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Abstract: The pathogen of Buruli Ulcer (BU) is known to be Mycobacterium Ulcerans whose mode of transmission is 

entirely not known, although the disease is recognised to be associated with contaminated water. The hypothesised 

transmission involves humans being bitten by the water bugs (vector) that prey on mollusks, snails and young fishes. The 

hypothesised transmission also involves humans feeding on an infected fish or frog. This study seeks to contribute to the 

dynamics and analyses of the transmission mechanism of Buruli Ulcer in communities along Offin River in the Central Region 

of Ghana. The model equilibria were determined and conditions for the equilibria were also established. The basic 

reproduction number, 0R  was derived using the Next Generation approach and its estimated value was 1.20771. The result 

reveals that, 0R  is greater than 1, indicating a horizontal spread of the infection across the population. The transmission 

dynamics of Buruli Ulcer model of the Susceptible, Infected and Recovered (SIR) type also show that the disease will continue 

to spread at the study areas as long as the reservoir for Mycobacterium Ulcerans continue to sustain enough infected water 

bugs and infected fish or infected frog to contain the disease. The study further concludes that, the rate of spread of Buruli 

Ulcer in the affected communities continue to be high due to its mode of transmission. This study suggest that adequate control 

measures including mass education and prompt treatment to curb the spread should be emphasized. 
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1. Introduction 

Modelling of infectious disease is a tool which has been used to 

study the means by which diseases spread, forecast the future 

course of an outbreak and to evaluate strategies to control an 

epidemic [1]. Mathematical models may not offer comprehensive 

descriptions of how to control diseases. They are elegant methods 

for evaluating the possible influence of different strategies offered 

in public health intervention programs [2]. 

Buruli Ulcer (BU) is a disease of the skin caused by 

Mycobacterium Ulcerans, a slow growing mycobacterium 

that classically infect the skin and subcutaneous tissue, 

giving rise to indolent no ulcerated (nodules, plaques) and 

ulcerated lesions. After tuberculosis and leprosy, Buruli Ulcer 

is the third most common mycobacteriosis of human. The 

mode of Mycobacterium Ulcerans transmission is not fully 

understood in the study area, although the disease is 

recognized to be associated to contaminated water. Areas 

affected by Buruli Ulcer disease are located near stagnant or 

slow-moving water, and outbreaks appear to be related to 

environmental changes (deforestation, agriculture, hydraulic 

installations) involving surface water [3]. 

The occurrence of Buruli Ulcer upstream of the Offin River 

is greater and steeply dwindles as you go beyond Dunkwa. So, 

the communities on the upstream of river Offin from 

Agroyesum (e.g. Subin, Ameyaw, Betenase, Ampabena, 

Nkotumso, Dominase, Ayanfuri, Powerline, 

Obiarabiaradanedanmu, Pokukrom and Dunkwa) are very 

endemic [3]. Therefore, to provide awareness of this endemic, 

this paper seeks to develop a transmission model (deterministic 

model) of Buruli Ulcer and help to identify control measures 

that will minimize the disease in the study area. 

2. Literature Review 

In Africa, the history of Buruli Ulcer can be divided into 

two main periods: before 1980 and after 1980. There were 

many important literatures before 1980 on the disease in 
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several African countries: Cameroon, the Democratic Republic 

of the Congo, Gabon, Ghana, Nigeria and Uganda. In the 

Central African Republic, Kenya, Sudan, and the United 

Republic of Tanzania, cases were suspected but never 

confirmed. The most significant contributions came from the 

Democratic Republic of the Congo and Uganda. The Uganda 

Buruli Group studied the clinic pathological and 

epidemiological aspects of the disease extensively, and opted 

for the term “Buruli Ulcer” because large numbers of cases 

were first detected in the district of Buruli near Lake Kyoga [4]. 

After 1980, new foci of Buruli Ulcer emerged in West 

Africa. A dramatic increase in the incidence of the disease is 

now reported in several West Africa countries, especially in 

Benin, Cote d’Ivoire and Ghana [5]. 

 

Figure 1. Study Communities (Source [3]). 

The communities along Offin River in the Central Region 

of Ghana are endemic to Buruli Ulcer disease. Figure 1 

present the communities along Offin River. These areas of 

study are located near stagnant or slow-moving water, and 

experience similar environmental changes (deforestation, 

agriculture, and mining) involving surface water. The 

primary means of securing the necessities of life in these 

communities are farming and mining [3]. It can be seen from 

the Powerline community (Figure 2), most of the cases are in 

Zones 3 and 4 and also at the fringes of the community. 

Communities such as Betenase, Ampabena (Figure 1) have 

Buruli Ulcer cases all over the community which seems to 

portray that the whole community is endemic. 

Figure 3 portrays that Zone 1 of Ayamfuri has about 70% of 

Buruli Ulcer cases and even in that zone, 90% were clustered 

together in a small sector within the centre of the town. 

 

 

Figure 2. Map of Powerline (Source [3]). 

Scot proposed a mathematical model of the SIR-type in an 

endeavour to explain the role of aquatic insects and arsenic in 

the spread of Buruli ulcer disease [6]. The paper considered 

arsenic environment as a reservoir for Mycobacterium 

ulcerans and water bug (vector) for Buruli Ulcer disease. In 

their model, they proposed that Buruli Ulcer is a micro 

parasitic disease in which host parasite interaction basically 

occurs within isolated communities. Again, it was assumed 

that the host population is of fixed size containing susceptible 

individuals who are not yet infected with Mycobacterium 

Ulcerans. It also assumed humans who develop Buruli Ulcer 

become immune to any further attack and this assumption led 

them to the SIR model. The model equations describing the 

proportion of humans infected by Mycobacterium Ulcerans 

and the corresponding proportion of water-bugs according to 

them are given by: 

1

(1 )

(1 ) ( )

dx
maby x rx

dt

dy
a x y y

dt
µ α

= − − 

= − − −


                   (1) 

Table 1. Description of Parameters used in the Equation (1). 

Symbol Description 

m  Density of water bugs (Number of water bugs per human host) 

a  Bite frequency (biting rate of human by single water-bug) 

1a  Rate of ingestion of MU by water bugs 

b  Proportion of infected bites on humans that produce infection 

α  Relative concentration as in water 

µ  Mortality rate of water-bugs 

x  Proportion of humans infected by MU 

y  Proportion of water-bugs infected by MU 

r  Death rate of humans 
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Figure 3. Map of Ayanfuri (Source [3]). 

The study displayed a nonlinear relationship between the 

basic reproductive number 0( )R  and the widespread of 

infection of both infected water bugs and infected humans at 

a particular time. However, a small increase in the 

reproductive number lead to a large change in both the 

prevalence levels of humans and water bugs. It was deduce 

from their graph that, higher levels of 0( )R  will lead to 

increases in cases of Buruli Ulcer for 0 1R > . Thus, if Buruli 

Ulcer is not controlled it will continue to spread in regions 

with unconducive conditions. Nyabadza and Bonyah develop 

the transmission dynamics of Buruli Ulcer in Ghana: Insights 

through a mathematical model [7]. In their paper, a model for 

the transmission of Mycobacterium Ulcerans to human in the 

presence of a preventive strategy was proposed and analysed. 

The model equilibria were determined and conditions for the 

existence of the equilibria established. The model analysis 

was carried out in terms of the reproduction number 0R . The 

disease-free equilibrium was found to be locally 

asymptotically stable for 0 1R < . The model was then fitted to 

data from Ghana. The dynamics of the disease was described 

by the following set of nonlinear set differential equations; 

( )

( )

H H VH
H H H H H

H

H H VH
H H

H

H
H H H

V V V F V V V
V V V V

V

V V V F V V V
V V

V

F F F F F F
F F F F

F F F F F F
F F

M
F F V

S IdS
N R S

dt N

S IdI
I

dt N

dR
I R

dt

dS S I S U
N S

dt N K

dI S I S U
I

dt N K

dS I U I U
N S

dt K K

dI I U I U
I

dt K K

dU
I

dt

β
= µ + θ − − µ

β
= − γ + µ

= γ − θ + µ

β η β
= µ − − − µ

β η β
= + − µ

β η β= µ − − − µ

β η β
= + − µ

= σ + σ V EI Uµ























− 

           (2) 

Table 2. Description of parameters used in Equation (2). 

Symbol Description 

Hβ  The effective contact rate between the vector and susceptible human 

Vβ  The effective contact rate between fish and susceptible vector 

Fβ  The effective contact rate between the susceptible fish and Mycobacterium Ulcerans 

γ  The recovery rate of infected humans 

θ  The rate of loss of immunity of recovered humans 

Hµ  Birth rate of the human population 

Vµ  Birth rate of the vector population 

Fµ  Birth rate of the fish population 

rV  The growth rate of the vector population 

rF  The growth rate of the fish population 

K  The environmental carrying capacity of the bacteria population 

Fσ  Rate of shedding of Mycobacterium Ulcerans into the environment by fish-frog 

Vσ  Rate of shedding of Mycobacterium Ulcerans into the environment by the vector 

Eµ  Rate at which Mycobacterium Ulcerans are cleared from the environment. 

 
The model exhibits a backward bifurcation and the endemic 

equilibrium point is globally stable when 0 1R < . Sensitivity 

analysis also showed that the Buruli Ulcer epidemic is highly 

influenced by the shedding and clearance rates of 

Mycobacterium Ulcerans in the environment. The model was 

found to fit reasonably well to data from Ghana and projections 

on the future of the Buruli Ulcer epidemic were also made. 

3. Methodology 

A constant human population ( )HP t , the vector population 

of insect (e.g. water bugs, mosquitoes etc.) ( )VP t , the fish-

frog population, ( )FFP t at any time ( t ) was considered. The 
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total human population is divided into three epidemiological 

subclasses of those that are susceptible ( )HS t , the infected 

( )HI t and the recovered who is able to resist the infection 

owning to the presence of a particular treatment ( )HR t . Total 

vector population at any time t is divided into two subclasses 

of those that are susceptible vector ( )VS t  and those that are 

infectious and can transmit the Buruli ulcer to humans ( )VI t . 

The total population reservoir of fish-frog is also divided into 

two compartments of susceptible fish ( )FFS t  and infected 

fish ( )FFI t . Consideration of the role of the environment 

was made by introducing a compartment MU , representing 

the density of Mycobacterium Ulcerans in the environment. 

Assumptions of the model is; 

Mycobacterium Ulcerans are transferred from vector 

(water bug), fish and frog to the humans. 

There is homogeneity of human, vector and fish-frog 

population’s interactions. 

Infected humans recover and are temporarily immune, but 

eventually lose immunity. 

Fish and amphibian (frog) are preyed on by the vector and 

the human. 

The acquiring of Mycobacterium Ulcerans through 

environmental contact and direct person-to-person 

transmission is rare [8]. 

Susceptible host are more likely to be infected by the 

disease through biting by an infectious vector (water bug). 

Hβ  Being the effective biting rate that an infectious vector 

has to susceptible host and ( )H H V HS I Pβ  being the 

incidence of new infections transmitted by a vector. 

( )H H FF HS I Pβ Being the incidence of new infections 

transmitted to a human when the human prayed on an 

infected fish or frog. 

Susceptible insect is infected at a rate ( )V V FF VS I Pβ  

through the predation of infected fish or frog and 

( )V V MS U Kηβ  representing other sources in the 

environment. Where η  differentiates the infectivity potential 

of the fish-frog from that of the environment. 

The vector population and the fish-frog population are 

assumed to be constant. Their growth functions are given by

( )Vg P and ( )FFg P respectively. Generally, we can assume 

that ( )V V Vg P P= µ and ( )FF F FFg P P= µ . 

There is a proposed hypothesis that environmental 

mycobacteria in the bottoms of swamps may mechanically 

concentrated by small water-filtering organisms such as 

microphagous fish, snails, mosquito larvae, small crustaceans 

and protozoa [9]. It can therefore be assumed that fish-frog 

increase the environmental concentrations of mycobacterium 

Ulcerans at a rate FFσ . Humans are assumed not to shed any 

bacteria into the environment. 

Vector release bacteria into the environment at a rate Vσ . 

The model does not include a potential route of direct 

contact with the bacterium in water. 

The birth rate of the human population is directly 

proportional to the size of the human population. 

 

Figure 4. Transmission Dynamics of Buruli Ulcer among Fish-Frog, Water bug and Human. 
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Hence the dynamics of Buruli ulcer can be described by 

the following set of nonlinear differential equations; 

( )

( )

H H VH H H FF
H H H H H

H H

H H VH H H FF
H H

H H

H
H H H

V V V FF V V M
V V V V

V

V V V FF V V M
V V

V

FF FF FF M
FF FF FF FF

FF FF FF M

S IdS S I
P R S

dt P P

S IdI S I
I

dt P P

dR
I R

dt

dS S I S U
P S

dt P K

dI S I S U
I

dt P K

dS I U
P S

dt K

dI I U

dt K

β β
= µ + θ − − − µ

β β
= + − γ + µ

= γ − θ + µ

β ηβ
= µ − − − µ

β ηβ
= + − µ

β
= µ − − µ

β
= − µFF FF

M
FF FF V V E M

I

dU
I I U

dt
µ























= σ + σ − 

 (3) 

3.1. Positivity of Solution in Equation (3) 

Let 1 sup( 0 |t t= > 0HS > , 0HI > , 0HR > , 0VS > , 

0VI > , 0FFS > , 0FFI >  and 0)MU >  [0, ]t∈  

Considering the susceptible human compartment of 

Equation (3.6) of the model, 

H H VH H H FF
H H H H H

H H

S IdS S I
P R S

dt P P

β β
≥ µ + θ − − − µ  (3) 

Factorising HS  out of Equation (3) gives Equation (4) 

( )H VH H FF
H H H H H

H H

IdS I
P R S

dt P P

β β
≥ µ + θ − + + µ        (4) 

Let 

1 0H V

H

I

P

β
λ = >                               (5) 

and 

2 0H FF

H

I

P

β
λ = >                              (6) 

Substituting Equation (5) and Equation (6) into Equation 

(4), one can obtain Equation (7) 

1 2( )H
H H H H H

dS
P R S

dt
≥ µ + θ − λ + λ + µ        (7) 

Equation (7) can further be expressed as Equation (8) 

1 2( )H
H H H H H

dS
S P R

dt
+ λ + λ + µ ≥ µ + θ      (8)  

Seeking for an integrating factor ( )IF  

1 2
0

exp ( )
t

HIF dt
 = λ + λ + µ 
 ∫                    (9) 

Hence Equation (9) can therefore be simplified as 

Equation (10) 

[ ]1 2
0

exp ( ) ( ) ( )
t

HIF s s ds t
 = λ + λ + µ 
 ∫        (10) 

Multiplying through Equation (10) by Equation (8) gives 

Equation (11) 

[ ]

[ ]

[ ]

1 2
0

1 2 1 2
0

1 2
0

exp ( ) ( ) ( )

exp ( ) ( ) ( ) ( )

exp ( ) ( ) ( ) ( )

t
H

H

t

H H H

t

H H H H

dS
s s ds t

dt

s s ds t S

s s ds t P R

 λ + λ + µ +  
  

  λ + λ + µ λ + λ + µ  
  

 ≥ λ + λ + µ µ + θ  
  

∫

∫

∫

 (11) 

Equation (12) is obtained by simplifying Equation (11) 

[ ]

[ ]

1 2
0

1 2
0

( ) exp ( ) ( ) ( )

( ) exp ( ) ( ) ( )

t

H H

t

H H H H

d
S t s s ds t

dt

P R s s ds t

  λ + λ + µ   
   


 ≥ µ + θ λ + λ + µ  

∫

∫
 (12) 

Equation (13) is also obtained by Multiplying Equation (12) 

by dt  

[ ]

[ ]

1 2
0

1 2
0

( )exp ( ) ( ) ( )

( )exp ( ) ( ) ( )

t

H H

t

H H H H

d S t s s ds t

P R s s ds t dt

  λ + λ + µ   
   


   ≥ µ + θ λ + λ + µ      

∫

∫
 (13) 

Integrating both sides of Equation (13), one obtains 

equation (14) 

[ ]

[ ]

1 2
0

1 2
0 0

( ) exp ( ) ( ) ( )

) exp ( ) ( ) ( ) (0)

t

H H

t t

H H H H

S t s s ds t

P R z z dz t dt S

  λ + λ + µ  
   


    ≥ (µ + θ λ + λ + µ +   

     

∫

∫ ∫

ɵ

ɵ ɵ

ɵ ɵ

ɵ ɵ

                                      (14) 
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Dividing Equation (3.18) by [ ]1 2
0

exp ( ) ( ) ( )
t

Hs s ds t
  λ + λ + µ 
  
∫
ɵ

ɵ  and simplifying further, Equation (14) then becomes 

Equation (15) 

[ ]

[ ]

[ ]

1 2
0

1 2
0

1 2
0 0

( ) (0)exp ( ) ( ) ( )

exp ( ) ( ) ( )

)exp ( ) ( ) ( )

t

H H

t

H

t t

H H H H

S t S s s ds t

s s ds t

P R z z dz t d t

     ≥ − λ + λ + µ + 
     
     − λ + λ + µ ×  

     


     (µ + θ λ + λ + µ  
      

∫

∫

∫ ∫

ɵ

ɵ

ɵ ɵ

ɵ ɵ

ɵ

ɵ ɵ

                                                      (15) 

The right-hand side of Equation (15) is positive, which can be expressed as Equation (16) 

[ ]

[ ]

[ ]

1 2
0

1 2
0

1 2
0 0

(0)exp ( ) ( ) ( )

exp ( ) ( ) ( ) 0

)exp ( ) ( ) ( )

t

H

t

H

t t

H H H H

S s s ds t

s s ds t

P R z z dz t d t

     − λ + λ + µ + 
     
     − λ + λ + µ × >  

     


     (µ + θ λ + λ + µ  
      

∫

∫

∫ ∫

ɵ

ɵ

ɵ ɵ

ɵ

ɵ

ɵ ɵ

                                                (16) 

From Equation (16), it can be concluded that ( )HS tɵ  is 

positive and it is given by Equation (17) below 

( ) 0HS t >ɵ                                         (17) 

Similarly, it can be shown that (0) 0HI > , (0) 0HR > , 

(0) 0VS > , (0) 0VI > , (0) 0FFS > , (0) 0FFI >  and 

(0) 0MU >  for all 0t > . 

3.2. Identification of the Biological Interest of the Model 

The biological region of interest of Equation (3) is given as 

Equation (18) 

{ }

3

2

2

8

( , , ) :

( , ) :

( , ) :

0

( , , , , , , , ) |

M

H
H H H H H H H

H

V
V V V V V

V

FF
FF FF FF FF FF

FF

FF
U M

FF

H H H V V FF FF M H H H H

P
D S I R S I R

P
D S I S I

P
D S I S I

P
D U

S I R S I S I U S I R P

µ

µ

µ

µ

+

+

+

+

 
= ∈ + + ≤  
  


   = ∈ + ≤    


  = ∈ + ≤  

  

= < <



Ω = ∈ + + = 



ℝ

ℝ

ℝ

ℝ

                                      (18) 

where HP  is constant. 

The above model (3.6) can be solved by equating the right-hand side of the model to zero. This computation shows that the 

model always has a disease free equilibrium (DFE) at 0 0 0
0 ( , 0, 0, , 0, , 0, 0)H V FFE S S S= where, 

,  0,  0,  ,  0,  ,  0 and 0H H H H V V V FF FF FF MS P I R S P I S P I U= = = = = = = = and a unique endemic equilibrium 

1 1 1 1 1 1 1 1( , , , , , , , )ee H H H V V FF FF ME S I R S I S I U=  in Ω . 

The basic reproduction number ( 0R ) is defined as the 

average number of new cases of an infection caused by one 

typical infected individual in a population consisting of 

susceptible only [10]. 

To calculate 0R  for the above model using the Next 

Generation Operator approach we let T  be the state of the 

disease or the transmission state of the disease of Equation 

(3). 
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The transmission state of Equation (3) is given by 

Equation (19) 

1

2

3

H H V H H FF

V H

V V FF V V M

V

FF FF M

S I S I
T

P P

S I S U
T

P K

I U
T

K

β β = + 

β ηβ

= + 

β

= 


                 (19) 

Taking the Jacobian matrix of 1T , 2T and 3T  with respect 

to , ,  and H V FF MI I I U  gives, one can obtain Equation (20) 

below 

0 0

0 0

0 0

0 0 0 0

H H H H

H H

V V V V

V

FF M FF FF

S S

P P

S S

T P K

U I

K K

β β

β ηβ

β β

 
 
 
 
 =  
 
 
 
 
 

            (20) 

Evaluating T  at the disease-free equilibrium also gives 

Equation (21) 

0 0

0 0

0 0 0 0

0 0 0 0

H H

V V
V

P

T K

β β
ηββ

 
 
 

=  
 
 
 
 

                     (21) 

Let ∑ be the transition state of Equation (3). 

Hence the transition state of the disease can be expressed 

as Equation (22) 

1

2

3

4

( )H

V V

FF FF

V V FF FF E M

V

V I

V I

V I I U

γ µ
µ
µ

σ σ µ

= − + 
= − 
= − 
= + − 

                 (22) 

Taking the Jacobian matrix of 1 2 3 4, , ,  and V V V V  with 

respect to , ,  and H V FF MI I I U  gives 

( ) 0 0 0

0 0 0

0 0 0

0

H

V

FF

V FF E

γ µ
µ

µ
σ σ µ

− + 
 − =
 −
  − 

∑              (23) 

From Equation (23), we have Equation (24) 

( ) 0 0 0

0 0 0

0 0 0

0

H

V

FF

V FF E

γ µ
µ

µ
σ σ µ

+ 
 
 − =
 
  − − 

∑              (24) 

Hence the inverse of Equation (24) is computed as 

Equation (25) 

1

1
0 0 0

( )

1
0 0 0

1
0 0 0

1
0

H

V

FF

V FF

V E FF E E

γ µ

µ

µ
σ σ

µ µ µ µ µ

−

 
 + 
 
 
 − =
 
 
 
 
  
 

∑       (25) 

Let LK = Next Generation Matrix (NGM) with large 

domain. Therefore, the NGM is computed as Equation (26) 

1
LK T −= − ∑                           (26) 

hence 

1
0 0 0

( )
0 0

1
0 0 0

0 0

1
0 0 0 0 0 0 0

0 0 0 0
1

0

H

H H

V V
VV

L

FF

V FF

V E FF E E

P

K K

γ µ
β β

ηβ µβ

µ
σ σ

µ µ µ µ µ

 
 +    
  
 =  
  
  
  

  
  
 

    (27) 

Simplifying Equation (27) above gives Equation (28) 

below 

0 0

0

0 0 0 0

0 0 0 0

H H

H FF

V V V V V V FF V V
L

V E VV FF E E

P P P
K

K K K

β β
µ µ

ηβ σ β ηβ σ ηβ
µ µ µ µ µ µ

 
 
 
 

+=  
 
 
  
 

 (28) 

Let nλ  be the eigenvalues of LK . Then the eigenvalues of 

Equation (28) is computed as Equation (29) 

det( ) 0LK Iλ− =                            (29) 

Where I is a 4 4×  identity matrix and 1, 2,3, 4n = . 

Hence the eigenvalues of Equation (28) are obtained as 

Equation (30) 
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1

2

3

4

0 

0

0

V V V

V E

P

K

λ
λ
λ

ηβ σλ
µ µ

= 
= = 

=


                         (30) 

The basic reproductive number ( 0R ) is the spectral radius 

of LK  which is written as Equation (31) 

0 ( )LR K= ρ                                   (31) 

Hence the basic reproduction number is largest eigenvalue 

of Equation (30). 

Therefore 

0 4R λ=                                       (32) 

Hence the basic reproduction number is given by Equation 

(33) 

0
V V V

V E

P
R

K

ηβ σ
µ µ

=                                 (33) 

The basic reproduction number of the model is determined 

by the vector population, the density of Mycobacterium 

Ulcerans in the environment and the infected Fish-Frog 

population from that environment. The 0R  actually appears 

to be influenced by the rate at which Mycobacterium 

Ulcerans is introduced into the environment and the 

infectivity potential of the Fish-Frog from that of the 

environment. 

3.3. The Stability of the Disease-Free Equilibrium (DFE) 

Let 
0EJ  be the Jacobian evaluated at DFE of the model, 

therefore 

0

0 0 0 0

0 ( ) 0 0 0 0

0 ( ) 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0

H H H

H H H

H

V V
V V

E
V V

V V

FF

FF

V FF E

P

K
J

P

K

µ θ β β
γ µ β β

γ θ µ
ηβµ β

ηβµ β

µ
µ

σ σ µ

− − − 
 − + 
 − +
 
 − − −
 

=  
 −
 
 − 
 −
 − 

                             (34) 

Let iλ  be the eigenvalues of 
0EJ , for 1,2,3,4,5,6,7,8i = , the eigenvalues is computed as 

( )
( )

1

2

3

4

5

6

2 2
7 0

2 2
8 0

0

( ) 0

( ) 0

0

0

0

1
4 2 0

2

1
4 2 0

2

H

H

H

V

FF

FF

V E V E V V E E

V E V E V V E E

R

R

λ µ
λ γ µ
λ θ µ
λ µ
λ µ
λ µ

λ µ µ µ µ µ µ µ µ

λ µ µ µ µ µ µ µ µ

= − < 
= − + < 
= − + <


= − < 
= − <

= − <

= − + − + − + <


= − + + + − + <


                                           (35) 

From Equation (35), to show that 7λ  negative, we impose 

a negativity condition to it. 

7λ  is negative if and only if Equation (36) below holds 

2 2
04 2 ( )V E V V E E V ERµ µ µ µ µ µ µ µ+ − + < +      (36) 

Simplifying Equation (36), 0R  is obtained as Equation (37) 

below 

0 1R <                                      (37) 

From Equation (37), it implies that 7λ  is negative. 

Since the eigenvalues of 
0EJ  are all negatives it therefore 

shows that the disease-free equilibrium is locally 

asymptotically stable for 0 1R < . 
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3.4. The Stability of the Endemic Equilibrium 

The endemic equilibrium eeE of the model is locally 

asymptotically stable if and only if 0 1.R > However it is very 

difficult to deal with the stability of the endemic equilibrium 

analytically due to the nature of transmission model (i.e. 

Model 3). By numerical approach, the endemic equilibrium is 

locally asymptotically stable. Different initial conditions 

were applied for the simulation. Those obits shown to be the 

same point as time evolve. 

 

Figure 5. Phase portrait of Model 3 in V VS I  plane− . 

 

Figure 6. Phase portrait of Model 3 in FF FFS I  plane− . 
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Table 3. Description of parameters used in Equation (3). 

Symbol Description 

Hβ  The effective contact rate between the vector, fish-frog and susceptible human 

Vβ  The effective contact rate between fish-frog and susceptible vector 

FFβ  The effective contact rate between the susceptible fish-frog and Mycobacterium Ulcerans 

γ  The recovery rate of infected humans 

θ  The rate of loss of immunity of recovered humans 

Hµ  Birth rate of the human population 

Vµ  Birth rate of the vector population 

FFµ  Birth rate of the fish-frog population 

rV  The growth rate of the vector population 

rF  The growth rate of the fish-frog population 

K  The environmental carrying capacity of the bacteria population 

FFσ  Rate of shedding of Mycob 
acterium Ulcerans into the environment by fish-frog 

Vσ  Rate of shedding of Mycobacterium Ulcerans into the environment by the vector 

Eµ  Rate at which Mycobacterium Ulcerans are cleared from the environment. 

 

 

Figure 7. Dynamics of Human compartment of Equation (3). 

4. Results and Discussion 

Numerical simulation of the Equation (3.6) was carried 

out using Maple inbuilt functions. Analysis of the response 

of model parameters on the transmission dynamics of the 

disease was studied and the evaluation of the basic 

reproduction number was made. Since, most of the 

parametric values are not readily available it is needed to 

assign some arbitrary values. However, some are available 

at [6, 11, 12]. The initial conditions were taken at initial 

time of zero (0) and the final time was considered as 500, 

500, 500, 500, 520, 2000, 2000, 2000, 7000, 8000 and 

finally 10000. The results of the simulation study are 

presented in Figure 8. 

From Figure 7 the model simulations show that the 

susceptible human population decrease and becomes steady 

with time. The infected human population also increases so 

sharply and becomes asymptotic with time. This is due to the 

rate at which a susceptible human is bitten by an infected 

water bug and also the rate at which a susceptible human 

feed on an infected fish-frog. It can be observed that the 

Recovered human population increases to a certain point and 

it then decreases asymptotically with time. 

 

Figure 8. Dynamics of the Human and the Vector compartments. 

Figure 8 shows the general interactions between human 

and vector population in the study areas with time. It’s also 

shows that there will be a widespread occurrence of the 

Buruli Ulcer disease in study areas. 

The basic reproduction number was calculated as 

 

Equation Chapter (Next) Section 1 (38) 

The positivity of solution to the model was proved as 

shown in Equation (4) to (17). The Basic Reproduction 

Number 0( )R  was computed from the deterministic model 

that was developed in Equation (4). The model's equilibria 

were determined and conditions for the equilibria were also 

established, and their stabilities were investigated in terms of 

the classic threshold 0( )R . It is well known in disease 

transmission modelling that, a classical necessary condition 

for minimizing or eliminating disease completely is that the 

basic reproduction number 0( )R , must be less than unity. If 

the basic reproduction number is greater than unity, then the 

disease will eventually spread in a population. The disease-

free equilibrium (DFE) is found to be locally asymptotically 

stable for 0 1R <  as it's shown in Equation (37). The endemic 

equilibrium is also found to be locally asymptotically stable 

for 0 1R > . 

A simulation was performed on the model using some of 

the parameters in Table 3. The results obtained indicate that, 

0 1.207710000R =
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the disease has attained a steady state, this is typically shown 

in Figure 8. In examining the state of Buruli Ulcer in the 

study area, since 0 1R > it proves that the number of infected 

persons in the communities will increase with time. 

5. Conclusions 

The study developed a deterministic model for Buruli 

Ulcer based on the transmission mechanism of the disease in 

the study area. The basic reproduction number 0R  derived 

was found to be greater than unity (i.e. 0 1R > ), this shows 

that, the disease will spread horizontally across the 

population, and the estimated value of 0R  was 1.20771. The 

transmission dynamics of Buruli Ulcer model of the 

Susceptible, Infected and Recovered (SIR) type showed that, 

the disease will continue to spread at the study areas as long 

as the reservoir for Mycobacterium Ulcerans continue to 

increase and also as long as enough infected water bugs and 

infected fish or infected frog continue to increase. However, 

the spread of the disease (Buruli Ulcer) will be minimised 

when control measures are being implemented. It is therefore 

recommended that People in the affected communities should 

be given adequate education on the Buruli Ulcer disease, how 

contaminated water or stagnant water play a major role in the 

transmission of the disease and how the disease should be 

treated properly to minimize its spread. 
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