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Abstract: The Oldroyd-B constitutive equation is used for the numerical simulation of unsteady incompressible viscoelastic 

flows. A novelty treatment is presented for the incompressibility constraint of the incompressible viscoelastic flow by using the 

modified continuity equation which allows using equal-order interpolation polynomials for all variables. The proposed 

technique circumvents the so-called LBB compatibility condition without pressure checkerboard and the solution instabilities 

with less computational costs compared with the traditional techniques. The discrete elastic-viscous stress-splitting method 

(DEVSS) is used to treat the instabilities resulting from the numerical simulation of viscoelastic flows. Two benchmark 

problems are simulated, namely, the flow through a channel with a bump and the flow inside a square cavity. Solutions are 

obtained for different Weissenberg number values and the results are compared with the published works. 

Keywords: Unsteady Incompressible Viscoelastic Flow, Oldroyd-B Model, Pressure Stabilization Technique,  

The DEVSS Method, Galerkin Least Squares 

 

1. Introduction 

Numerical simulation of incompressible viscoelastic flows 

is considered one of the important subjects of research for the 

manufacturing industry of polymer materials in the last few 

decades. However, there are many challenges in constructing 

numerical techniques for solving incompressible viscoelastic 

flow problems in complex geometry especially at high 

Weissenberg number [1]. One of the most numerical 

challenges of the incompressible viscoelastic flow simulation 

is the incompressibility constraint since the continuity 

equation becomes a constraint equation for the velocity field 

rather than being an evolution equation for the density field. 

Differences in various methods of solving the incompressible 

flow equations originate from differences in strategies for 

satisfying the incompressibility constraint [2]. 

In general, these methods can be classified into two types: 

the first is the weakly incompressible solvers, in which the 

incompressibility constraint is satisfied by extending the 

compressible flow solvers for low Mach number where the 

incompressible flow is the limiting case of the compressible 

flow when the Mach number reaches zero [3-5]. The second 

is to satisfy the incompressibility constraint directly using the 

pressure as a mapping parameter to satisfy the continuity 

equation. This is called the pressure-based approach [1] and 

it can be grouped into two sub-categories. The first category 

depends on deriving a Poisson equation for the pressure 

calculation by taking the divergence of the momentum 

equation. A typical example of this approach is the semi-

implicit method for pressure-linked equations (SIMPLE) [6]. 

The second category for the pressure-based approach is the 

stabilization technique which depends on modifying the 

continuity equation by adding an auxiliary term for the 

pressure. There are three types for this category, namely, the 

penalty formulation, the artificial compressibility formulation 

and the pressure stabilization formulation. The first two types 

were not derived as stabilization methods, but were initiated 

from alternative mathematical and physical concepts [7]. The 

first type, the penalty formulation, is an application of the 

penalty function concept of Courant [8] to the finite element 

analysis of incompressible flows. It is proposed by Temam 

[9] and Zienkiewicz [10]. Hughes [11] has suggested this 
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formulation for both steady and unsteady flow cases. The 

second type is the artificial compressibility formulation, it is 

originally introduced by Chorin [12] where an artificial 

partial-time derivative is added to the continuity equation and 

the pressure in the additional term is re-scaled by a parameter 

called artificial compressibility. The third type is the pressure 

stabilization technique which depends on adding a Laplacian 

term for pressure to the continuity equation [7]. This 

formulation is adopted only for Newtonian flow simulations 

in literature. The novelty of this study is the adopting of the 

pressure stabilization technique for incompressible 

viscoelastic flow with the Oldroyd-B model. 

Another challenge for the numerical simulation of the 

incompressible viscoelastic flow is that the stress tensor 

gradient in the momentum equation cannot be expressed, 

anymore, in terms of second-order derivatives of the velocity 

field which means that the momentum equation loses the 

elliptic term which appears in the Newtonian case. This leads 

to the appearance of instabilities in the numerical solution 

[13]. There are many schemes for simulating viscoelastic 

flows such as EEME [14], EVSS [15] and DEVSS scheme 

[16]. In this study, the DEVSS is used. In this scheme, the 

extra stress tensor is split into the viscous and elastic parts. 

For stability reasons, an extra elliptic term is introduced in 

the discrete version of the momentum equation. The 

convective terms presented in the governing equations are 

treated using the Galerkin least squares method [17]. 

Numerical simulation is performed for two benchmark 

problems, namely, the lid-driven cavity problem using the 

Oldroyd-B model then the channel flow with a bump is 

considered. Solutions are obtained for different values of the 

Weissenberg number and the results are compared with the 

work of [1], [18] and [19]. 

2. Governing Equations 

The conservation of mass and linear momentum for 

unsteady, incompressible, isothermal, flow leads to 

� ��
�� + ��� ∙ ∇�	 = ∇ ∙ � − ∇
,                 (1) 

∇ ∙ � = 0,                                  (2) 

where 	�  is the density, 	�  is the velocity vector, 	
  is the 

isotropic pressure and 	�  is the extra stress tensor. For 

viscoelastic fluids, the extra stress tensor is related to the 

velocity gradient via a differential equation rather than an 

algebraic equation [20]. In the Oldroyd-B model, the extra 

stress tensor 	� is a linear superposition of two components: a 

viscoelastic component 	��  and a purely Newtonian 

contribution 	�� as follows 

� = �� + ��,                               (3) 

�� = 2���,                                (4) 

λ ������ + �� ∙ ∇	�� − �∇�	��−���∇�	�� + �� = 2���,  (5) 

where 	��  is the solvent zero-shear-rate viscosity, ��  is the 

polymer zero-shear-rate viscosity, 	λ  is the relaxation time, 

and � is the rate of the deformation tensor defined 

� = �
� � � + � �	!	.                                (6) 

From numerical point of view, the dimensionless 

formulation of the governing equation is preferable, so we 

introduce the following non-dimensional variables 

#∗ = #% , 	&∗ = &% , 	�∗ = �'( , 	)∗ =
)'(% , 	
∗ = 
�	'(� 	and	�∗ = ��	'(�, 

where % is the characteristic length and '( is the free stream 

velocity. For 2-D planar flow, the velocity vector has the 

form 	� = �', -	 and the polymeric stress tensor is given by 

�� = ./ 00 12,                                  (7) 

where 	/ is the axial stress, 0 is the shear stress and 1 is the 

normal stress. Using the above non-dimensionalization 

scheme, Eqs. (1) and (5) can be rewritten in a non-

dimensional form as follows 

��
�� + ��∇�	 	= −∇
 + ∇ ∙ ��3456 + ���,             (8) 

����� + �� ∙ ∇	�� − �∇�	��−���∇�	� + ��75 = ���83	
75	45 �,  (9) 

where Re is the Reynolds number defined as 9: = ;<=>
? , @ is 

the total viscosity given by @ = @A + @� , We is the 

Weissenberg number defined as 	B: = C <=>  and D  is the 

viscosity ratio defined by D = ?E? . 

2.1. Incompressibility Constraint 

When the Galerkin finite elements method is applied to the 

governing equations (1-2), for Newtonian flow for simplicity, 

zeros appear in the main diagonal of the resulting algebraic 

system and hence the number of the velocity unknowns must 

be greater than the pressure unknowns to obtain a unique 

solution [21]. For finite difference and finite volume spatial 

discretization, staggered grids where pressures and velocities 

are calculated at different points are used to obtain stable 

solutions. For finite elements discretization, the 

approximation spaces must satisfy the so-called LBB 

condition [22] in which the order of the pressure 

interpolation functions must be lower than the order of the 

velocities interpolation functions. Although the elements that 

satisfy the LBB condition provide stable solutions, it has 

some complications in the finite elements programming. To 

avoid this problem and in the same time avoid the pressure 

spurious oscillations, equal-order interpolation functions for 

the pressure and the velocities are used by modifying the 

continuity equation by adding additional stabilization terms. 

In this method [22], the incompressibility constraint is 

replaced by 

∇ ∙ � = F �
,                                (10) 
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Where F is the stabilization parameter. 

2.2. The DEVSS method 

In this method, the discrete form of the linear momentum 

balance equation is modified by introducing an auxiliary 

variable 6  as a discrete approximation of the rate of 

deformation tensor 6  where 6 = 2@�6  which leads to a 

symmetric matrix system [23]. The linear momentum balance 

equation (1) could be rewritten as follows 

� ��
�� + ��� ∙ ∇�	 = −∇
 + ∇ ∙ G2@A6+ ��H + ∇ ∙ G2@�6− 6H.    (11) 

Note that if the exact solution is recovered, then the elliptic 

operator G2@�6 −6H  vanishes. However, in the finite 

element calculation this is generally not the case [24] and the 

extra variable 6 can be calculated from the weighted residual 

formulation of the following non-dimensional equation 

���83	
45 6 − 6 = 0.                            (12) 

We can rewrite Eq. (11) in the non-dimensional form as 

follows 

��
�� + �� ∙ ∇�	 = −∇
 + ∇ ∙ � �

456 + �� − 6�.        (13) 

The above equation is the stabilized form of the 

momentum conservation equation re-formulated by the 

DEVSS method. Eqs. (13), (10) and (9) constitute the 

governing equations needed for the simulation of the 

viscoelastic flow. The boundary conditions are discussed 

separately under each problem. 

3. Finite Elements Formulation 

In this study, the standard Galerkin formulation is used for 

all terms except for the convective terms in the conservation 

momentum and constitutive equations where the Galerkin 

least squares (GLS) formulation is used, in which the shape 

function is modified by adding a stabilized term [17]. 

3.1. Spatial Discretization 

Since the modified continuity equation is of elliptic type, 

all variables, namely, 	�, 
, ��	and	6 can be interpolated by 

equal-order interpolation shape functions. The weak form of 

the governing equations over each element is achieved by 

considering the weighted residual approach and can be 

written as follows 

The weak form of the momentum equation is 

I JKL M�M) +BL�� ∙ ∇�	NOP =	QR
 

S �−KL∇
 + KL∇ ∙ � �456 + �� − 6	�OP,QR           (14) 

and the weak form of the constitutive equation is 

S �KL ����� +BL�� ∙ ∇	�� − KL�∇�	��−KL���∇�	� +QR KL ��75� OP = S ���83	
75	45 �	OPQR ,	                 (15) 

and the weak form of the modified continuity equation is 

S ∇ ∙ �	OPQR = S F∇�
	OPQR .                       (16) 

For Eq. 12, the weak form is 

S KLQR 6OP = S KLQR
���83	
45 6OP,                   (17) 

where KL is the standard Galerkin test function and BL is the 

modified test function for convective terms and that is given 

by 

BL = KL + Tℒ�KL	,                               (18) 

ℒ�KL	 = 'V �WX�Y + -V �WX�Z ,                             (19) 

where 	ℒ�KL	 is a differential operator, the quantities 'V  and -V 
are the average values of the velocity components calculated 

at the center of the element and T  is the stabilization 

parameter. There are many suggestions for the stabilization 

parameter T . Tezduyar [25] has proposed the following 

relation for unsteady flow 

T = .� �∆��� + ��∥]R∥^ �� + �_`^a��2
8b.c,               (20) 

Where 	]5  is the velocity over an element and ℎ  is the 

characteristic length of the element and e  is the kinematic 

viscosity. Approximating the variables 	�, 
, ��	and	6  over 

each element with the proper function and applying 

integration by parts to the second order derivative terms and 

the first order derivative terms of the pressure, yield the 

following elemental equations 

fgY�h�i	j'k + fgZ�h�i	j-k = fl�h�5	jmk,            (21) 

jMk�i	j'o k + jC + N�r	k�5	j'k − jGYk�5	j
k − fgY�h�i	j/k − fgZ�h�i	j0k = 0,                            (22) 

jMk�i	j-o k + jC + N�r	k�5	j-k − fGZh�5	j
k − fgY�h�i	j0k − fgZ�h�i	j1k = 0,                             (23) 

jMk�i	f/oh = −jN�r	 + Mk�5	j/k + t2U� + 2U� + ���83	
75	45 GYv j'k,                                        (24) 

jMk�i	f0o h = −jN�r	 + Mk�5	j0k + tUw + U_ + ��83	
75	45 GZv j'k + tU� + U� + ��83	

75	45 GYv j-k,                    (25) 
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jMk�i	f1o h 
 �jN�r	 � Mk�5	j1k � t2Uw � 2U_ � ���83	
75	45 GZv j-k,                                         (26) 

with the following matrices 

xLy 
 S KLQR KyOP,                       (27) 

lLy 
 S �
45 ��Wz�Y

�WX�Y � �Wz�Z
�WX�Z �QR OP,            (28) 

K�r	Ly 
 S �'V �Wz�Y � -V �Wz�Z �BLQR OP,           (29) 

l�Ly 
 S F ��Wz�Y
�WX�Y � �Wz�Z

�WX�Z �QR OP,            (30) 

gYLy 
 S KyQR
�WX�Y OP,                        (31) 

gZLy 
 S KyQR
�WX�Z OP,                        (32) 

U�Ly 
 S /{ �Wz�YQR KLOP,                       (33) 

U�Ly 
 S 0| �Wz�ZQR KLOP,                       (34) 

UwLy 
 S 0| �Wz�YQR KLOP,                      (35) 

U_Ly 
 S 1| �Wz�ZQR KLOP,                       (36) 

where /{, 0|, 1|  are the average values of polymeric stress 

components over the element. All integrals are evaluated 

numerically using 3-points Gauss-Legender quadrature 

method. 

3.2. Time Marching and Solution Algorithm 

The time derivative terms are discretized by the first-order 

explicit scheme yielding a system of linear algebraic 

equations. The time step is chosen in such a way to satisfy 

the CFL number to obtain a stable solution. Lumping 

approximation is applied to the consistent mass matrix 

converting it to a diagonal matrix [26]. The solution scheme 

is summarized in the following steps: 

1. Set zero initial values for the variables �, 
, ��	and	6 at 

time level n. 

2. Impose the proper boundary conditions. 

3. Solve Eqs. (22-26) to calculate �, �� at time level n+1. 

4. Calculate the pressure 
  at time level n+1 from Eq. 

(22). 

5. Calculate the auxiliary variable 6  at time level n+1 

from Eq. (17). 

4. Numerical Results 

To validate the proposed algorithm, it is applied to the 

following benchmark problems. Solutions are obtained at 

different values for the Weissenberg number and the results 

are compared with published works. 

 

4.1. Flow Through a Channel with a Bump 

First we consider the unsteady incompressible viscoelastic 

flow through a planar channel with a circular arc bump as 

shown in Fig. 1. This problem is selected due to the presence 

of high stress gradients especially in the vicinity of the bump 

[20]. The channel has length of 4H where H is the channel 

width. The curved boundary of the lower wall is given by 

& 
 }0 																									�1.5 � # � �0.5√9� � #� � � 				�0.5 � # � 0.50 																																0.5 � # � 2.5,          (37) 

where � 
 ��� � 0.25	/2� , 9 
 √0.25 � ��  and �  is the 

height-to-length ratio. 

 

Fig. 1. Geometry and grid for the channel flow problem. 

4.1.1. Boundary Conditions 

No-slip boundary conditions for velocity components are 

imposed at the solid walls. At inlet the velocity profile is 

assumed to be parabolic and the axial velocity component is 

given by 

'�&	 
 4&�1 � &	,                       (38) 

and the normal velocity component is zero. Pressure is 

specified to be zero at exit and Neumann boundary condition 

for the pressure is imposed for the continuity equation as it is 

of elliptic type. Because of the hyperbolic nature of the 

constitutive equations the stress components must be specified 

at the entrance. They are calculated using the assumed velocity 

profile at the inlet from the following relations [27] 

/ 
 �2B:�1 � D	 9:⁄ 	 �M'M&�
�, 

0 
 ��1 � D	 9:	⁄ M'M& and	1 
 0. 
At the solid walls, the stress components are obtained by 

solving the constitutive equations [27]. 

4.1.2. Results and Discussion 

We first solve this problem for the Weissenberg number B: 
 0.3 using a grid of 15x60 elements as shown in Fig. 1. 

In this simulation, we take 	D 
 0.2, the time step 	∆) 
 1 �108_ , 	� 
 0.1  and the pressure dissipation parameter is F 
 0.001 . Axial velocity, normal velocity and pressure 

contours are shown in Fig. 2, Fig. 3 and Fig. 4, respectively, 

whereas the axial stress, shear stress and normal stress are 

shown in Fig. 5, Fig. 6 and Fig. 7, respectively. 
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Fig. 2. Axial velocity contours for We =0.3 and Re = 1.0. 

 

Fig. 3. Normal velocity contour for We = 0.3 and Re = 1.0. 

 

Fig. 4. Pressure contour for We = 0.3 and Re = 1.0. 

 

Fig. 5. Axial stress contours for We= 0.3 and Re = 1.0. 

 

Fig. 6. Shear stress contours for We = 0.3 and Re = 1.0. 

 

Fig. 7. Normal stress contours for We = 0.3 and Re = 1.0. 



31 Ahmed Elhanafy et al.:  A Hybrid Stabilized Finite Element/Finite Difference Method for Unsteady Viscoelastic Flows  

 

More results are obtained for different values for the Weissenberg number to show its effect especially on the stress 

components. A finer grid (20x80) is used for Weissenberg number higher than 0.3 to capture the high stress gradients. Fig. 8, 

Fig. 9 and Fig. 10 show the axial stress, shear stress and normal stress for We = 0.7, respectively. 

 

Fig. 8. Axial stress contours for We = 0.7 and Re = 1.0. 

 

Fig. 9. Shear stress contours for We = 0.7 and Re = 1.0. 

 

Fig. 10. Normal stress contours for We = 0.7 and Re = 1.0. 

The effect of the Weissenberg number is clearly shown in Fig. 

11 which shows the effect of the Weissenberg number on the 

lower wall shear stress especially in the vicinity of the bump. We 

note that the wall shear stress increases at the entrance of the 

bump. This increase is due to the decrease of the flow area. With 

the increase of the flow area, the wall shear stress increases 

again to reach its constant values after the bump. The increase of 

the Weissenberg number increases the extreme values of the 

wall shear stress in the vicinity of the bump. 

4.2. Lid-driven Cavity Flow 

In this standard problem the flow is confined in a unite 

square bounded by solid walls with moving the top boundary 

to the right. The main challenge associated to this problem is 

the level of stress growth near the corners between the lid 

and the solid walls especially for high Weissenberg numbers 

[19]. The singularity of the flow field at the upper corners 

causes the numerical scheme to diverge, therefore we chose 

the regularized boundary condition for the upper wall 

proposed in [1] which is given by the following relation 

'�#, )	 
 8j1 � tanh 8�) � )�	k#��1 � #	�	,        (39) 

where )� is a preset threshold to smooth the time derivative 

and # is the distance of the current node from the upper left 

corner. 

With this condition, the discontinuity of the velocity field 

at the top upper corners is removed. All boundary conditions 

for velocity components are of Dirichlet type. Pressure is 

specified to be zero at the lower left corner and its normal 

derivative is set to zero at the walls. Boundary conditions for 

stress components are obtained by solving the constitutive 

equations at the solid walls as discussed in [28]. The 

Reynolds number is based on the side length of the cavity 

and the speed of the lid. In this simulation, D 
 0.5, 9: 
0.5 and the time step ∆) 
 1 � 108c to compare the results 

[1], [18] and [19]. Quadrilateral elements are chosen for 

finite element discretization and all variables are interpolated 

by equal order shape functions. The mesh used for our 

simulation is shown in Fig. 12. 

 

Fig. 11. Lower wall shear stress (LWSS) for different values of We and Re 

=1.0. 
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Fig. 12. The grid for the cavity problem. 

 

Fig. 13. The steady streamlines for B: 
 0.5 and Re =0.5. 

 

Fig. 14. Axial stress contours for We= 0.5 and Re =0.5. 

 

Fig. 15. Shear stress contours for We= 0.5 and Re =0.5. 

 

Fig. 16. Normal stress contours for We= 0.5 and Re =0.5. 

 

Fig. 17. Pressure contours for We= 0.5 and Re =0.5. 
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First simulation is performed at B: 
 0.5. We take the 

pressure dissipation parameter is 	ε = 0.0003 . The flow 

reaches the steady state after ) = 4s. 
Fig. 13 shows the steady state streamlines and the center of 

the vortex is located at (0.465, 0.795) which is consistent 

with [1]. The axial stress, shear stress, normal stress and 

pressure contours are shown in Fig. 14, Fig. 15, Fig. 16 and 

Fig. 17, respectively. 

To show the effect of Weissenberg number on the solution, 

results are obtained at different values of Wiesenberg number 

from B: ≈ 0.0 to B: = 0.7. For Newtonian fluids, i.e. zero 

Weissenberg number, symmetric streamlines are obtained and 

the primary vortex is located at (0.495, 0.78) as shown in Fig. 

18. These results are consistent with the theoretical studies in 

[27] and experimental studies by Pakdel et al. [28] using 

laser Doppler velocimetry (LDV) and digital particle image 

velocimetry (DPIV). However, for viscoelastic fluids, as the 

value of B:  increases the primary vortex shifts in the 

direction of the upstream towards the left corner. 

 

Fig. 18. The steady streamlines for B: ≈ 0.0 at Re = 0.5. 

 

Fig. 19. The steady streamlines for B: = 0.7 at Re =0.5. 

This result is indicated in Fig. 19 where the primary vortex 

is located at (0.45, 0.8). Fig. 20 and Fig. 21 show the effect 

of B: on the horizontal velocity component �'	 at # = 0.5	 
and vertical velocity component �-		 and & = 0.5 , 

respectively. With the increase in 	B:, the maximum value of 

the velocity components decreases as expected [27]. 

 

Fig. 20. Horizontal velocity component for different values of We at 	# = 0.5. 

 

Fig. 21. Vertical velocity component for different values of We at 	& = 0.5. 

5. Summary and Conclusion 

Numerical simulation of unsteady incompressible 

viscoelastic Oldroyd-B fluids using the finite elements 

method is presented. Numerical challenges of incompressible 

viscoelastic flow simulation, namely, the loss of the elliptic 

term in the momentum equation and the incompressibility 

constraint as well as the convective nature of the momentum 

equation are successfully treated. For the incompressibility 

constraint problem, the continuity equation is modified by 

adding a Laplacian term and hence it is of elliptic type. With 

this modification, equal-order interpolation functions are 
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used for all variables without pressure checkerboard problem. 

This is not the only advantage for this formulation; it is used 

also for the steady and unsteady case as well with lower 

computational costs compared with the traditional 

formulations such as the artificial compressibility method. 

Due to the convective nature of the momentum equation, 

Galerkin least squares method is used by adding a stabilized 

term to the shape function. Also, the DEVSS method is used 

as a stabilized method recovers the elliptic term in the 

momentum equation. 

For validation purposes, the proposed algorithm is applied 

to two benchmark problems. The first problem is the flow 

through a planar channel with a bump. Solutions are obtained 

at different values for the Weissenberg number to show its 

effect on the stress components with acceptable degree of 

success. We note that the wall shear stress extreme values 

increase with the increase of the Weissenberg number in the 

vicinity of the bump while this increase has a weak effect on 

the wall shear stress after the bump. This remark is useful 

especially for the simulation of the blood flow in stenosed 

arteries where the lower wall shear stress values are in the 

stenosis region. The second test case is the lid-driven cavity 

flow. Although this problem is simple in its geometry, it has 

some numerical challenges due to the singularities in the top 

corners. Regularized boundary condition for the upper wall is 

used to avoid these singularities. The results for this problem 

are also compared with experimental and theoretical studies. 

Solutions are obtained for different values of the Weissenberg 

number to show the viscoelastic effect. For low Weissenberg 

number, i.e.	B: ≈ 0.0, the flow likes to be Newtonian and 

this is clearly seen in the streamlines and the main vortex 

location. When the Weissenberg number increases, the stress 

gradients increases especially at the corners which needs 

finer grids to capture the viscoelasticity effect. We note also 

the viscoelastic effect on the streamlines and the main vortex 

location where it moves towards the left corner. 
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