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Abstract: The present paper is devoted to the study a dynamic problem describing a frictionless contact between a thermo-
elasto-viscoplastic body and an adhesive foundation. The constitutive law includes a temperature effect described by the first
order evolution equation. The contact is modelled with a normal compliance condition involving adhesion effect of contact
surfaces. The adhesion is modelled with a surface variable, the bonding field whose evolution is described by a first order
differential equation. A variational formulation for the problem is given as a system involving the displacement field, the bonding
field and the temperature field. The existence and the uniqueness of the weak solution are established. The proof is based on
evolution equation with monotone operators, differential equations and fixed point theorem.
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1. Introduction
The adhesive contact between bodies, when a glue is

added to keep the surfaces from relative motion, is receiving
increasing attention in the mathematical literature. Basic
modelling can be found in [9, 10]. Analysis of models for
adhesive contact can be found in [4, 6, 8, 11, 24], and in the
monograph [26] and references therein. Results on frictionless
adhesive contact can be found in [5, 12, 13, 20, 23]. An
application of theory of adhesive contact in the medical field
of prosthetic limbs was considered in [18, 19]. The novelty in
all the above papers is the introduction of a surface internal
variable, the bonding field, denoted in this paper by β, it
describes the pointwise fractional density of active bonds on
the contact surface, and sometimes referred to as the intensity
of adhesion. Following [9, 10], the bonding field satisfies the
restrictions 0 ≤ β ≤ 1, when β = 1 at a point of the
contact surface, the adhesion is complete and all the bonds
are active, when β = 0 all the bonds are inactive, severed,
and there is no adhesion, when 0 < β < 1 the adhesion
is partial and only a fraction β of the bonds is active. The
reader is referred to the extensive bibliography on the subject
in [16, 17, 22, 25, 27] . The aim of this paper consists on the

study of a dynamic process of a frictionless contact between a
thermo-elasto-viscoplastic body and an adhesive foundation.
The temperature effect is included in the constitutive law
and is descibed by a differential heat equation. The contact
is modelled with a normale compliance condition involving
adhesion effect of contact surfaces. The adhesion is modelled
with a surface variable, the bonding field whose evolution is
described by a first order differential equation. The model
is formulated as a system involving the displacement field,
the bonding field and the temperature field. A variational
formulation for the model is derived. The existence and
uniqueness of weak solution are proved. The novelty in
this paper consists on the coupling of an elastic-viscoplastic
material with thermal effect and a frictionless adhesive contact
without adhesive wear. Such problems arise in industry and
medical field.

The paper is organised as follows. Notations and some
preliminaries are presented in section 2. The mechanical
problem, the assumptions on the data and the variational
formulation of the problem are presented in section 3.
The main existence and uniqueness result Theorem 4.1 and
its proof based on arguments of evolution equations with
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monotone operators and a fixed point argument are given in
section 4.

2. Notation and Preliminaries
The notation and some preliminary material are presented in

this short section. For details see, e.g., [7].
Denote by Sd the space of second order symmetric tensors

on Rd (d = 2, 3), while (.) and | . | represent the inner
product and the Euclidean norm on Sd and Rd, respectively.
Let Ω ⊂ Rd be a bounded domain with a regular boundary Γ
and let ν denote the unit outer normal on Γ. Using the notation

H = L2(Ω)d =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {u = (ui) ∈ H / ε(u) ∈ H } ,

H1 = {σ ∈ H / Div σ ∈ H} ,

where ε : H1 → H and Div : H1 → H are the deformation
and divergence operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j +uj,i), Div σ = (σij, j).

Here and below, the indices i and j run between 1 to d, the
summation convention over repeated indices is used and the
index that follows a comma indicates a partial derivative with
respect to the corresponding component of the independent
variable.

The spaces H, H, H1 and H1 are real Hilbert spaces
endowed with the canonical inner products given by

(u,v)H =

∫
Ω

uivi dx ∀u,v ∈ H,

(σ, τ)H =

∫
Ω

σijτij dx ∀σ, τ ∈ H,

(u,v)H1 = (u,v)H + (ε(u), ε(v))H ∀u,v ∈ H1,

(σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H ∀ σ, τ ∈ H1.

The associated norms on the spaces H , H, H1 and H1 are
denoted by | . |H , | . |H, | . |H1 and | . |H1 , respectively.

Let HΓ = H
1
2 (Γ)d and let γ : H1 → HΓ be the trace map.

For every element v ∈ H1, using the notation v to denote the
trace γv of v on Γ and denote by vν and vτ the normal and
the tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν. (1)

Denote by σν and στ the normal and the tangential traces of
a function σ ∈ H1, and recall that when σ is a regular function
then

σν = (σν).ν, στ = σν − σνν, (2)

and the following Green’s formula holds:

(σ, ε(v))H + (Div σ,v)H =

∫
Γ

σν . v da ∀v ∈ H1. (3)

Finally, for any real Hilbert space X , the classical notation
for the spacesLp(0, T ;X) andW k,p(0, T ;X), where 1 ≤ p ≤
+∞ and k ≥ 1. is used. Let C(0, T ;X) and C1(0, T ;X) the
space of continuous and continuously differentiable functions
from [0, T ] to X, respectively, with the norms

| f |C(0,T ;X)= max
t∈[0,T ]

| f(t) |X ,

| f |C1(0,T ;X)= max
t∈[0,T ]

| f(t) |X + max
t∈[0,T ]

|
.

f(t) |X ,

respectively. Moreover, for a real number r, using r+ to
represent its positive part, that is r+ = max{0, r}. Finally,
for the convenience of the reader, the following version of the
classical theorem of Cauchy-Lipschitz (see, e.g., 28, p. 60) is
given in the following result.

Theorem 2.1. Assume that (X , | . |X) is a real Banach space
and T > 0. Let F (t, .) : X → X be an operator defined a.e.
on (0, T ) satisfying the following conditions:

1. ∃ LF > 0 such that | F (t, x) − F (t, y) |X≤ LF |
x− y |X ∀x, y ∈ X, a.e. t ∈ (0, T ) .

2. ∃ p ≥ 1 such that t 7−→ F (t, x) ∈ Lp(0, T ;X)
∀x ∈ X.

Then for any x0 ∈ X, there exists a unique function x ∈
W 1, p(0, T ;X) such that

.
x(t) = F (t, x(t)) a.e. t ∈ (0, T ) ,

x(0) = x0.

Theorem 2.1 will be used in section 4 to prove the unique
solvability of the intermediate problem involving the bonding
field.

Moreover, if X1 and X2 are real Hilbert spaces then
X1 ×X2 denotes the product Hilbert space endowed with the
canonical inner product (., .)X1×X2

.

3. Problem Statement and Variational
Formulations

This section concerns the physical setting of the contact
problem. A thermo-elasto-viscoplastic body which occupies
the domain Ω ⊂ Rd with the boundary Γ divided into three
disjoint measurable parts Γ1,Γ2 and Γ3 such thatmeas(Γ1) >
0. The time interval of interest is [0, T ] where T > 0. The
body is clamped on Γ1 and so the displacement field vanishes
there. A volume force of density f0 acts in Ω× (0, T ) and
surface tractions of density f2 act on Γ2× (0, T ). Assume that
the body is in adhesive frictionless contact with an obstacle,
the so called foundation, over the potential contact surface
Γ3. Moreover, the process is dynamic, and thus the inertial
terms are included in the equation of motion. The material
is assumed to behave according to the general thermo-elasto-
viscoplastic constitutive law given by
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σ (t) = Aε( .u(t)) + Fε(u(t)) +

∫ t

0

G(σ(s)−Aε( .u(s)), ε(u(s)), θ(s)) ds (4)

where σ denotes the stress tensor, u represents the
displacement field,

.
u the velocity, ε(u) is the small strain

tensor and θ is the temperature field. Here A and F
are nonlinear operators describing the purely viscous and
the elastic properties of the material respectively, G is
nonlinear operator which depends on the temperature and
which describing the viscoplastic behaviour of the material.

Using dots for derivatives with respect to the time variable
t. It follows from (4) that at each time moment, the stress
tensor σ(t) is split into two parts: σ(t) = σV (t) + σR(t),
where σV (t) = Aε( .u(t)) represents the purely viscous part
of the stress whereas σR(t) satisfies a rate-type thermo-elasto-
viscoplastic relation

σR(t) = Fε(u(t)) +

∫ t

0

G(σR(s), ε(u(s)), θ(s)) ds. (5)

When G = 0, (4) reduces to the Kelvin-Voigt viscoelastic constitutive law given by

σ(t) = Aε( .u(t)) + Fε(u(t)). (6)

The evolution of the temperature field θ is governed (see [1, 7]) by the heat equation, obtained from the conservation of energy,
and defined by the following differential equation for the temperature

.

θ − div(K∇θ) = r(
.
u) + q (7)

where K = (kij) represents the thermal conductivity tensor,
div(K∇θ) = (kijθ,i),i, q(t) the density of volume heat
sources, and r(

.
u(t)) a nonlinear function of the velocity. In

[1], the following linear function was used

r(
.
u(t)) = −cij

.
ui,j(t).

The associated temperature boundary condition on Γ3 is
described by

kijθ,inj = −ke(θ − θR) + hτ (| .uτ |) on Γ3 × (0, T ) ,

where θR is the temperature of the foundation, and ke is the
heat exchange coefficient between the body and the obstacle,
and hτ : Γ3 × R+ → R+ is a given tangential function.
Analysis of contact problems with thermal effect can be in
[3, 21].

Then, the classical formulation of the dynamic contact
problem is the following.

Problem P. Find a displacement field u : Ω × [0, T ] →
Rd, a stress field σ : Ω× [0, T ]→ Sd, a bonding field β : Γ3×
[0, T ]→ R and a temperature field θ : Ω× [0, T ]→ R+ such
that

σ = Aε( .u) + Fε(u) +

∫ t

0

G(σ(s)−Aε( .u(s)), ε(u(s)), θ(s)) ds in Ω× (0, T ) , (8)

ρ
..
u = Div σ + f0 in Ω× (0, T ) , (9)

u = 0 on Γ1 × (0, T ) , (10)

σν = f2 on Γ2 × (0, T ) , (11)
.

θ − div(K∇θ) = r(
.
u) + q on Ω× (0, T ) , (12)

−kij
∂θ

∂xi
nj = ke(θ − θR)− hτ (| .uτ |) on Γ3 × (0, T ) , (13)

−σ ν = p ν(uν)− γνβ2R ν(uν) on Γ3 × (0, T ) , (14)

−στ = pτ (β)Rτ (uτ ) on Γ3 × (0, T ) , (15)

.

β = −(β(γν(R ν(uν))2 + γτ | R τ (uτ ) |2)− εa)+ on Γ3 × (0, T ) , (16)

θ = 0 on Γ1 ∪ Γ2 × (0, T ) , (17)

u(0) = u0,
.
u(0) = v0, θ(0) = θ0 in Ω, (18)
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β(0) = β0 on Γ3. (19)

Here, (8) and (12) represent the thermo-elasto-viscoplastic
constitutive law introduced in the third section, (9) represents
the equation of motion where ρ represents the mass density.
(10)-(11) are the displacement-traction conditions. (13)
represents the associated temperature boundary condition
on Γ3. Condition (14) represents the normal compliance
conditions with adhesion where γν is a given adhesion
coefficient and pν is a given positive function which will
be described below. In this condition the interpenetrability
between the body and the foundation is allowed, that is uν can
be positive on Γ3. The contribution of the adhesive traction to
the normal traction is represented by the term γνβ

2R ν(uν),
the adhesive traction is tensile and is proportional, with
proportionality coefficient γν , to the square of the intensity of
adhesion and to the normal displacement, but as long as it does
not exceed the bond length L. The maximal tensile traction is
γνL. Rν is the truncation operator defined by

Rν(s) =

 L if s < −L,
−s if − L ≤ s ≤ 0,
0 if s > 0.

Here L > 0 is the characteristic length of the bond,
beyond which it does not offer any additional traction. The
contact condition (14) was used in various papers, see e.g.
[4, 5, 24, 26]. Condition (15) represents the adhesive contact
condition on the tangential plane, in which pτ is a given

function and Rτ is the truncation operator given by

Rτ (v) =

{
v if | v | ≤ L,
L v
|v| if | v | > L.

This condition shows that the shear on the contact
surface depends on the bonding field and on the tangential
displacement, but as long as it does not exceed the bond length
L. The frictional tangential traction is assumed to be much
smaller than the adhesive one and, therefore, omitted. The
introduction of the operator Rν , together with the operator Rτ

defined above, is motivated by mathematical arguments but it
is not restrictive for physical point of view, since no restriction
on the size of the parameter L is made in what follows.

Next, the equation (16) represents the ordinary differential
equation which describes the evolution of the bonding field and
it was already used in [4], see also [24, 26] for more details.
Here, besides γν , two new adhesion coefficients are involved,
γτ and εa. Notice that in this model once debonding occurs
bonding cannot be reestablished since, as it follows from (16),
.

β ≤ 0. (17) means that the temperature vanishes on Γ1 ∪Γ2×
(0, T ). In (18) u0 is the given initial displacement, v0 is the
given initial velocity and θ0 is the initial temperature. Finally,
(19) represents the initial condition, in which β0 denotes the
initial bonding. To simplify the notation, the dependence of
various functions on the variables x ∈ Ω∪Γ and t ∈ [0, T ] . is
not indicated explicitely. To obtain the variational formulation
of the problem (8)-(19), introducing for the bonding field the
set

Z =
{
θ : [0, T ]→ L2(Γ3) / 0 ≤ θ(t) ≤ 1 ∀t ∈ [0, T ] , a.e. on Γ3

}
.

Let E denote the closed subspace of H1(Ω) given by

E =
{
γ ∈ H1(Ω) / γ = 0 on Γ1 ∪ Γ2

}
.

For the displacement field we need the closed subspace of H1 defined by

V = {v ∈ H1 / v = 0 on Γ1}.

Since meas(Γ1) > 0, Korn’s inequality holds (see [15]) and there exists a constant Ck > 0 which depends only on Ω and Γ1

such that
| ε(v) |H≥ Ck | v |H1

∀v ∈ V.

The inner product and the associated norm on V are given by

(u,v)V = (ε(u), ε(v))H, | v |V =| ε(v) |H ∀u,v ∈ V . (20)

It follows from Korn’s inequality that | . |H1 and | . |V are equivalent norms on V and therefore (V, | . |V ) is a real Hilbert
space. Moreover, by the Sobolev trace theorem there exists a constant C0, depending only on Ω, Γ1 and Γ3, such that

| v |L2(Γ3)d ≤ C0 | v |V ∀v ∈ V. (21)

In the study of the mechanical problem (8)-(19), assume the following assumptions. The viscosity operator A : Ω× Sd → Sd
satisfies
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

(a) There exists a constant LA > 0 such that
| A(x, ε1)−A(x, ε2) |≤ LA | ε1 − ε2 |
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists a constant mA > 0 such that
(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |2
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(c) The mapping x→ A(x, ε) is Lebesgue measurable
on Ω for any ε ∈ Sd.
(d) The mapping x→ A(x,0) ∈ H.

(22)

The elasticity operator F : Ω× Sd → Sd satisfies

(a) There exists a constant LE > 0 such that
| F(x, ε1)−F(x, ε2) |≤ LE | ε1 − ε2 |
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) For any ε ∈ Sd, x→ F(x, ε) is Lebesgue measurable
on Ω.
(c) The mapping x→ F(x,0) ∈ H.

(23)

The visco-plasticity operator G : Ω× Sd × Sd → Sd satisfies

(a) There exists a constant LG > 0 such that
| G(x, σ1, ε1, θ1)− G(x, σ2, ε2, θ2) |

≤ LG(| σ1 − σ2 | + | ε1 − ε2 | +θ1 − θ2 |)
∀σ1, σ2, ε1, ε2,∈ Sd, θ1, θ2 ∈ R+ a.e. x ∈ Ω.
(b) For any σ, ε ∈ Sd, θ ∈ R+ ,
x→ G(x, σ, ε,θ) is Lebesgue measurable on Ω.

(c) The mapping x→ G(x,0,0,0) ∈ H.

(24)

The contact function pν : Γ3 × R→ R satisfies

(a) There exists a constant Lν > 0 such that
| pν(x, r1)− pν(x, r2) |≤ Lν | r1 − r2 |
∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) The mapping x→ pν(x, r) is measurable on Γ3,
for any r ∈ R.
(c) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(25)

The tangential contact function pτ : Γ3 × R→ R+ satisfies

(a) There exists a constant Lτ > 0 such that
| pτ (x, d1)− pτ (x, d2) |≤ Lτ | d1 − d2 |
∀d1, d2 ∈ R, a.e. x ∈ Γ3.
(b) There exists Mτ > 0 such that
| pτ (x, d) |≤Mτ ∀d ∈ R, a.e. x ∈ Γ3.
(c) The mapping x→ pτ (x, d) is measurable on Γ3,
for any d ∈ R.
(d) The mapping x→ pτ (x, 0) ∈ L2(Γ3).

(26)

The tangential function hτ : Γ3 × R+ → R+ satisfies
(a) There exists a constant Lτ > 0 such that
| hr(x, r1)− hr(x, r2) |≤ Lτ | r1 − r2 |
∀r1, r2 ∈ R+, a.e. x ∈ Γ3.
(b) The mapping x→ hr(x, r) ∈ L2(Γ3)
is Lebesgue measurable on Γ3, ∀r ∈ R+.

(27)
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The mass density satisfies

ρ ∈ L∞(Ω), there exists ρ∗ > 0 such that ρ(x) ≥ ρ∗ a.e. x ∈ Ω. (28)

The adhesion coefficient and the limit bound satisfy

γν , γτ , εa ∈ L∞(Γ3), γν ≥ 0, γτ ≥ 0, εa ≥ 0. (29)

The body forces and surface traction have the regularity

f0 ∈ L2(0, T ;H) , f2 ∈ L2(0, T ;L2(Γ2)d). (30)

For the thermal tensors and the heat source density, suppose that

q ∈ L2(0, T ;L2(Ω)), (31)

and for some ck > 0, for all (ξi) ∈ Rd :

K = (kij), kij = kji ∈ L∞(Ω), kijξiξj ≥ ckξiξj . (32)

The boundary and initial data satisfy

u0 ∈ V, v0 ∈ H, θ0 ∈ E,
θR ∈ L2(0, T ;L2(Γ3)), ke ∈ L∞(Ω,R+). (33)

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1, a.e. on Γ3. (34)

The function r : V → L2(Ω) satisfies{
There exists a constant Lr > 0 such that
| r(v1)− r(v2) |L2(Ω)≤ Lr | v1 − v2 | ∀v1,v2 ∈ V.

(35)

Before giving the weak formulation of the mechanical problem, let us consider some concrete examples. A simple tangential
function hτ is given by

hτ (x, r) = λ(x)r ∀r ∈ R+, a.e. x ∈ Γ3,

where λ ∈ L∞(Γ3,R+) represents some rate coefficient for the gradient of the temperature. Using a modified inner product on
H = L2(Ω)d, given by

((u,v))H = (ρu,v)H ∀u,v ∈ H,

that is, it is weighted with ρ, and let ‖ . ‖H be the associated norm, i.e.,

‖ v ‖H= (ρv,v)
1
2

H ∀v ∈ H.

By assumption (28) ‖ . ‖H and | . |H are equivalent norms on H . The embedding of (V, | . |V ) into (H, ‖ . ‖H) is continuous
and dense. Denote by V ′ the dual space of V. Identifying H with its own dual, the Gelfand triiple is given by

V ⊂ H ⊂ V ′.

Using the notation (., .)V ′×V to represent the duality pairing between V
′

and V , to have

(u,v)V ′×V = ((u,v))H ∀u ∈ H,∀v ∈ V.

Assumptions (30) allow us, for a.e. t ∈ (0, T ), to define f(t) ∈ V ′ by

(f(t),v)V ′×V =

∫
Ω

f0(t).v dx+

∫
Γ2

f2(t).v da ∀v ∈ V, (36)

and note that
f ∈ L2(0, T ;V

′
). (37)
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The adhesion functional j : L∞(Γ3)× V × V → R defined by

j(β,u,v) =

∫
Γ3

[(pν(uν)− γνβ2Rν(uν))vν + pτ (β)Rτ (uτ ).vτ ]da. (38)

Keeping in mind (25), (26) and (29) the integrals (38) are
well defined. Using standard arguments based on Green’s
formula (3) to obtain the following variational formulation of
the problem (8)-(19) as follows.

Problem PV. Find a displacement field u : [0, T ] → V , a
stress field σ : [0, T ] → H, a bonding field β : [0, T ] →
L∞(Γ3) and a temperature field θ : [0, T ]→ E such that

σ = Aε( .u) + F(ε(u)) +

∫ t

0

G(σ(s)−Aε( .u(s)), ε(u(s)), θ(s)) ds in Ω× (0, T ) , (39)

(
..
u(t), ε(v))V ′×V + (σ(t), ε(v))H + j(β(t),u(t),v) = (f(t),v)V ′×V ∀v ∈ V,∀t ∈ [0, T ], (40)

.

θ(t) +K θ(t) = R
.
u(t) +Q(t) in E′, (41)

.

β(t) = −(β(t)(γν(R ν(uν(t)))2+γτ | R τ (uτ (t)) |2)− εa)+ a.e. t ∈ (0, T ) , (42)

u(0) = u0,
.
u(0) = v0, β(0) = β0, θ(0) = θ0, (43)

where Q : [0, T ]→ E′, K : E → E′ and R : V → E′ are given by

(Q(t), η)E′×E =

∫
Γ3

keθR(t)ηda+

∫
Ω

q(t)ηdx, (44)

(Kτ, η)E′×E =

d∑
i,j=1

∫
Ω

kij
∂τ

∂xj

∂η

∂xi
dx+

∫
Γ3

keτ.ηda, (45)

(Rv,η)E′×E =

∫
Ω

r(v)ηdx+

∫
Γ3

hτ (| vτ |).ηda, (46)

for all v ∈V, η, τ ∈ E.
Note that the variational problem PV is formulated in

terms of displacement field, stress field, temperature field and
bonding field. The existence of the unique solution of problem
PV is stated and proved in the next section. To this end, the
following remark which is used in different places of the paper
is given in what follows.

Remark 3.1. Note that in the problem P and in the problem
PV , is not needed to impose explicitly the restriction 0 ≤ β ≤
1. Indeed, equations (42) guarantee that β(x, t) ≤ β0(x) and,
therefore, assumption (42) shows that β(x, t) ≤ 1 for t ≥ 0,
a.e. x ∈ Γ3. On the other hand, if β(x, t0) = 0 at time t0,
then it follows from (42) that

.

β(x, t) = 0 for all t ≥ t0 and
therefore, β(x, t) = 0 for all t ≥ t0, a.e. x ∈ Γ3. Then
0 ≤ β(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

4. Existence and Uniqueness Result

The main result in this section is the following existence and
uniqueness result.

Theorem 4.1. Assume that (22)-(35) hold. Then problem

PV has a unique solution (u, σ, β, θ) which satisfies

u ∈ H1(0, T ;V ) ∩ C1(0, T ;H),
..
u∈L2(0, T ;V

′
), (47)

σ ∈ L2(0, T ;H), Div σ ∈ L2(0, T ;V
′
), (48)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩ Z. (49)

θ ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E),
.

θ ∈ L2(0, T ;E′). (50)

A quadruplet (u, σ, β, θ) which satisfies (39)-(43) is called a
weak solution to the contact problem P. Then under the stated
assumptions, problem (8)-(19) has a unique weak solution
satisfying (47)-(50). The proof of Theorem 4.1 will be carried
out in several steps and is based on arguments of evolution
equations with monotone operators and a fixed point argument.
To this end assume in the following that (22)-(43) hold. Below,
C denotes a generic positive constant which may depend on Ω,
Γ1, Γ2, Γ3,A, G, pν , pτ , γν , γτ , L and T but does not depend
on t nor of the rest of input data, and whose value may change
from place to place. Moreover, for the sake of simplicity, in
what follows, the explicit dependence of various functions on
x ∈ Ω∪Γ is suppressed. Let η ∈ L2(0, T ;V

′
) be given,

the first step concerns the study of the following variational
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problem.
Problem PVη. Find a displacement field uη : [0, T ] → V

such that

(
..
uη(t),v)V ′×V + (Aε( .uη(t)), ε(v))H + (η(t),v)V ′×V

= (f(t),v)V ′×V ∀v ∈ V, a.e. t ∈ (0, T ) , (51)

uη(0) = u0,
.
uη(0) = v0. (52)

To solve problem PVη , it is important to recall now an
abstract existence and uniqueness result, for the convenience
of the reader. Let V and H denote real Hilbert spaces such
that V is dense in H and the inclusion map is continuous, H
is identified with its dual and it is identified with a subspace of
the dual V

′
of V , i.e., V ⊂ H ⊂ V

′
, and then the inclusions

above define a Gelfand triple. The notation | . |V , | . |V ′ and
(., .)V ′×V represent the norms on V and on V

′
and the duality

pairing between them, respectively. The following abstract
result may be found in [26, p. 48].

Theorem 4.2. Let V,H be as above, and let A : V → V
′

be
a hemicontinuous and monotone operator which satisfies

(Av,v)V ′×V ≥ ω | v |
2
V +λ ∀v ∈ V, (53)

| Av |V ′≤ C(| v |V +1) ∀v ∈ V, (54)

for some constants ω > 0, C > 0 and λ ∈ R. Then, given
u0 ∈ H and f ∈ L2(0, T ;V

′
), there exists a unique function

u which satisfies

u ∈ L2(0, T ;V
′
) ∩ C(0, T ;H),

.
u ∈ L2(0, T ;V

′
),

.
u(t) +Au(t) = f(t) a.e. t ∈ (0, T ) ,

u(0) = u0.

Applying it to problem PVη.
Lemma 4.1. There exists a unique solution to problem PVη

and it has the regularity expressed in (47).
Proof Define the operator A : V → V

′
by

(Au,v)V ′×V = (Aε(u), ε(v))H ∀u,v ∈ V. (55)

It follows from (55) and (22)(a) that

| Au−Av |V ′≤ LA | u− v |V ∀u,v ∈ V, (56)

which shows that A : V → V
′

is continuous, and so is
hemicontinuous. Using (55) and (22)(b), to find

(Au−Av,u−v)V ′×V ≥ mA | u−v |2V ∀u,v ∈ V, (57)

i.e., that A : V → V
′

is a monotone operator. Choosing
v = 0V in (57) to obtain

(Au−Av,u−v)V ′×V ≥ mA | u− v |2V − | A0V |V ′ | u |V

≥ 1

2
mA | u |2V −

1

2mA
| A0V |2V ′ ∀u ∈ V.

Thus, A satisfies condition (53) with ω = mA
2 and λ =

−|A0V |2
V
′

2mA
. Next, using (56) to deduce that

| Au |V ′ ≤ LA | u |V + | A0V |V ′ ∀u ∈ V.

This inequality implies that A satisfies condition (54).
Finally, using (37) and (33) to have f − η ∈L2(0, T ;V

′
) and

v0 ∈ H.
It follows now from Theorem 4.2 that there exists a unique

function vη which satisfies

vη ∈ L2(0, T ;V ) ∩ C(0, T ;H),
.
vη ∈ L2(0, T ;V

′
), (58)

.
vη(t) +Avη(t) + η(t) = f(t) a.e. t ∈ (0, T ) , (59)

vη(0) = v0. (60)

Let uη : [0, T ]→ V be the function defined by

uη(t) =

∫ t

0

vη(s) ds+ u0 ∀t ∈ [0, T ]. (61)

It follows from (55) and (58)-(61) that uη is a solution
of the variational problem PVη and it satisfies the regularity
expressed in (47). This concludes the existence part of
Lemma 4.3. The uniqueness of the solution follows from the
uniqueness of the solution to problem (59)-(60), guaranteed by
Theorem 4.1.

In the second step, using the displacement field uη obtained
in Lemma 4.3 and considering the following initial-value
problem.

Problem PVβ . Find the adhesion field βη : [0, T ] →
L2(Γ3) such that

.

βη(t) = −(βη(t)(γν(R ν(uην(t)))2 + γτ | R τ (uητ (t)) |2 )− εa)+ a.e. t ∈ (0, T ) , (62)

βη(0) = β0. (63)

Hence the following result.
Lemma 4.2. There exists a unique solution βη ∈

W 1,∞(0, T ;L2(Γ3)) ∩ Z to problem PVβ .

Proof For the sake of simplicity the dependence of various
functions on Γ3, is suppressed and note that the equalities and
inequalities below are valid a.e. on Γ3. Consider the mapping
Fη : [0, T ]× L2(Γ3)→ L2(Γ3) defined by

Fη(t, β) = −(β(γν(R ν(uην(t)))2 + γτ | R τ (uητ (t)) |2 )− εa)+, (64)
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for all t ∈ [0, T ] and β ∈ L2(Γ3). It follows from the
properties of the truncation operator Rν and Rτ that Fη
is Lipschitz continuous with respect to the second variable,
uniformly in time. Moreover, for all β ∈ L2(Γ3), the
mapping t → Fη(t, β) belongs to L∞(0, T ;L2(Γ3)). Thus
using a version of Cauchy-Lipschitz theorem given in Theorem
2.1 to deduce that there exists a unique function βη ∈
W 1,∞(0, T ;L2(Γ3)) solution to the problem PVβ . Also, the

arguments used in Remark 3.1 show that 0 ≤ βη(t) ≤ 1 for
all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the
set Z, we find that βη ∈ Z, which concludes the proof of the
Lemma 4.4.

In the third step, using the displacement field uη obtained in
Lemma 4.3 and consider the following variational problem.

Problem PVθ. Find a temperature field θη : [0, T ] → E
such that

.

θη(t) +Kθη(t) = R
.
uη(t) +Q(t) in E′, a.e. t ∈ (0, T ), (65)

θη(0) = θ0. (66)

The study of problem PVθ is given in the following result.
Lemma 4.3. PVθ has an unique solution satisfying

θη ∈ C(0, T ;L2(Ω)) ∩ L2(0, T ;E),
.

θη ∈ L2(0, T ;E′). (67)

Moreover, there exists C > 0 such that ∀ηi ∈ L2(0, T ;V ′),

| θ1(t)− θ2(t) |2L2(Ω)≤ C
∫ t

0

| η1(s)− η2(s) |2V ′ ds, ∀t ∈ [0, T ] . (68)

Here we wrote denote θηi = θi, for i = 1, 2.
Proof The result follows from classical first order evolution equation given in [2, 26] and proceed like in the proof of Lemma

4.3, where the Gelfand triple is given by

E ⊂ L2(Ω) = (L2(Ω))′ ⊂ E′.

The operator K is linear and coercive. Using Korn’s inequality (see [15]) to have

(Kτ, τ)E′×E ≥ C | τ |2E .

Here and below, C > 0 denotes a generic constant the value of which may change from lines to lines.
Using (65) to deduce that

(θ̇1 − θ̇2, θ1 − θ2)L2(Ω) + (K(θ1 − θ2), θ1 − θ2)L2(Ω)

= (R(
.
u1 −

.
u2), θ1 − θ2)L2(Ω) a.e. t ∈ (0, T ) . (69)

Integrating the inequality (69) with respect to time, using the initial conditions θ1(0) = θ2(0) = θ0, the fact that K is coercive
and the Lipschitz continuity of the operator R to find that

1

2
| θ1(t)− θ2(t) |2L2(Ω)≤ Lr

∫ t

0

| v1(s)− v2(s) |V | θ1(s)− θ2(s) |L2(Ω) ds.

Using the inequality ab ≤ a2

2 + b2

2 , to obtain that

| θ1(t)− θ2(t) |2L2(Ω)≤ C(

∫ t

0

| v1(s)− v2(s) |V ds+

∫ t

0

| θ
1
(s)− θ

2
(s) |2L2(Ω) ds).

Applying Gronwall’s inequality [26, p.49] to deduce that

| θ1(t)− θ2(t) |2L2(Ω)≤ C
∫ t

0

| v1(s)− v2(s) |2V ds ∀t ∈ [0, T ] . (70)

Using (51), to find for a.e. t ∈ (0, T )

(
.
v1 −

.
v2,v1 − v2)V ′×V + (Aε(v1)−Aε(v2), ε(v1 − v2))H. = −(η1 − η2,v1 − v2)V ′×V .
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Integrating this equality with respect to time, using the initial conditions v1(0) = v2(0) = v0 and condition (22) to find

mA

∫ t

0

| v1(s)− v2(s) |2V ds ≤ −
∫ t

0

(η1(s)− η2(s),v1(s)− v2(s))V ′×V ds,

for all t ∈ [0, T ]. Then, using the inequality 2ab ≤ a2

γ + γb2 to have∫ t

0

| v1(s)− v2(s) |2V ds ≤ C
∫ t

0

| η1(s)− η2(s) |2
V ′
ds ∀t ∈ [0, T ] . (71)

The inequality (70) and the relation (71) lead to the estimate (68).
In the fourth step, using the displacement field uη obtained in Lemma 4.3 and the temperature field θη obtained in Lemma 4.5

to construct the following Cauchy problem for the stress field.
Problem PV ση. Find a stress field ση : [0, T ]→ H such that

σ η(t) = Fε(uη(t)) +

∫ t

0

G(ση (s), ε(uη(s)), θη(s))ds ∀t ∈ [0, T ] . (72)

The study of problem PV ση is given in the following result.
Lemma 4.4. There exists a unique solution of problem PV ση and it satisfies ση ∈ W 1,2(0, T,H). Moreover, if σi, ui and θi

represent the solutions of problem PV σηi , PVηiand PVθi , respectively, for ηi ∈ L2(0, T ;V ′), i = 1, 2, then there exists C > 0
such that

| σ1(t)− σ2(t) |2H≤ C(| u1(t)− u2(t) |2V

+

∫ t

0

| u1(s)− u2(s) |2V ds+

∫ t

0

| θ1(s)− θ2(s) |2L2(Ω) ds )∀t ∈ [0, T ] . (73)

Proof Let Λη : L2(0, T,H)→ L2(0, T,H) be the operator given by

Λησ (t) = Fε(uη(t)) +

∫ t

0

G(σ (s), ε(uη(s)), θη(s))ds, (74)

for all σ ∈ L2(0, T,H) and t ∈ [0, T ] . For σ1, σ2 ∈ L2(0, T,H), using (74) and (24) to obtain for all t ∈ [0, T ]

| Λησ1(t)− Λησ2(t) |H≤ LG
∫ t

0

| σ1(s)− σ2(s) |H ds.

It follows from this inequality that for p large enough, the
operator Λpη is a contraction on the Banach space L2(0, T ;H)
and, therefore, there exists a unique element ση ∈ L2(0, T ;H)
such that Ληση = ση . Moreover, ση is the unique solution
of problem PV ση and, using (72), the regularity of uη , the

regularity of θη and the properties of the operators F and G,
it follows that ση ∈ W 1,2(0, T,H). Consider now η1, η2 ∈
L2(0, T ;V ′) and for i = 1, 2, denote uηi = ui, σηi = σi and
θηi = θi. Then

σi(t) = Fε(ui(t)) +

∫ t

0

G(σi(s), ε(ui(s)), θi(s)) ds ∀t ∈ [0, T ] ,

and, using the properties (23),(24) on F and G to find

| σ1(t)− σ2(t) |2H≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| σ1(s)− σ2(s) |2H ds

+

∫ t

0

| u1(s)− u2(s) |2V ds +

∫ t

0

| θ1(s)− θ2(s) |2L2(Ω) ds) ∀t ∈ [0, T ] .

Using Gronwall’s argument in the obtained inequality to deduce (73), which concludes the proof of Lemma 4.6.
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Finally as a consequence of these results, using the properties of the operator G, the operator F and the functional j, for
t ∈ [0, T ], let the element defined by the following equation.

(Λη(t),v)V ′×V = (Fε(uη(t)), ε(v))H + (

∫ t

0

G(σ η(s), ε(uη(s)), θη(s))ds, ε(v))H

+ j(βη(t),uη(t),v) ∀v ∈ V. (75)

Here, for every η ∈ L2(0, T ;V ′), uη, βη, θη and ση represent the displacement field, the bonding field, the temperature field
and the stress field obtained in Lemmas 4.3, 4.4, 4.5 and 4.6 respectively. Then the following result is given in what follows.

Lemma 4.5. The operator Λ has a unique fixed point η∗ ∈ L2(0, T ;V ′) such that Λη∗ = η∗.
Proof Let η1, η2 ∈ L2(0, T ;V

′
). Using the notation uηi = ui,

.
uηi = vηi = vi, θηi = θi, βηi = βi and σηi = σi for i = 1, 2.

Using (24), (25), (26), the definition of Rν , Rτ and the remark 3.1, to have

| Λη1(t)− Λη2(t) |2V ′≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| σ1(s)− σ2(s) |2H ds

+

∫ t

0

| u1(s)− u2(s) |2V ds+

∫ t

0

| θ1(s)− θ2(s) |2L2(Ω) ds+

∫ t

0

| β1(s)− β2(s) |2L2(Γ3) ds). (76)

Using the estimate (73) to deduce

| Λη1(t)− Λη2(t) |V ′≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| u1(s)− u2(s) |2V ds

+

∫ t

0

| θ1(s)− θ2(s) |2L2(Ω) ds+

∫ t

0

| β1(s)− β2(s) |2L2(Γ3) ds).

Since

ui(t) =

∫ t

0

vi(s)ds+ u0, t ∈ [0, T ] ,

then

| u1(t)− u2(t) |2V≤ C
∫ t

0

| v1(s)− v2(s) |2V ds ∀t ∈ [0, T ] . (77)

On the other hand, using the Cauchy problem (62)-(63) to find

βi(t) = β0 −
∫ t

0

(βi(s)(γν(Rν(uiν(s)))
2 + γτ | Rτ (uiτ (s)) |2)− εa)+ ds,

and then

| β1(t)− β2(t) |L2(Γ3)≤ C
∫ t

0

| β1(s)(Rν(u1ν(s)))2 − β2(s)(Rν(u2ν(s)))2 |L2(Γ3) ds

+ C

∫ t

0

| β1(s) | Rτ (u1τ (s)) |2 −β2(s) | Rτ (u2τ (s)) |2|L2(Γ3) ds.

Using the definition of Rν and Rτ and writing β1 = β1 − β2 + β2, to get

| β1(t)−β2(t) |L2(Γ3)≤ C(

∫ t

0

| β1(s)− β2(s) |L2(Γ3) ds+

∫ t

0

| u1(s)− u2(s) |L2(Γ3)d ds). (78)

Next, applying Gronwall’s inequality to deduce

| β1(t)− β2(t) |L2(Γ3)≤ C
∫ t

0

| u1(s)− u2(s) |L2(Γ3)d ds,

and the relation (21) leads to

| β1(t)− β2(t) |2L2(Γ3)≤ C
∫ t

0

| u1(s)− u2(s) |2V ds. (79)



12 Mohamed Selmani: A Dynamic Frictionless Contact Problem with Adhesion in Thermo-elasto-viscoplasticity

Substituting (79) in (76) and using (77) to obtain

| Λη1(t)− Λη2(t) |2
V ′
≤ C(| u1(t)− u2(t) |2V +

∫ t

0

| u1(s)− u2(s) |2V ds+

∫ t

0

| θ1(s)− θ2(s) |2L2(Ω) ds)

≤ C(

∫ t

0

| v1(s)− v2(s) |2V ds+

∫ t

0

| θ1(s)− θ2(s) |2L2(Ω) ds).

It follows now from the previous inequality, the estimates (71) and (68) that

| Λη1(t)− Λη2(t) |2
V ′
≤ C

∫ t

0

| η1(s)− η2(s) |2
V ′
ds.

Reiterating this inequality m times leads to

| Λmη1 − Λmη2 |2L2(0,T ;V ′ )
≤ CmTm

m!
| η1 − η2 |2L2(0,T ;V ′ )

.

Thus, for m sufficiently large, Λm is a contraction on the
Banach space L2(0, T ;V

′
), and so Λ has a unique fixed point.

Now, all the ingredients needed to prove Theorem 4.1 are
satisfied.

Proof Let η∗ ∈ L2(0, T ;V
′
) be the fixed point of Λ given

by (75). Denote by u = uη∗ the solution of the problem PVη
for η = η∗, θ = θη∗ the solution of the problem PVθ for
η = η∗and β = βη∗ the solution of the problem PVβ for
η = η∗. Let ση∗ be the solution of the problem PVσ for
η = η∗, denote

σ =Aε( .u) + ση∗ .

Using (75) and keeping in mind that Λη∗ = η∗, to find
that the quadruplet (u, σ, β, θ) is a solution of the problem
PV. This solution has the regularity expressed in (47)-(50) and
which follow from the regularities of the solution of problems
PVη, PVβ , PVθ and PVσ . Moreover, it follows from (47),
(22) and (24) that σ ∈ L2(0, T ;H). Choosing now v = ±ϕ in
(40), where ϕ ∈ C∞0 (Ω)d, and using (28), (38) to find

ρ
..
u(t) = Div σ(t) + f0(t) a.e. t ∈ (0, T ) .

Now assumptions (28), (30), the fact that
..
u∈L2(0, T ;V

′
)

and the above equality imply thatDiv σ ∈L2(0, T ;V
′
), which

shows that σ satisfies (48).
Uniqueness. The uniqueness of the solution is a

consequence of the uniqueness of the fixed point of the
operator Λ defined by (4.29) and the unique solvability of
problem PVη, PVβ , PVθ and PVση .

5. Conclusion

This paper is devoted to the study of a frictionless contact
problem coupling two importants phenomena which are
temperature of the material and the adhesion of the contact
surface without adhesive wear. The evolution of the adhesive
wear is a big challenge which may be explored in future.
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Théorique et Appliquée 6 (1987), 383-407.

[11] W. Han, K. L. Kuttler, M. Shillor and M. Sofonea. Elastic
beam in adhesive contact, Int. J. Solids Structures 39
(2002), 1145-1164.

[12] W. Han and M. Sofonea. On a dynamic contact problem
for elastic-visco-plastic materials, Applied Numerical
Mathematics 57 (2007), 498-509

[13] L. Jianu, M. Shillor and M. Sofonea. A viscoelastic
bilateral frictionless contact problem with adhesion,
Applic. Anal. 80 (2001), 233-255.

[14] S. Latreche and L. Selmani. Dynamic contact problem
with normal damped response, friction and adhesion,
Mediterr. J. Math. (2021), 18-95.

[15] J. Necas and I. Hlavacek, ”Mathematical Theory of
Elastic and Elastoplastic Bodies: An Introduction”,
Elsevier, Amsterdam, 1981.

[16] F. Patrulescu. A mixed variatonal formulation of a contact
problem with adhesion. Appl. Anal. 97 (8), (2018),
1246-1260.
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