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Abstract: The presence of water in natural gas stream is a recurring problem that the oil and gas industry have been dealing 

with over the years. Failure to remove water vapor from natural gas stream leads to the formation of hydrates and corrosion of 

critical facilities. Determination of natural gas dew point which is the temperature at which water vapor condenses out of 

natural gas is a tricky endeavor, hence there is need to explore modern and more effective ways of determining the dew point. 

In this research, data driven modeling technique is utilized to generate an expression for the Dew Point of a Natural Gas stream 

exiting a Molecular Sieve Dehydrator Bed. After data quality analysis, various model structures were utilized for modeling. 

The Autoregressive Moving Average with exogenous inputs model proved its suitability for predicting the plant output with a 

highest level of accuracy. 
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1. Introduction 

Determining the precise extent of moisture present in a 

natural gas well stream prior to carrying out dehydration is of 

utmost significance, as this will aid and expedite the 

dehydration procedures and can be beneficial in resolving 

issues when defects and problems arise in natural gas 

processing plants [1]. Natural Gas dew point is the 

temperature at which the free water and other moisture 

contents of the natural gas begin to condense and drop out of 

the gas stream [2]. Dew point is the back-bone in the 

recovery of Natural Gas Liquid (NGL) from a natural gas 

well stream and must be made as low as possible for efficient 

production of the Natural Gas Liquid. If the desired natural 

gas dew point of the NGL recovery plant which is a 

cryogenic plant is not met, there is a likelihood of hydrate 

formation and corrosion effects in downstream of the 

recovery plant [3]. Due to the above mentioned problems, 

there have been tremendous efforts targeted at lowering and 

achieving an accurate dew point for natural gas processes. 

Taking the dynamics of the gas processing plant into 

consideration, the desired and accurate dew point can be 

achieved if and only if the natural gas dehydrators are 

adequately modeled with sufficient number of input and 

output. The dew point of the natural gas leaving the 

dehydrators must be lower than the coldest point of the 

natural gas liquid production plant; this will prevent the 

formation of hydrates in the production plant at any point [4]. 

2. Background Information on  

Data-Driven Modelling 

Data driven modelling is a technique that is used to 

examine a time-series input and output data of a physical 

process, by means of mathematical equations that are not 

obtained from physical process under examination [5]. 

Furthermore, data driven modelling could be seen as a means 

of illustrating a difficult and large data sets in a very basic 

way using mathematical processes without making reference 

to the fundamentals principles of the physical system [6]. The 

models that are constructed through the process of fitting 

equations to the data obtained from the physical process for 

the purpose of predictions without acknowledging the 

physics principle backing the physical process [7]. It has also 

been observed that the function of the data driven modelling 
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is to aid and guide in the process of deriving a correct and 

useful mathematical function relating the inputs and output 

variables [8]. System identification is a tool of data-driven 

modelling. System identification employs two key techniques 

in data-driven modelling. The first one is known a black-box 

modelling specifically useful when your primary interest is in 

fitting the data regardless of a particular mathematical 

structure of the model, and is usually a trial-and-error 

process, where you estimate the parameters of various 

structures and compare the results. The second is the grey-

box modelling which is used when estimating the values of 

the unknown parameters of your model structure that has 

already been deduced from physical principles [9]. 

3. Data Acquisition 

The data for this analysis was recorded from a data 

acquisition device of Natural Gas Liquid (NGL) Molecular 

Sieve Dehydrator Bed with three input variables, Feed Gas 

Flow-rate, Feed Gas Temperature and Feed Gas Pressure; 

and Output, is the Dew point Temperature. These parameters 

were chosen because the quantity of moisture present in the 

natural gas is as dependent on the temperature, pressure and 

the constituents of the natural gas, thus requiring monitoring 

of the temperature and pressure of the dehydrator beds [10]. 

The Pi software used with combination of variable sensors 

and triplex and delta V monitoring interface in the data 

acquisition process samples the value of the measured data at 

6.00 am (once a day) and log it down for future use. The data 

obtained from the pi software for the purpose of this project 

covered a period of two and a half years, ranging from 1
st
 

January 2011 to 1
st
 July 2013.  

Additionally, the pi software system was accessed and 

molecular sieve dehydrator bed system trend and logged 

variables were selected, the period of two and a half years (1
st
 

January 2011 to 1
st
 July 2013) was also selected. The data 

was then down loaded into a Microsoft excel file format. A 

sample of the data is shown in Table 1. 

Table 1. Recorded Data. 

 
oso_RX_TI104.PV oso_RX_FI401.PV oso_RX_pI168.PV 

 
IN GAS EX RG INL GAS TO E104 EXPANDER PLANT "A" DEHYD INLET 

 
DEG F MSCFD PSI 

01-Jan-11 06:00:00 87.423793 3.33875137 2.188559498 

02-Jan-11 06:00:00 87.8182075 3.478598957 3.157794669 

03-Jan-11 06:00:00 88.1869968 3.871804917 6.386294669 

04-Jan-11 06:00:00 88.48552127 3.736665702 5.103835947 

05-Jan-11 06:00:00 88.00598095 3.53497253 4.100176324 

06-Jan-11 06:00:00 82.7726108 11.57426072 185.7131776 

07-Jan-11 06:00:00 104.9195989 61.82152741 292.2233963 

08-Jan-11 06:00:00 130.0980505 117.7403362 427.8054414 

09-Jan-11 06:00:00 107.7238477 57.31013953 942.5175967 

10-Jan-11 06:00:00 90.80036302 20.51618197 677.4267114 

 

4. Methodology 

4.1. Data Pre-Processing 

The obtained raw data from the data acquisition device of 

Natural Gas Liquid (NGL) Molecular Sieve Dehydrator Bed 

cannot be used for the modelling of the dew point of natural 

gas exiting the molecular sieve dehydrator instantly as it 

contains some defects. Such defects include missing values, 

outliers, offsets and drift and some disturbances [11]. 

Some Data pre-processing techniques carried out include 

detection and removal of outliers filtering, detrending, 

resampling, as well as replacement and removal of missing 

values. 

These pre-processing can be applied to the acquired data to 

cater for the deficiencies in the data set and make it suitable 

for the required modelling. Some of these pre-processing 

techniques will be discussed as they apply to this project. 

However, some of the pre-processing technique may not be 

applied to the data set immediately until a data quality 

analysis is carried out on the obtained data to ascertain their 

states [5]. 

When modeling with data in an off-line situation, plotting 

of the data must be the first thing to be done so as to 

determine and examine the defects [12]. 

4.2. Data Quality Analysis 

Prior to commencing the estimation of models from data, 

the measured data was checked for the presence of any 

undesirable characteristics by carrying out a time plot of the 

data. The undesirable characteristics may include the 

following: 

a. Missing data samples 

b. Drifts and outliers 

c. Offsets and trends 

4.3. Transient Plot of Data 

To determine and examine the quality of the data obtained 

for the modeling of the dew point of natural gas exiting the 

molecular sieve dehydrator bed, the data was plotted as 

shown in Figure 1. 
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Figure 1. Time Plotting of Data for Data Quality analysis. 

4.4. Handling Missing Data 

Certain factors are also responsible for the missing values 

noticed in the acquired and logged data. These factors 

include: 

a. Shutdown of the NGL extraction plant and other plants 

that serve as sources of feed gas to the dehydrator beds, 

either for the purpose of turnaround maintenance or 

unscheduled shutdown.  

b. Failure of either the process variable sensing element or 

the transmitter. 

c. Malfunction of the pi software itself. 

d. Network failure within the Oso facility instrument 

networking and the data acquisition system. 

This is one of the pre-processing treatments that can be 

applied to the data set before carrying out data quality 

analysis. Once a data file with missing values is loaded into 

the MATLAB program workspace, MATLAB convert the 

missing values to NaN which means Not-a-Number without 

interfering with the structures of the variables containing the 

missing values 

4.5. Data Frequency Response Plots 

The spa function was used to estimate frequency response 

with fixed frequency resolution using spectral analysis before 

representing this on a bode plot. The algorithm further 

computes the Fourier transforms of the covariance and the 

cross-covariance before it finally calculates the frequency-

response function and the output noise spectrum of the 

system. The Bode plots are presented in Figure 2. 

 
Figure 2. Frequency Response Plotting of Feed Gas Pressure to Feed 

Natural Gas Dew Point. 

Frequency response function describes the steady-state 

response of the dehydrator system to sinusoidal inputs. There 

are amplitude peaks at certain frequencies for all input-output 

data combinations which show that the dehydrator will 

become unsteady at these frequencies. The amplitude peaks 

at the frequencies of about 0.7 rad/day, 0.5rad/day and 

0.4rad/day suggest a possible resonant behaviour (complex 

poles) for all the input-to-output combination. Moreover, 

there is rapid phase roll-off at frequency > 0.3rad/day, 

suggesting the presence of time delays in the data sampling. 

The frequency response for other pairs show similar 

characteristics. The step response and impulse response 

analysis are not presented due to space constraints. 
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4.5.1. Decisions 

After careful examination of the obtained results of the 

analysis carried out on the data set, a decision was reached 

not to detrend, filter and remove the outlier in the data set as 

these may affect the estimation of the model due to the 

presence of non-linearity found in the data set but resampling 

was done to aid in recovery of some lost information.  

4.5.2. Resampling 

This was the only data pre-processing technique that was 

carried out on the data sets. In this process, the resampling 

technique utilizes an antialiasing low pass FIR filter with a 

0.08 sampling interval (about 2 hours) to interpolate for the 

missing information about the dynamics of the system. It is 

also advisable to decimate the data if it was sampled at much 

faster rate because such data may contain high-frequency 

noise outside the frequency range of the system. For the 

purpose of model estimation and validation, the resampled 

data was split into two sets as displayed in Table 2. 

Table 2. Splitting of resampled data. 

Resampled Data Estimation Validation 

Number of Samples 5269 5269 

Total 10538 

4.6. Modelling Structure 

The following model structures were utilized for model 

cross-validation [5]: 

i. Nonlinear Auto-Regressive with exogenous inputs 

(NARX) model. The structure of this model is written 

as shown: 

���� = ����� − 1�, … , ��� − ���, 
�� − ���, … , 
�� − �� − �� + 1��                                            (1) 

ii. Auto-Regressive (AR) Model 

�������� = ����                                 (2) 

iii. Auto-Regressive with exogenous input(s) (ARX) 

Model 

�������� = ����
�� − ��� + ����                  (3) 

iv. Auto-Regressive Moving Average with exogenous 

input(s) (ARMAX) Model 

�������� = ����
�� − ��� + ��������             (4) 

v. Output-Error (OE) Model 

���� =
����

����

�� − ��� + ����                     (5) 

vi. Box-Jenkins (BJ) Model 

���� =
����

����

�� − ��� +

����

����
����                 (6) 

vii. State-Space Model 

��� + ��� = ����� + �
��� + �����             (7) 

���� = ����� +  
��� + ����                  (8) 

Where: 

�	 is a function that relies on known number of previous 

input	
 and output	�, 

��	is the number of past output terms used to predict the 

current output, 

��	is the number of past input terms used to predict the 

current output and 

��	is the delay from the input to the output, specified as 

the number of samples.  

�	is the time shift operator dependent on the number of 

delays in the data samples and the term  

���� models the noise sequence or disturbance inherent in 

the system. 

The model evaluation criteria utilized were Fitness (FIT), 

Loss Function (V), and Akaike's Final Prediction Error 

(FPE). Model validation was carried out to examine the 

models-output plot to see how well the models’ outputs 

match the measured output in the validation data set. 

5. Research Analysis and Results 

5.1. Model Estimation and Validation Result and Analysis 

for NARX Models 

Table 3 to 7 display the different parameters for various 

model structures. For each model structure, the model with 

the highest FIT, lowest Loss Function and lowest Final 

Prediction Error is chosen and highlighted.  

Table 3. NARX Model Evaluation Criteria (FIT, V and FPE Values). 

Nonlinear 

ARX Models 

Estimation 

("#$ Values) % 

Validation 

("#$ Values) % 

Loss Function 

(%) 

Final Prediction Error 

(FPE) 

Narx1 99.52 99.66 0.012892 0.01302 
Narx2 99.51 99.66 0.013738 0.01384 

Narx3 99.51 99.67 0.013549 0.01367 

Narx4 99.56 99.70 0.010704 0.01084 
Narx5 99.57 99.63 0.010479 0.01064 

Narx6 99.57 99.69 0.010479 0.01059 

Narx7 99.52 99.67 0.012853 0.01302 
Narx8 99.57 99.70 0.010485 0.01062 

Narx9 99.59 99.70 0.009631 0.00978 

Narx10 99.53 99.66 0.012288 0.01242 
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Table 4. Linear ARX Model Evaluation Criteria (FIT, V and FPE Values). 

Linear 

ARX Models 

Estimation 

("#$ Values) % 

Validation 

("#$ Values) % 

Loss Function 

(%) 

Final Prediction Error 

(FPE) 

arx1 99.51 99.67 0.0129576  0.0130166 

arx2 99.50 99.67 0.0138155  0.0138575 
arx3 99.51 99.67 0.0136071  0.0136588 

arx4 99.56 99.70 0.0107333  0.0107944 

arx5 99.57 99.63 0.0104745  0.0105501 
arx6 99.57 99.70 0.0105896  0.0106419 

arx7 99.52 99.67 0.0129109  0.0129893 

arx8 99.57 99.70 0.0105590  0.0106192 
arx9 99.59 99.70 0.0096694  0.0097391 

arx10 99.53 99.67 0.0123016  0.0123623 

Table 5. State-Space Model Evaluation Criteria (FIT, V and FPE Values). 

State 

Space Models 

Estimation 

("#$ Values) % 

Validation 

("#$ Values) % 

Loss Function 

(%) 

Final Prediction Error 

(FPE) 

SSM1 98.56 98.81 0.11680 0.117598 

SSM2 98.56 98.81 0.11680 0.117598 
SSM3 93.44 90.79 2.42654  2.437590 

SSM4 93.44 90.79 2.42654  2.437590 

SSM5 93.44 90.79 2.42654  2.437590 
SSM6 93.44 90.79 2.42654  2.437590 

SSM7 93.44 90.79 2.42654  2.437590 

SSM8 98.56 98.81 0.11680  0.117598 
SSM9 98.56 98.81 0.11680  0.117598 

SSM10 98.56 98.81 0.11680  0.117598 

Table 6. Box-Jenkins Model Evaluation Criteria (FIT, V and FPE Values). 

Box-Jenkins 

Models 

Estimation 

("#$ Values) % 

Validation 

("#$ Values) % 

Loss Function 

(%) 

Final Prediction Error 

(FPE) 

BJ1 98.54 98.64 0.0766050 0.0770122 

BJ2 99.44 99.32 0.0125588  0.0126256  
BJ3 99.65 99.75 0.0060331  0.0060812  

BJ4 99.19 99.69 0.0102243  0.0102903  

BJ5 99.51 99.50 0.0130970 0.0131965  
BJ6 99.61 99.72 0.0068007 0.0068628 

BJ7 99.39 99.53 39468.600 39783.600 

BJ8 99.40 99.74 0.0058195 0.0058593 
BJ9 99.43 99.67 0.0132421  0.0133226  

BJ10 99.49 99.67 0.0089478 0.0090090 

Table 7. ARMAX Model Evaluation Criteria (FIT, V and FPE Values). 

Linear ARMAX Models 
Estimation 

("#$ Values) % 

Validation 

("#$ Values) % 

Loss Function 

(%) 

Final Prediction Error 

(FPE) 

ARMX1 99.28 99.34 0.24358500 0.24460400 
ARMX2 99.61 99.72 0.00811463 0.00815477 

ARMX3 99.58 99.71 0.00930064 0.00933950 

ARMX4 99.52 99.70 0.00999814 0.00993388 
ARMX5 99.67 99.76 0.0060555 0 0.00610620 

ARMX6 99.70 99.78 0.00475646 0.00478904 

ARMX7 99.62 99.73 0.00808005 0.00813539 
ARMX8 99.68 99.78 0.00483839 0.00487000 

ARMX9 99.63 99.74 0.00671544 0.00676910 

ARMX10 99.64 99.76 0.00633965 0.00639031 

 

Linear ARX model arx9 has the highest estimated and 

validated FIT values (of 99.59% and 99.70%) with low V 

and FPE values of 0.0096694 and 0.0097391. For the state-

space models, five models (SSM1, SSM2, SSM8, SSM9and 

SSM10) show great performance with the same FIT, V and 

FPE values of 98.56%, 0.11680 and 0.117598. Similarly, the 

dehydrator bed modeling with Box-Jenkins structure also 

results in a good model where BJ3 has FIT of 99.65% for 

estimation and 99.75% for validation with the lowest values 

of V and FPE being 0.0060331 and 0.0060812. Finally, linear 

ARMAX model six depicts a nice performance (FIT = 99.70 

and 99.78, V = 0.00475646 and FPE = 0.00478904). 

Therefore any of the following models structures can be 

used to model the dehydrator bed dynamics; Nonlinear ARX, 

linear ARX, State-Space, Box-Jenkins and Linear ARMAX. 

Table 8 summarizes the evaluation criteria values for all 

types of model structures used in modeling the dehydrator 

bed.  

 



32 Aniefiok Lawrence Ukpong et al.:  Data-Driven Modelling of Natural Gas Dehydrators for Dew Point Determination  

 

Table 8. Resultant Models’ Evaluation Criteria (FIT, V and FPE Values). 

Model Structures 
Estimation 

("#$ Values) % 

Validation 

("#$ Values) % 

Loss Function 

(%) 

Final Prediction Error 

(FPE) 

Nonlinear ARX 99.59 99.70 0.0096310 0.0097800 

Linear ARX 99.59 99.70 0.0096694  0.0097391 
State-Space 98.56 98.81 0.1168000  0.1175980 

Box-Jenkins 99.65 99.75 0.0060331  0.0060812  

Linear ARMAX 99.70 99.78 0.0047564 0.0047890 

 

It can be seen from Table 8 that both nonlinear and linear 

ARX model structures yields the same results in their level of 

being able to capture the dehydrator bed dynamics. However, 

linear ARMAX model seems to perform better than the rest 

of the other models with the highest fitness of 99.70% for 

estimation and 99.78% for validation, lowest loss function of 

0.0047564 and final prediction error of 0.0047890. This 

confirms that linear ARMAX model was able to capture the 

dynamics of the dehydrator bed with the greatest accuracy, 

given the data sets used in this research, and discomfit the 

appropriateness of the suggestions offered by the advice 

command. 

5.2. Selection and Presentation of Dehydrator Bed Model 

Model estimation and validation carried out on different 

types (NARX, ARX, state-space, BJ and ARMAX) of linear 

model structures prove successful with no failure on the 

validation data set. Hence, the best estimated model would be 

selected among the five resultant models. From table 8, the 

model tagged linear ARMAX produces the best combination 

of our model validity criteria for estimation and validation 

data. Therefore, linear ARMAX was selected because it is the 

model that is seen to have accurately captured the dehydrator 

bed dynamics. Table 9 highlights the model parameters: 

 

 

Table 9. Linear ARMAX Model Parameters. 

Model Parameters Description 

&  number of poles of the system 4 

&'  number of zeros of the system [4 4 4] 

&(  
number of previous error terms on 

which the current output depends 
2 

&)  

number of input samples that occur 

before the inputs affect the current 

output 

[10 10 1] 

The expression generated by MATLAB for the molecular 

sieve dehydrator bed is 

Discrete-time IDPOLY model:  

A(q)y(t) = B(q)u(t) + C(q)e(t)                     (9) 

Where: 

A(q) = 1 - 2.511 q^-1 + 1.536 q^-2 - 0.1147 q^-3 + 1.475 

q^-4 - 2.172 q^-5 + 0.7871 q^-6 

B1(q) = -0.01352 q^-10 + 0.01252 q^-11 + 0.01147 q^-12 

- 0.01085 q^-13 

B2(q) = 0.0001241 q^-10 - 0.0001583 q^-11 

B3(q) = -1.653e-005 q^-1 

C(q) = 1 + 0.6052 q^-1 - 1.089 q^-2 - 1.088 q^-3 + 0.6042 

q^-4 + 0.9976 q^-5 

Rearranging the expressions above mathematically, the 

Auto-Regressive Moving Average with exogenous inputs 

model structure is expressed as shown below and it is 

Discrete-time polynomial model as equation 10:  

���� =
	−0.01352q012 + 0.01252	q011 + 0.01147	q015 − 0.01085	q017

	1 − 2.511q01 + 1.536q05 − 0.1147q07 + 1.475q09 − 	2.172	q0: + 	0.7871	q0;
u1�t� 

+
	0.0001241q012 − 0.0001583	q011

	1 − 2.511q01 + 1.536q05 − 0.1147q07 + 1.475q09 − 	2.172	q0: + 	0.7871	q0;
u2�t� 

+
−1.653e0:�01

	1 − 2.511q01 + 1.536q05 − 0.1147q07 + 1.475q09 − 	2.172	q0: + 	0.7871	q0;
u3�t� 

+
	1?2.;2:5@AB01.2CD	@AE01.2CC@AF?	2.;295@AG?	2.DDH;@AI

	105.:11@AB?1.:7;@AE02.119H@AF?1.9H:@AG0	5.1H5	@AI?	2.HCH1	@AJ
	                                                  (10) 

Where �	is the output (dew-point of the dehydrator feed 

gas) at time	�, 
1 is the first input (feed gas temperature), 
2 

is the second input (feed gas flow-rate) and 
3 is the third 

input (feed gas pressure) and q is the time shift operator. The 

estimated linear ARMAX model was modeled only for future 

predictions of the dehydrator dew-point from past and 

observed inputs and outputs.  

 

6. Conclusion 

An expression for the dew point of natural gas exiting the 

molecular sieve dehydration bed with feed gas temperature, 

feed gas flow-rate and feed gas pressure as the three input 

variables has been successfully obtained using data driven 

modelling and generation of expression approach with the aid 

of the System Identification (SID) toolbox available in 

MATLAB program.  
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The modelling process commenced with the Non-linear 

Auto-Regressive with eXogenous input (NARX) as 

suggested by the advice command but on comparison with 

the linear models, the Autoregressive Moving Average with 

exogenous inputs model (ARMAX) emerged as the model 

with the highest fitness of 99.70% for estimation and 99.78% 

for validation, lowest loss function of 0.0047564 and final 

prediction error of 0.0047890.  

Also achieved, was the investigation of the model’s 

appropriateness for simulation and prediction purposes. The 

linear and nonlinear models were confirmed to exhibit low 

level of accuracy in reproducing the dew-point of the 

dehydrator bed given sets of measured inputs values. On the 

contrary, the resultant Autoregressive Moving Average with 

exogenous inputs model proves its suitability for predicting 

the plant output with a high level of accuracy. 
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