edges, network traffic normally is

generated when edges cross partition boundaries. Therefore, an

efficient partitioning algorithm should minimize the number of

edges that cross partition boundaries. Similarly, balance is

important metric because partitions that balance loads improve

processing latency and resource utilization.

Martella [17] highlighted that the ability to maintain local

edges depends on the number of partitions. Intuitively, the

more partitions, the harder it is to maintain locality. In their

experiment they varied the number of partitions and

measured locality and balance for different graphs.

Figure 2 summarized the metrics used in the case of

vertex-cut approach.

Figure 2. Evaluation metrics for vertex-cut approach.

 Mathematics and Computer Science 2022; 7(1): 1-8 7

Figure 3 summarized the metrics used in the case of edge-cut approach.

Figure 3. Evaluation metrics for edge-cut approach.

6. Conclusion

In this research large body of published papers about graph

partitioning were studied. Our finding shows that very few

work was done about vertex-cut partitioning. Majority of

published work focus on edge-cut partitioning. We also found

that many authors rely on using execution metrics to evaluate

their partitioners by performing some comparisons with state

of the art partitioners. Very few authors rely on partition

metrics. There is still need to investigate and define more

metrics, and there is also need to adapt the metrics used in

the context of edge-cut portioning so that they will also be

applicable in the context of the vertex-cut partitioning.

References

[1] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a
billion-node graph,” in 2014 IEEE 30th International Conference
on Data Engineering, 2014, no. 20100071120032, pp. 568–579.

[2] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S.
Muthukrishnan, “One trillion edges,” Proc. VLDB Endow., vol.
8, no. 12, pp. 1804–1815, Aug. 2015.

[3] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi,”
USENIX Symp. Oper. Syst. Des. Implement., vol. 10, no. 31,
pp. 31–46, 2012.

[4] H. Mykhailenko, G. Neglia, and F. Huet, “Which metrics for
vertex-cut partitioning?,” in 2016 11th International
Conference for Internet Technology and Secured Transactions
(ICITST), 2016, pp. 74–79.

[5] F. Rahimian, A. H. Payberah, S. Girdzijauskas, M. Jelasity,
and S. Haridi, “A Distributed Algorithm for Large-Scale
Graph Partitioning,” ACM Trans. Auton. Adapt. Syst., vol. 10,
no. 2, pp. 1–24, Jun. 2015.

[6] H. Mykhailenko, F. Huet, and G. Neglia, “Comparison of
Edge Partitioners for Graph Processing,” in 2016
International Conference on Computational Science and
Computational Intelligence (CSCI), 2016, pp. 441–446.

[7] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin,
“PowerGraph: Distributed Graph-Parallel Computation on
Natural Graphs,” in Presented as part of the 10th USENIX
Symposium on Operating Systems Design and Implementation
(OSDI 12), 2012, vol. 12, pp. 17–30.

[8] H. P. Sajjad, A. H. Payberah, F. Rahimian, V. Vlassov, and S.
Haridi, “Boosting Vertex-Cut Partitioning for Streaming
Graphs,” in 2016 IEEE International Congress on Big Data
(BigData Congress), 2016, pp. 1–8.

[9] C. Xie, W.-J. Li, and Z. Zhang, “S-PowerGraph: Streaming
Graph Partitioning for Natural Graphs by Vertex-Cut,” Nov.
2015.

[10] Spark, “GraphX Programming Guide,” GraphX - Spark 3.2.0
Documentation. [Online]. Available:
https://spark.apache.org/docs/latest/graphx-programming-
guide.html. [Accessed: 27-Jan-2022].

[11] M. Kim and K. S. Candan, “SBV-Cut: Vertex-cut based graph
partitioning using structural balance vertices,” Data Knowl.
Eng., vol. 72, pp. 285–303, Feb. 2012.

[12] R. Chen, J. Shi, Y. Chen, B. Zang, H. Guan, and H. Chen,
“PowerLyra,” ACM Trans. Parallel Comput., vol. 5, no. 3, pp.
1–39, Jan. 2019.

8 Mustapha Abdulkadir Sani et al.: An Overview of Metrics for Evaluating the Quality of Graph Partitioners

[13] D. Zheng, D. Mhembere, R. Burns, J. Vogelstein, C. E. Priebe,
and A. S. Szalay, “FlashGraph: Processing Billion-Node Graphs
on an Array of Commodity SSDs,” Proc. 13th USENIX Conf.
File Storage Technol. FAST 2015, pp. 45–58, Aug. 2014.

[14] H. Meyerhenke, B. Monien, and T. Sauerwald, “A new
diffusion-based multilevel algorithm for computing graph
partitions of very high quality,” in 2008 IEEE International
Symposium on Parallel and Distributed Processing, 2008, vol.
69, no. 9, pp. 1–13.

[15] B. Hendrickson and T. G. Kolda, “Graph partitioning models

for parallel computing,” Parallel Comput., vol. 26, no. 12, pp.
1519–1534, Nov. 2000.

[16] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic,
“FENNEL,” in Proceedings of the 7th ACM international
conference on Web search and data mining, 2014, pp. 333–
342.

[17] C. Martella, D. Logothetis, A. Loukas, and G. Siganos,
“Spinner: Scalable Graph Partitioning in the Cloud,” in 2017
IEEE 33rd International Conference on Data Engineering
(ICDE), 2017, vol. 26, no. 12, pp. 1083–1094.

