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Abstract: Nowadays, many applications that involve big data can be modelled as graphs. In many cases these graphs may be 

too large to be loaded and processed on a single commodity computer. This necessitated the development of frameworks that 

allow processing large graphs by distributing the graph among nodes in a cluster. To process a graph using these frameworks, 

first, the graph is partitioned into smaller components called subgraphs or partitions, and then assign these smaller subgraphs to 

different nodes for parallel processing. Depending on the type of processing (example, computing pagerank, counting number 

of triangles etc.), there will be some communication between nodes during the execution, this communication affects execution 

time. Therefore, graph partitioning is an important step in distributed graph processing. Being able to determine the quality of a 

partition prior to processing is important as this will allow us to predict the execution time before the actual processing. A 

number of metrics for evaluating the quality of a graph partitions exist, but studies show that these metrics may not serve as 

accurate predictors in many cases. In this work, we reviewed published papers about graph partitioning and we were able to 

identify and defined more metrics in order to have a catalogue of these metrics. 
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1. Introduction 

Nowadays big data is represented as graphs which is often 

too large to load and process on a single machine. Examples 

of applications that are modelled as graphs include online 

social networks (like Facebook, Twitter, Instagram, LinkedIn, 

MySpace, etc), and web graphs. In the case of online social 

networks vertices are used to represent users while edges are 

used to represent the relationship between users, while in the 

case of web graphs web pages are represented as vertices, 

and links between them are represented the edges of the 

graph. The most well-known web graph is www, which 

contains more than 50 billion vertices (web pages) and more 

than 1 trillion edges (links) [1]. 

Most of popular online social networks consist of millions 

of vertices and billions of edges. As at December, 2014 

Facebook has 1.39 billion active users (vertices) with more 

than 400 billion relations (edges). Likewise in case of twitter, 

as at March, 2015 twitter has 288 million active users 

(vertices) with an estimated total of 60 billion followers 

(edges) [2]. These graphs are normally stored in a text file 

before performing computation on the graph. In many cases, 

the size of a graph file may be in hundreds of gigabytes, 

making it almost impossible to load and process the graph 

using a single computer [3]. 

Although some frameworks that enable processing large 

graph using single computer exists, but the traditional way to 

handle large graph is to use a cluster of nodes. First, the 

graph is partitioned into smaller components called partitions 

or subgraphs, and then assign each partition is assigned to a 

node in the cluster. Each node will process a subset of the 
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graph in parallel [4]. Unlike normal parallel data processing 

where a large database can be partitioned and each partition 

is processed independent of each other, in parallel processing 

of partitioned graph, the nodes need to periodically share 

intermediate computation result during execution. This 

sharing of computation results introduces communication 

overhead which has a significant impact on the execution 

time [4]. By partitioning the graph in an efficient manner, we 

will be able to mitigate this communication overhead, which 

will also lead to reduction of total execution time. In view of 

this it is essential to maintain the locality of information 

while distributing the graph among the multiple nodes by 

trying to have a minimum number of vertices or edges that 

are cut during partitioning. It is also important to partition the 

graph into equal subsets so as to distribute the computational 

load evenly among nodes [5]. In practice partitioning a graph 

into subgraphs is a hard problem, existing Partitioning 

Algorithms rely on heuristics to find to find good enough 

tradeoffs between balance (splitting the graph into equal 

subsets) and communication (minimizing number of edges or 

vertices that are cut) [4]. 

1.1. Organization of the Paper 

The paper is organized as follows; Section one gives the 

general introduction, in section two we discussed two 

classical techniques of graph partitioning (i.e. edge-cut 

partitioning and vertex-cut partitioning). The problem 

statement of graph partitioning is presented in section three. 

We presented the motivation of the study in section four. 

Overview of identified metrics is presented in section five, 

and finally, we draw conclusion in section six. 

1.2. Our Contribution 

Our major contribution is that we were able to compile and 

document a considerable number of evaluation metrics which 

are used by so many and different researchers in the area of 

graph processing to evaluate the quality of graph partitions 

produced by their graph partition algorithms. Our work is 

going to be useful to researchers who want to propose a new 

graph partition algorithm or those researchers that want to 

use existing one. To the best of our knowledge, we are the 

first to conduct this type of study. 

2. Techniques of Graph Partitioning 

There are two major techniques for partitioning a graph 

into subgraph depending on weather the subgraphs are 

composed of disjoint set of vertices or disjoint set of edges. 

The former is known as edge-cut partitioning and the latter is 

known as vertex-cut partitioning. 

2.1. Edge-cut Partitioning 

This technique also called vertex partitioning [6], is the 

classical way of partitioning graphs [4, 5]. In this approach, 

vertices of a graph are divided into disjoint sets of nearly the 

same size, while minimizing number of edges that span over 

separated sets. An edge is cut if its vertices are assigned to 

two different partitions [4]. 

While a good edge cut partitioning can reduce 

communication overhead and can also balance the number of 

vertices in each subgraph, some studies [4, 5, 7] show that it 

does not produce good partitions on real world graphs which 

normally follow power-law degree distribution. 

2.2. Vertex-cut Partitioning 

It was proved in Gonzalez [7] that real-world graphs like 

online social networks can be partitioned efficiently if vertex 

cut approach also known as edge partitioning [6] is used. In 

vertex cut approach, edges of a graph are split into different 

disjoint sets of nearly the same size while minimizing 

number of vertices that are cut. In this approach vertices may 

be cut and thus replicated in more than one partition due to 

the distribution of their edges across different partitions. A 

good vertex cut is the one that achieve minimum replica 

while maintaining the balanced number of edges among 

partitions. Some graph processing frameworks like GraphX, 

Power Graph are based on vertex-cut technique [4, 6, 8, 9]. 

Figures 1(a) and 1(b) corresponds to edge-cut and vertex-cut 

partitioning respectively. 

 

Figure 1. Partitioning a graph into three partitions [10]. 

3. Problem Statement 

As we have mentioned in section 2 that there are to major 

techniques of partitioning a graph which are vertex-cut and 

edge-cut portioning, in this section we give the problem 

statement for the two techniques. 

3.1. Problem Statement for Edge-cut Partitioning 

In the case of vertex-cut partitioning, the graph partitioning 

problem is defined as: 

Given an input graph G = (V, E), where V is the set of 

vertices and E is the set of edges, a vertexcut partitioning 

divides the set of edges E into N disjoint subsets of nearly 

equal size, E1, E2,… EN. Each partition also has a subset of 

vertices that hold at least one of the edges in that partition. 

This means that a vertex is part of a partition Ei if it is either 

source or destination of an edge in Ei. This implies that an 

edge can only be in one partition but a vertex can at least 

belong to one partition or at most to N partitions. This 

problem targets minimizing the number of vertices that are 

cut while maintain balance [4]. 
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3.2. Problem Statement for Edge-cut Partitioning 

Similarly, in the case of edge-cut partitioning the 

partitioning problem is defined as: 

Given an input graph G = (V, E), where V is the set of 

vertices and E is the set of edges, an edgecut partitioning 

divides the set of vertices into N disjoint subsets of nearly 

equal size V1, V2,…VN. Using this partitioning a vertex can 

only belong to one partition but edges can cross the boundaries 

of partitions. The problem always targets minimizing the 

number of edges that cross boundaries while maintaining 

balanced number of vertices among partitions [5]. 

3.3. Metrics for Evaluating the Quality of Partition 

Several metrics for evaluating the quality of partitions 

produced by partitioning algorithms were considered in 

Mykhailenko [4] and Mykhailenko [6]. These metrics are 

categorized into two categories namely, execution metrics 

and partition metrics [6]. 

3.3.1. Execution Metrics 

Execution metrics are those metrics that can only be used 

after processing the graph. Examples of execution metrics 

include partitioning time, processing time, number of rounds 

performed by the partitioner, and network communication 

overhead. According to Mykhailenko [6], a limitation of 

execution metrics is that they are tightly coupled to specific 

applications and execution environments, making them not 

suitable for general comparisons. Another limitation according 

to them is that they can also be costly to evaluate and measure. 

3.3.2. Partition Metrics 

Due to limitations of execution metrics mentioned above, 

another category of metrics known as partition metrics has 

been proposed [4], [6]. Partition metrics enable us to 

evaluate the quality of partitions produced prior to actual 

graph processing. Partition metrics are suitable for general 

comparison and are less costly to evaluate and measure. 

More importantly partition metrics can be used to predict 

execution time in some cases, although findings from 

Mykhailenko [4] shows that, known partition metrics may 

not serve as good predictors of execution time in some other 

cases, we are going to elaborate in this section. In this work 

we are going to focus on partition metrics. 

Mykhailenko [4] defined and studied six (6) partition 

metrics. The main objective of their study was to investigate 

and find out if it is possible to predict execution time prior to 

actual graph processing by evaluating the quality of a 

partitions produced using the partition metrics. According to 

them, this answer will be useful for a data analyst who wants 

to choose a particular partitioner suitable for his/her graph 

and for a developer who wants to proposed more efficient 

partitioner. To answer this question, they experimented with 

Apache GraphX, and performed accurate statistical analysis. 

The following are the partition metrics they considered. 

Balance which they denoted as BAL was used to measure 

the ratio between maximum number of edges in one partition 

and average number of edges in all subsets. It is defined as: 

 

Normalized standard deviation denoted as NSD shows the 

standard deviation of a partition size. They defined it as: 

 

Largest Partition which was denoted by LP was used to 

show the number of vertices in the largest subset. It is 

defined as: 

� �  = � � � � =1….�  |(	 � )| 

Vertex Cut which was denoted as VC was used to show the 

number of verities that were cut during the partitioning. It is 

defined as: 

 

Replication Factor denoted as RF shows the ratio between 

the total number of vertices in the portioned graph and the 

main graph. 

 

Communication Cost denoted as CC represented the total 

number of frontier vertices among all the subsets. 

 

Mykhailenko [4] refer to the vertices that appear in more 

than one partition as frontier vertices. Each frontier vertex is 

cut at least once. 

Mykhailenko [4] further divided these partition metrics 

into two categories with each category containing three set of 

metrics. The first three metrics targeted on quantifying how 

uniform are the sizes of partitions and how processing can be 

balanced across the nodes in the cluster. The second category, 

which contains the last three metrics, targeted the 

communication overhead by considering the vertices that are 

replicated in different partitions. According to them Apache 

GraphX does not have built-in functions which compute 

these metrics, that is why they have implemented new 

GraphX functions to compute them. 

4. Motivation of the Study 

The findings in Mykhailenko [4] show that there is still need 

to investigate and find more metrics, since the metrics they 

considered do not capture all properties of graph. These six 

metrics may not serve as accurate predictors of execution time in 

some cases, especially if the graph we are processing has some 

features that are not captured by these metrics. The main 

motivation of this research is to study large volume of published 

papers on graph partitioning with a view to define and analyze 
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more partition metrics which may likely capture the features of a 

graph that were not captured by the known metrics. 

To accomplished the task so many papers about graph 

partitioning were studied, but we discovered that there are a 

very few research work dedicated to vertex-cut partitioning. 

Majority of the published work focus on edge-cut partitioning. 

In this section we present what we found from the papers 

studied. Among all the papers, we studied that only two are 

based on vertex cut partitioning. 

5. Overview of Identified Metrics 

In this section, we give a detailed overview of the metrics 

we identified in the course of the research. A lot of papers 

were studied, we categorized the papers into two categories, 

those that focus on vertex-cut partitioning and those that 

focus on edge-cut partitioning. 

5.1. Vertex Cut Metrics 

In this sub-section we present our findings from papers 

that talked about vertex-cut partitioning. 

Kim [11] proposed partitioning algorithm based on vertex-

cut. The main aim of their algorithm was to ensure that the 

resulting partitions are well balanced (i.e of the same size) 

and at the same time cutting minimum number of vertices. 

Their algorithm was able to find a set of vertices which are 

used to efficiently and effectively partition a directed graph. 

In their work they came up with the idea of defining what 

they termed as “balance vertices” and showed how to find 

and use these balance vertices to get a vertex cut of a graph 

which is balanced. According to them a vertex v is said to be 

a balance vertex of a graph if and only if that vertex is distant 

from source and sink and at the same time and the vertex is 

connected to source and sink. 

Relying on the fact that a vertex cut that passed through 

the balance vertices will result into two partitions which are 

balanced, their algorithm first finds the set of balance vertices 

that can be used as vertex cut, and the graph is then 

partitioned in a hierarchical manner by recursively applying 

structurally balanced cuts. 

They formulated the problem and defined two quality 

measures (metrics) namely expansion and modularity to 

evaluate the partitioning solutions. 

Expansion is the number of vertices through which the two 

partitions � �  and � 
  are split. 

They defined it as follows: 

 

The above definition is applicable in a situation where 

only two partitions and � 
  are involved. 

It can be extended to handle more than two partitions as 

defined below. 

 

They observed that the above definition does not account 

for edge distributions in the resulting clusters. An alternative 

definition which directly accounts for the edge distribution is 

given below: 

 

Similarly, this can also be extended to be use in the context in 

which more than two partitions are involved as defined below. 

 

Where: |� � , 	 | is the number of edges in the partition � � . 

In this scenario, the size of the vertex-cut is normalized in 

relation to the sizes of the partitions in terms of their numbers 

of edges. According to them, like expansion, modularity is 

also defined in two ways, i.e either based on the number of 

vertices or based on the number of edges within a partition. 

The first definition is given below: 

 

Where:  denotes the number of vertices in the graph 

that are common between partitions Pi and Pj and  

denotes the number of vertices in partition Pi. 

Below is the second definition which is based on the 

number of the edges in the partitions. 

 

Whereas before  denotes the number of edges in 

partition Pi. According to them, the higher the modularity is 

the better is the partitioning. 

In a similar work by Rahimian [5], they considered the two 

techniques of partitioning graph (i.e. vertex-cut and edge-cut 

partitioning), and proposed fully distributed algorithm called 

JA-BE-JA. The proposed algorithm is completely parallel, 

the operation of the algorithm is not coordinated centrally, 

each vertex is processed independently, and only adjacent 

neighbors of a vertex and some few random subset of 

vertices in the graph need to be known locally. They reported 

that their algorithm computes very low vertex cut which are 

proved to be more efficient than edge-cut for processing real 

world graphs. Their algorithm can be use in both vertex-cut 

as well as edge-cut partitioning. 

In their work they defined two variations of the partitioning 

problem, namely edge-cut and vertex-cut partitioning. 

In the case of vertex-cut partitioning, they consider the 

following partition metrics to evaluate the quality of partition 

produced by their partitioner. 

Vertex-Cut: This metric finds the number of times that 

graph vertices are cut. A vertex which is cut once will be 

replicated in two partitions, and a vertex that is cut twice will 

be replicated in over three partitions. They added that this 
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metric is important one because if we want to use the 

partitioned graph, (for example let us assume we want to run 

page rank algorithm on the partitioned graph). If a particular 

vertex is replicated in several partitions, every computation 

that involves a modification to that vertex, should be 

propagated to all other replicas of that vertex in order to have 

consistency. Therefore, Vertex-Cut directly affects the cost of 

communication imposed by the partitioned graph. The more 

the number of replicas the more the communication overhead. 

The target is therefore to minimize this metric. 

Normalized Vertex Cut: They used this metric to calculate 

the vertex-cut of the final partitioning relative to random 

partitioning, thus, it shows to what extent their algorithm can 

reduce vertex-cut. 

Standard Deviation of Partition Sizes: They used this 

metric to measure the Standard Deviation of normalized size 

of the partitions. To be more precise, they first measured the 

size of the partitions, in terms of number of edges, relative to 

average size. They added that in a perfect balanced partition, 

the normalized size should be 1. They then calculated how 

much the normalized size deviates from 1. 

Chen [12] proposed a new hybrid vertex-cut partitioning 

algorithm that uses differentiated partitioning for low and 

high degree vertices. They observed that existing vertex cut 

algorithms normally target at reducing the replication factor 

of all vertices, however, according to them the key is, instead 

of reducing replication factor of low degree vertices, since 

high degree vertices inevitably need to be replicated in most 

of the partitions. Majority of current vertex cut heuristics 

have a bias towards high degree vertices while paying little 

attention to low degree vertices. They proposed a balanced p-

way hybrid-cut that focuses on reducing replication factor of 

low degree vertices. Their algorithm uses differentiated 

partitioning to low degree and high degree vertices. In their 

work they targeted minimizing replication factor metric 

while maintaining the balance metric. In addition to these 

two metrics they also used communication cost metric. 

These three metrics are already defined in Mykhailenko [4] 

which we reported earlier. 

5.2. Edge Cut Metrics 

In this sub-section we present our findings from papers 

that talked about edge-cut partitioning. 

The study of partitioning a billion-node problem can be seen 

in the works of Wang [1] and [13]. Wang [1] proposed a 

multilevel propagation partitioning technique that can partition 

billion-node graph within some hours on distributed cluster 

consisting of several nodes. They evaluated the quality of the 

partition produced by their approach using the following 

metrics: Size of edge cut denoted by EC defined as follows 

EC(P) = ∑EC(v) 

where EC is the number of neighbors of v that are not part of 

v’s partition. Their goal is to minimize this metric, because 

according to them in distributed systems moving along cut 

edges means doing remote access, and too much of that 

results in costly communication overhead. By minimizing 

this metric, communication overhead will be reduced which 

will result in the reduction of the execution time. 

Communication volume of Partitions denoted as CV 

defined as follows: 

CV(P) = ∑CV(v) 

where CV denotes the number of partitions excluding v’s 

partition that contains the neighbors of v. Their goal is to 

minimize this metric. According to them this metric is 

important because in some cases the total number of cross-

partition edges may not be the goal to minimize. Example in 

BSP, for each loop, individual messages between two 

machines are assembled into a single message, which will 

incur a single network communication. This makes sense 

because the communication cost most of the times comes 

from the number of network communications not size of the 

individual messages. Therefore, instead of minimizing the 

total number of edges that crossed partition, there is also a 

need to minimize total communication volume. 

Balance: They also measured the quality of a partition by 

its balance, a partition P is balanced if each partition has 

almost the same number of vertices. This metric is defined 

for given k partitions. It is expected the graph should be 

distributed equally among the partitions. i.e each partition is 

expected to approximately has  vertices. But generally 

relaxation is allowed so that the number of vertices in a 

single partition is  with 0 < �  � 1. 

Meyerhenke [14] developed a new fast method for the 

improvement of graph partitioning. On how to measure the 

quality of a partition they reported that this depends on the 

application in most cases. Beside the popular edge-cut metric 

(denoted by ext in their work), they also measured total 

number of boundary node (which they denoted as bnd) which 

is used to measure communication costs. To access the 

partition shapes, they also included the results on the 

partition diameter (denoted by diam). 

For a given partitioning P, they defined the metrics as: 

Cut edges: 

(
 ) = |�  = {� , � } ∈ 	 : Π(� ) = 
 �Π(� ) ≠ � | 

Boundary nodes: 

(
 ) = |�  ∈ � : Π(� ) = 
 ��{� , � } ∈ 	 :Π(� ) ≠ 
 | 

According to them this metric is important because it 

measures communication costs in parallel numerical 

simulations more accurately. 

Diameter: 

(
 ) = max {� (� , � ) = Π(� ) = Π(� ) ≠ � } 

According to them this metric is important because for 

some applications, the shape of the partitions, in particular 

small aspect ratios but connectedness and smooth boundaries 

play an important role. 

Hendrickson [15] observed that Edge Cut metric used by 
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standard graph partitioning methodology is a wrong one, 

according to them it lacks expressibility, it is only 

approximation of the total communication volume. They 

suggested a more appropriate metric Boundary Cut, which is 

number of external partitions in which vertex Vi has 

neighbors. It is defined as 

� � � � � � � �  � � �  = ∑� �  

Where bi is the number of external partitions in which 

vertex vi has neighbors. 

Tsourakakis [16] proposed a unifying framework for 

graphs partitioning and they evaluated their algorithm by 

measuring two quantities from the resulting partitions. In 

particular, for a fixed partitioning P they used the measures of 

the fraction of edges cut denoted by λ and the normalized 

maximum load denoted by ρ defined as follows: 

 

 

Martella [17] proposed graph partitioning algorithm which 

is a scalable and also adaptive based on label propagation. 

They evaluated the quality of the partitions produced by their 

algorithm based on two metrics which are locality and 

balance. They measured locality as the ratio of local edges 

denoted by � and balance as the maximum normalized load 

denoted by ρ defined as follows: 

 

Where k denotes the number of partitions, # local edges 

denotes the number of edges that connect vertices which are 

assign to the same partition, and maximum load is the number 

of edges assigned to the partition which is most loaded. The 

maximum normalized load metric is used to measure 

unbalance and represent the difference in percentage of the 

partition which is most loaded from a perfectly balanced one. 

According to them locality is an important metric because 

typically, graph processing systems vertices are distributed 

across machines, and because communication in such systems 

is as a result of graph edges, network traffic normally is 

generated when edges cross partition boundaries. Therefore, an 

efficient partitioning algorithm should minimize the number of 

edges that cross partition boundaries. Similarly, balance is 

important metric because partitions that balance loads improve 

processing latency and resource utilization. 

Martella [17] highlighted that the ability to maintain local 

edges depends on the number of partitions. Intuitively, the 

more partitions, the harder it is to maintain locality. In their 

experiment they varied the number of partitions and 

measured locality and balance for different graphs. 

Figure 2 summarized the metrics used in the case of 

vertex-cut approach. 

 

Figure 2. Evaluation metrics for vertex-cut approach. 
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Figure 3 summarized the metrics used in the case of edge-cut approach. 

 

Figure 3. Evaluation metrics for edge-cut approach. 

6. Conclusion 

In this research large body of published papers about graph 

partitioning were studied. Our finding shows that very few 

work was done about vertex-cut partitioning. Majority of 

published work focus on edge-cut partitioning. We also found 

that many authors rely on using execution metrics to evaluate 

their partitioners by performing some comparisons with state 

of the art partitioners. Very few authors rely on partition 

metrics. There is still need to investigate and define more 

metrics, and there is also need to adapt the metrics used in 

the context of edge-cut portioning so that they will also be 

applicable in the context of the vertex-cut partitioning. 
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