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Abstract: The Internet of things, including Internet technology, including wired and wireless networks. Internet of Things and 

the Internet is the relationship between the parent and the child. In this paper, we aim to study the Investigation on the network 

packet loss’s long-range dependence and QOE and gain a good result and conclusion. In order to better establish no-reference 

video quality assessment model considering the network packet loss and further gain a better QoE evaluation, so we build NS2 + 

MyEvalvid simulation platform to study the scale characteristic of the network packet loss, scale characteristic of packet loss 

through the influence of packet loss rate to influence QoE. The experimental results show that, packet loss processes have 

long-range dependence, the number of superimposed source N, shape parameter, Hurst parameter, the output link speed have 

impacts on long-range dependence. We came to the conclusion that when superimposed source N is more, the shape parameter is 

smaller, Hurst parameter is bigger, the output link speed is smaller, packet loss’s long range dependence is larger, packet loss rate 

is high. 
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1. Introduction 

At present, the development of international information 

prompted the international people's exchanges widely, 

network video business is increasing. In the information 

industry, network video business has become the most popular 

application of computer network field, from the international 

and domestic exchanges to life and entertainment, video 

penetrated into every aspect of our lives.  

But the network itself is not perfect, in essence, is a kind of 

distortion network. Therefore, causes the academia and 

industry professionals think that, what causes the decrease of 

the quality of the video and how to evaluate the quality of the 

network video. So, we set up the video quality assessment 

model to evaluate the quality of video. Network TCP/IP 

protocol itself is only a best effort protocol [1], in this service 

model, all the business flows, fair competition for network 

resources, can not meet the bandwidth, delay, jitter and other 

special requirements of the new application. These new 

applications contributed to QoS (Quality of Service, QoS) 

concept appears. In addition, QoS and man-made factors 

together determine the user’s Quality of Experience (Quality 

of Experience, QoE) [2]. The various businesses on computer 

networks, presents the long-range dependence [3, 4]. Only 

under the self-similar traffic network’s performance, 

conducting the correct analysis and evaluation, we can make 

the network performance is optimized. One of the most 

important parameters in QoS is the packet loss rate, different 

output link speed will affect the packet loss’s long range 

dependence, long-range dependence will further affect the 

packet loss rate. 

In related work, the reference [5, 6] mainly proposed scale 

characteristic of packet loss, scale characteristic mainly refers 

to in the process of packet loss reflects the long correlation. 

Long-range dependence with the self-similarity are two 

equivalent concepts. Because of the long correlation will 

affect the packet loss and further affect quality of service 

(QoS), and finally affect the QoE. The packet loss rate is an 
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important measurement parameter in QoS. So study 

Long-range dependence has an important value and 

significance. References [7, 8] researches in network traffic, 

discusses several existing Long-range dependence model, 

comparing their respective advantages and disadvantages, and 

predict the network traffic associated short and Long-range 

dependence into account, is the future direction of the traffic 

model, and be able better to describe any network traffic 

development direction. Through the study found the number 

of superimposed source N, shape parameter, Hurst parameter, 

the output link speed has impacts on Long-range dependence, 

and further affects the packet loss rate. Finally, it is concluded 

that different output link speeds have a significant impact on 

long-range dependence, and further to affect the packet loss 

rate. At the same time, this conclusion will be applied to 

establish the no-reference video quality assessment model 

considering the network packet loss. 

2. Method 

2.1. NS2’s Principles of Generating Self Similar Traffic 

NS2 provides four types of traffic generator: (1) EXPOO. (2) 

POO: (On/Off) Pareto distribution generating traffic. (3) 

Generate traffic CBR use the determine rate. (4) According to 

the trace files to produce traffic’s Traffic Trace. Including in 

OTCL class Application/Traffic/Pareto’s one traffic generator 

is POO_Traffic. POO_Traffic according to Pareto on/off 

distribution, generate traffic, at a fixed rate send packets in the 

period of one, no packet transmission in an off period. 

Superimposed source N many heavy tail’s On/Off source 

superposition can produce self-similar traffic flow. N is greater, 

the self-similar phenomenon is more obvious. 

The location of each file: (1) Application class: In 

C++Application class (~/NS/apps/app. h). (2) 

trafficGennerator abstract base class  

(~NS/tools/trafgeh. h”). (3) POO_traffic (~NS/tools/Pareto. 

cc). (4) CBR_Traffic (~NS/tools/cbr_traffic. cc) [9]. 

In this paper, on the basis of configuration POO_traffic’s 

parameter is as follows: 

set traffic [new Application/Traffic/Pareto] 

$traffic set packetSize_ $size 

$traffic set burst_time_ $burst 

$traffic set idle_time_ $idle 

$traffic set rate_ $rate 

$traffic set shape_ $shape 

Among them, the average on (sudden) time is burst_time_, 

average Off (free) time is idle_time_, during the sudden time, 

the package delivery rate is rate_, packet size is packetSize_, 

Pareto distribution’s shape parameter is shape_ [10]. 

We can can synthetic business flow with self similar 

proprietorss N numbers Pareto On Offf [11] traffic generators. 

The topology structure, including n (0), and (1),, and (N-1) 

these N number sending nodes, or is the routing node and S is 

the receiving node. N+1 links: n (0), and (1), and (N-1) is N 

number links to R, 1MB is bandwidth, 10ms is the delay, 

discard the package excess capacity; 10MB is R to S 

bandwidth, 10ms is the delay, discard the package excess 

capacity. When shape parameter is 1.4, flow rate figure as 

shown in figure 1. The horizontal axis shows the simulation 

time is 300 s, flow rate value that is the vertical axis is the 

amount of packet loss per unit time, as can be seen from the 

figure of sudden change of the traffic flow [12], and the linear 

flow rate values most are 400, 500, 600 these three values. 

 

Figure 1. Flow rate figure. 

2.2. The Definition of Self-Similar Processes 

For a generalized stationary random process { } , 

set with constan my a:  and finite variance 

, the self correlation coefficient is [13]: 

r (k) =E[ ]/ , (k=0,1,2,…) 
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The self correlation coefficient only concerned with k, the 
number of network business entity in the k-th unit of time 

arrival is called . 

Use represents a soul, wly, ary, g function, that is 

, and for all X > 0 set up r(k)- , said the 

process to satis by the above conditions called progressive 
self-similar process [14]. 

Definition Generalized stationary discrete random process 

{} 0,1,2...,n= , called strong, progressive two order self-similar 

pro, ess, a, d have self-similar parameter H = 1 β− /2, 0 < 

β  < 1, if for any k > -1 self-similar funcation all meet 

lim ( ) /
m

r k k
β−

→∞
 = C < ∞ , C is constants.  

Self-similar function H is also known as the Hurst 

parameter, it is the only parameter description of self similarity. 

Short time-related 0 < H< 1, when there is no correlation H = 

1/2, long time-related 1/2 < H< 1. Because the network traffic 

is long-range dependent, therefore, the range is (1/2,1), H is 

bigger, the higher the degree of self similarity. 

2.3. Influence Factors of Long-Range Dependence 

2.3.1. The Influences of Superimposed Source N on 

Long-Range Dependence 

According to the principle of the experiment we can assume, 

when N is bigger, self-similar is bigger, Hurst parameter is 

bigger, packet loss rate is bigger. Therefor, do four 

experiments, when the shape parameter is 1.5, the values of N 

respectively, are 5, 7, 9, 11, and make flow rate figure under 

the condition of N value are these values, the horizontal axis 

represents time, the vertical axis represents the numbers of 

packet arrival per unit time. When the N value is 5 rate figure 

as shown in 2, when the N value is 7 rate figure as shown in 3, 

when the N value is 9 rate figure as shown in 4, when the N 

value is 11 rate figure as shown in 5. 

 

Figure 2. Rate figure of N value is 5. 

 

Figure 3. Rate figure of N value. 
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Figure 4. Rate figure of N value is 9. 

 

Figure 5. Rate figure of N value is 11. 

By observing the above four line types of the figures and the area the lineup and the horizontal axis enclosed we can find, with 

the increasing of N value, the numbers of packet arrival per unit time that is with flow rate is increasing, self-similarity is obvious, 

Hurst parameter is bigger, packet loss rate is bigger. Thus, we can come to the conclusion that N is bigger, self-similar is bigger, 

Hurst parameter is bigger, packet loss rate is bigger. 

2.3.2. The Influences of Shape Parameter on Long-Range 

Dependence 

According to the relation type we can assume, the shape 

parameter is smaller, Hurst is bigger, so self-similarity is 

obvious, packet loss rate is bigger. Therefor, do four 

experiments, shape parameter respectively, are 1, 1.4, 1.5, 2, 

under the condition of shape parameter are these values’s rate 

figures respectively are as shown in figure 6, figure 7, figure 

8, figure 9. Rate figure’s horizontal axis represents time, the 

vertical axis represents the numbers of packet arrival per unit 

time. Among them, H= (3-a) /2. 
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Figure 6. Rate figure of shape parameter is 1. 

 

Figure 7. Rate figure of shape parameter is 1.4. 

 

Figure 8. Rate figure of shape parameter is 1.5. 
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Figure 9. Rate figure of shape parameter is 2. 

By observing the above four line types of the figures and the 

area the lineup and the horizontal axis enclosed we can find, 

with the increasing of the shape parameter, self-similar is 

decreasing, Hurst parameter is decreased, packet loss rate is 

smaller. Thus, we can come to the conclusion that shape 

parameter is bigger, self-similar is smaller, Hurst parameter is 

smaller, packet loss rate is smaller. 

3. Result and Discussion 

3.1. The Influences of Hurst Parameter on Long-Range 

Dependence 

According to the relation type H= (3-a) /2 we can come to 

the conclusion that Hurst parameter [15] is bigger, self-similar 

is bigger, packet loss rate is bigger. The specific experiment as 

2.2.1 part. 

3.2. The Influences of the Output Link Speed on 

Long-Range Dependence 

N=5, Hurst parameter is 1.5. link=10MB. We can assume the 

output link speed [16] is bigger, self-similar is smaller, Hurst 

parameter is smaller, packet loss rate is smaller. The output link 

speed respectively set to 5MB, 10MB, 15MB, 20MB, under the 

condition of these settings the flow rate figures are as shown in 

figure 10, figure 11, figure 12, figure 13. 

 

Figure 10. Rate figure of the output link speed is 5MB. 
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Figure 11. Rate figure of the output link speed is 10MB. 

 

Figure 12. Rate figure of the output link speed is 15MB. 

 

Figure 13. Rate figure of the output link speed is 20MB. 
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By observing the above four line types of the figures and the 

area the lineup and the horizontal axis enclosed we can find, 

with the increasing of the output link speed, self-similar [16] is 

decreasing, Hurst parameter is decreased, packet loss rate is 

smaller. Thus, we can come to the conclusion that the output 

link speed is bigger, self-similar is smaller, Hurst parameter is 

smaller, packet loss rate is smaller. 

4. Conclusion 

First, introduce NS2’s principles of generating self similar 

traffic. Second, discuss the number of superimposed source N, 

shape parameter, Hurst parameter, the output link speed has 

impacts on long correlation, and further affects the packet loss 

rate. Finally, it is concluded that different output link speeds 

have a significant impact on long-range dependence, and 

further to affect the packet loss rate. At the same time, this 

conclusion will be applied to establish no-reference video 

quality assessment model considering the network packet loss, 

select the output link speed as a parameter to establish the 

model. 
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