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Abstract: In this paper, the minimum time problem for differential systems of parabolic type with distributed control and 

control - state constraints are considered. The minimum time problem is replaced by an equivalent one with fixed time and the 

necessary optimality conditions of time-optimal control are obtained by using the generalized Dubovitskii-Milyutin Theorem 

(see [1]). 
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1. Introduction 

The most widely studies of the problems in the 

mathematical theory of control are the "  " 

control problems. The simple version, is the following 

optimization problem : 

  

 

where ,  are spaces of admissible control and states 

respectively. In order to explain the results we have in mind, it 

is convenient to consider the abstract form of the 

Dubovitskii-Milyutin theorem. At the first we recall some 

definitions of conical approximations [2], [3] and cones of the 

same sense or of the opposite sense [3]. Let  be a set 

contained in a Banach space  and  be a given 

functional. 

Definition 1 A set 

 

where  as  is called tangent cone to the set 

 at the point  

Definition 2 A set 

 where  is a 

neighborhood of , is called the admissible cone to the set 

 at the point  

Definition 3 A set 

 is 

called the cone of decreases of the functional  at the point 

 

All the cones defined above are cones with vertices at the 

origin. The cones , , are open while the 

, is closed. If , then  does 

not exist. Moreover, if    then 
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If the cones ,  and  are 

convex, then they are called regular cones and we denote them 

by ,  and respectively. 

Let   be a system of cones and   be a 

ball with center  and radius  in the space  

Definition 4 The cones   are of the same 

sense if    so that 

 we have 

 ( or equivalently the inequality 

 implies the inequality  , ). 

Definition 5  The cones   are of the 

opposite sense if     so 

that  

Remark 1  Form definitions 4 and 5 it follows that the set 

of cones of the same sense is disjoint with the set of cones of 

the opposite sense. If a certain subsystem of cones is of the 

opposite sense, then the whole system is also of the opposite 

sense. 

Definition 6 Let  be a cone in . The adjoint cone  

of  is defined as 

 

where  denotes the dual space of  

Let  be Banach space,  

 represent inequality constraints,  

  represent equality constraints and  

  is given functional . 

Theorem 1 ( [1] )Assume that : 

(i) (i)  is convex and continuous, 

(ii) the cones   are convex, 

(iii) the cones  are either of 

the same sense or of the opposite sense, then  is a 

solution of the problem 

 

if and only if the following equation ( Euler -Lagrange 

equation )must hold: 

 

where , 

 and  

 with not all functionals equal to zero 

simultaneously. 

The above generalization of the Dubovitskii- Milyutin 

theorem is based on the definitions of the regular cones RTC, 

RFC, RAC and cones of the same sense and of the opposite 

sense which are introduced above. But for the purpose of our 

problems we are going to use the following sufficient 

condition for two cones to be of the same sense . 

Theorem 2 ( [3]) Let   be a cone of the form  

  where   

is a cone in  ( - normed spaces ). If the operator M is 

linear and continuous, then 

 

and the cones ,  are of the same sense. 

Various optimization problems associated with the optimal 

control of distributed parameter systems have been studied in 

[6]-[7],[10]-[13]. The problem of time-optimal control 

associated with the parabolic systems have been discussed in 

some papers.  In [6]  the existence of a time-optimal control 

of system governed by a parabolic equation has been 

discussed. In [5], the maximum principles for the time optimal 

control for parabolic equation is given. All these results 

concerned the time optimal control problems of systems 

governed by only one parabolic equation and only control 

constraints.  In [14]-[25], the above results for systems 

governed by one parabolic equation are extended to the case of 

 co-operative parabolic or hyperbolic systems with only 

distributed control constraints. In the present paper, we will 

consider time-optimal distributed control problem for the 

following  co-operative linear parabolic system with 

control-state constraints (here and everywhere below the 

index ): 

    (1) 

where  is a bounded open domain with smooth 

boundary    is a given functions,  represents a 

distributed control and  ( ) are a family of 

 continuous matrix operators, 

 

with co-operative coefficient functions  satisfying the 

following conditions: 

    (2) 
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2. Solutions of Co-operative Parabolic 

Systems 

This section is devoted to the analysis of the existence and 

uniqueness of solutions of system (1). Let  be the 

usual Sobolev space( see [4]) of order  one which consists of 

all  whose distributional derivatives  

 and  with the scalar product 

    . 

We have the following dense embedding form ( see [4]) : 

 

where  is the dual of  

For  

and , let us define a family of continuous bilinear 

forms 

 by 

  

(3) 

Lemma 1 If  is a regular bounded domain in  

with boundary  and if  is positive on  and 

smooth enough ( in particular ) then the 

eigenvalue problem: 

 

possesses an infinite sequence of positive eigenvalues: 

 

Moreover is simple, its associate eigenfunction 

 is positive, and is characterized by: 

           (4) 

Proof. See[5]. 

Now, let 

������ 	≥ 	 − 1,					
 = 1,2, … . , 	         (5) 

Lemma 2 If (2) and (5) hold then, the bilinear form (3) 

satisfy the Gårding inequality 

���; �, �� + ��||�||��������
� ≥ ���|�|� !"���#

�
� 	,			��, �� > 0		(6) 

Proof. In fact 

 

By Cauchy Schwarz inequality and (4),we obtain 

 

Finally, from (5) we have (6). 

Under the above lemma (Lemma 2) and using the results of 

Lions [6] and Lions and Magenes [7] we can prove the 

following theorems: 

Theorem 3 Assume that (2) and (5) hold. Then, problem (1) 

has a unique weak solution if  and  

��,� ∈ 	'��Ω�.  Moreover, the mapping � → ���; *�   is 

continuous from +0, ,- → �'��Ω��..   

3. Control Problem 
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                   (7) 
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  (9) 

Notation 1 We will call the problem (7)-(9), problem I 

The optimization problem I can be replaced by another 

equivalent one with a fixed time  To show that we need 

tow auxiliary lemmas. 

Lemma 3 Let  be the optimal time for the problem I. 

If  then (boundary of ) 

for any set  satisfying (7)-(8) 

Proof. Any solution of (8) is continuous with respect to . If 

is not true, then there exists an admissible state 

 such that the observation 
 
Thus a 

 exists so that . This contradicts the 

optimality of  

Lemma 4 Let  be the optimal time for the problem I, 

let  and  be an optimal control and corresponding 

state, respectively. Then there exist a non-trivial vector 

 so that the pair  is the 

optimal for the following control problem with the fixed time 

: 

      (10) 

Proof. The linearity of the equations (8)  implies that the 

endpoints  of all admissible states  form a convex 

set  From Lemma 3 we have  and 

 

Since  thus there exists a closed hyperplane 
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nonzero vector  such as[8] 

 

This completes the proof. 
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We have to use Theorem 2, to show that 

 and  are of the 

same sense. (Note that we do not need to determine the 

explicit form of   in order to derive this 

conclusion.) It is enough to use the Theorem 3 about the 

existence and uniqueness of the solution for parabolic system 

(8)which determine   in (16). According to 

this theorem the solution of such a system depends 

continuously on the right side; i.e., in our case on */	so we can 

rewrite the cone given by (16) in the form 

    (18) 

where   is a linear and continuous operator. Then, 

applying Theorem 2, to the cones given by (17) and (18), we 

get the assumption (iv) of Theorem 1 is satisfied. 
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functionals in the Euler -Lagrange Equation would be zero 

which is impossible according to the DM Theorem. Using the 

definition of the support functional and dividing both 

members of the obtained inequalities by  from (22) we 

obtain the maximum conditions: 

If , then the optimality conditions are 

fulfilled with equality in the maximum conditions. We have 

thus proved: 

Theorem 4 Assuming that  is the optimal time for 

the problem  and and  are the optimal control and 

corresponding state respectively. Then,their exists the adjoint 

state  so that the following 

system of equations must be satisfied: 

State equations; 

    (23) 

Adjoint equations; 

    (24) 

Maximum conditions; 

     (25) 

     (26) 

5. Conclusion 

In this study, we have derived the optimality conditions to a 

special co-operative parabolic systems with control-state 

conditions. Most of the results we described in this paper 

apply, without any change on the results, to more general 

parabolic systems involving the following second order 

operator: 

 

with sufficiently smooth coefficients (in particular, 

) and under the 

Legendre-Hadamard ellipticity condition 

 

for all  and some constant  

In this case, we replace the first eigenvalue of the Laplace 

operator by the first eigenvalue of the operator  (see [5]). 
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