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Abstract: Strategies for controlling the epidemiology of many infectious diseases such as malaria include a rapid reduc-

tion in both the infected and susceptible population via treatment and vaccination. In this paper, we have modified the 

Tumwiine et al. (2007) mathematical model for the transmission of malaria by including a vaccination parameter. We have 

shown that the model has a unique disease-free equilibrium state which is locally and globally asymptotically stable, if  oR
≤  1, and that the endemic equilibrium exist provided oR

 > 1, where oR  is a parameter which depends on the given mod-

el parameters. Numerical simulations of the modified model clearly show that, with a proper combination of treatment and 

vaccination, offered at about 65% each on the susceptible and infected population, malaria can be eradicated from the 

community.  
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1. Introduction 

Malaria is the common name for diseases caused by sin-

gle-celled parasites of the genus Plasmodium. Among the 

parasites of the genus Plasmodium four species have been 

identified which can cause disease in humans. These in-

clude: Plasmodium falciparum, Plasmodium vivax, Plas-

modium malaria and Plasmodium ovale. Of these, Plasmo-

dium falciparum is of greatest risk to non-immune humans. 

The Plasmodium falciparum variety of parasites account 

for 80% of cases and 90% off deaths (Kakkilaya, 

2003).Malaria remains arguably the greatest menace of our 

society in terms of morbidity and mortality and the occur-

rence of malaria in our part of the world correlates with 

poverty, ignorance and social deprivations in the communi-

ty. An accurate knowledge of the incidence of malaria in 

endemic areas would be necessary towards the planning 

and development of effective preventive measures against 

the deadly scourge of malaria. Malaria is spread by the bite 

of an infected female mosquito, of the genus anopheles 

each time the infected insect takes a blood meal. The symp-

toms in an infected human include bouts of fever, headache, 

vomiting flu-like, anemia (destroying red blood cell) and 

malaria can kill by clogging the capillaries that carry blood 

to the brain (cerebral malaria) or other vital organs. On the 

average the incubation period of Plasmodium falciparum is 

about 12 days in humans. Malaria is endemic to tropical 

areas where the climatic and weather conditions allow con-

tinuous breeding of the mosquito. Malaria is one of the 

most important parasitic and infectious diseases especially 

in tropical and subtropical areas caused by protozoan para-

sites of the genus plasmodium. Malaria, affecting mainly 

children and pregnant women is one of the greatest menac-

es of our society in terms of morbidity and mortality and 

the occurrence of malaria in our part of the world correlates 

with poverty and ignorance (Perandin, 2003). Malaria is a 

major public health problem in the world. The WHO esti-

mates that in tropical countries among the 500 million cas-

es of malaria infection, one million deaths occur annually. 

Malaria parasites are transmitted by female anopheles 

mosquitoes. Four species of plasmodium (P) causes human 

malaria. Among these, P. falciparum is responsible for most 

of the mortality P. Vivax causes considerable morbidity and 

P. malariae and P. ovale, are less prevalent around the 

world (Aslan and Seyrek, 2007). This group of human-
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pathogenic Plasmodium species is usually referred to as 

malaria parasites The parasites multiply within red blood 

cells, causing symptoms that include symptoms of anaemia, 

as well as other general symptoms such as fever, chills, 

nausea, flu-like illness, and in severe cases, coma and death 

(Deressa et al., 2000). It is a disease that can be treated in 

just 48 hours, yet it can cause fatal complications if the 

diagnosis and treatment are delayed. 

2. Role of Mathematical Model 

It is important to establish the transmission dynamics of 

an epidemic in order to understand and predict it. Mathe-

matical models are particularly helpful as experimental 

tools with which to evaluate and compare control proce-

dures and preventive strategies, and to investigate the rela-

tive effects of various sociological, biological and envi-

ronmental factors on the spread of diseases. These models 

have played a very important role in the history and devel-

opment of vector-host epidemiology. Several authors have 

used mathematical models to analyse the transmission and 

spread of malaria. Mathematical models of malaria trans-

mission that include both mosquito and human populations 

have been reviewed and discussed in detail by various au-

thors. Nedelman (1985), did some further work on malaria 

model of Dietz et al. (1974), and showed that the “vaccina-

tion” rate depends on a pseudoequilibrium approximation 

to the differential equation describing the mosquito dynam-

ics in the malaria model. Nedelman surveys various data 

sets to statistically approximate parameters such as inocu-

lation rates, rates of recovery and loss of immunity in hu-

mans, human-biting rates of mosquitoes and infectivity and 

susceptibility of humans and mosquitoes. Dietz et al. (1974) 

proposed a model with two different classes of humans: 

one without immunity to malaria and one class with some 

immunity. As the non-immune class falls sick, some people 

recover with immunity. The immune class can get infected, 

but does not fall clinically ill and cannot be infectious. The 

model by Dietz et al. (1974) also included super infection, 

a phenomenon usually associated with macro parasites.  

Yang (2000) describes a compartmental model where 

humans follow an SEIRS-type (with more than one im-

mune class for humans) pattern and mosquitoes follow a 

Susceptible-Exposed-Infectious (SEI) pattern. Yang (2000) 

defines a reproductive number, OR
 for this model and 

shows, through linear stability analysis, that the disease-

free equilibrium is stable for OR
 < 1. He also derived an 

expression for an endemic equilibrium that is biologically 

relevant only when OR
 > 1. He used numerical simula-

tions to support his proposition that for OR
 > 1, the dis-

ease-free equilibrium is unstable and the endemic equili-

brium is stable. The model for malaria transmission that we 

modified is an extension of the equations introduced by 

Tunwiine et al. (2007). In the Tunwiine model, humans 

follow an SIRS-like pattern and mosquitoes follow a SI 

pattern, similar to that described by Yang (2000) but with 

only one immune class for humans. Humans move from 

the susceptible to the infected class at some probability 

when they come into contact with an infectious mosquito, 

as in conventional SIRS models. However, infectious 

people can then recover with, or without, a gain in immuni-

ty; and either return to the susceptible class, or move to the 

recovered class. A new feature of this model is that al-

though individuals in the recovered class are assumed to be 

“immune”, in the sense that they do not suffer from serious 

illness and do not contract clinical malaria, they still have 

low levels of Plasmodium in their blood stream and can 

pass the infection to susceptible mosquitoes. After some 

period of time these recovered individuals return to the 

susceptible class. Susceptible mosquitoes get infected and 

move to the infected class, at some probability when they 

come into contact with either infectious humans or recov-

ered humans (albeit at a much lower probability). Both 

humans and mosquitoes leave the population through a 

density dependent natural death rate. This allows the model 

to account for changing human and mosquito populations. 

Variations in mosquito populations are crucial to the dy-

namics of malaria, and constant population models do not 

account for this. The model also includes human disease-

induced death as mortality for malaria in areas of high 

transmission can be high, especially in infants. In the mod-

ified model, we aim to capture some of the more important 

aspects of this epidemiology while still keeping it mathe-

matically tractable.  One of the major important factors that 

we include in the existing model is vaccination in order to 

determine its impact as a control measure for the spread of 

malaria. 

2.1. Parameters and Terms of the Model 

HS (t) the number of susceptible human host at time t 

HI (t)  the number of infected human host at time t 

HR (t)  the number of  partially immune human host at-

time t 

VS (t) the number of susceptible mosquito vector at time 

t 

VI (t) the number of infected mosquito vectors at time t 

H

V

N

N
m = the number of female mosquitoes per human  

host 

a the average daily biting rate on man by a single mos-

quito (infection rate) 

b the proportion of bites on man by a single mosquito 

that produce an infection 

c the probability that a mosquito becomes infec- tious 
γ  the per capita rate of loss of immunity in human host 

r the rate at which human host acquire immunity 

δ  the per capita death rate of infected human hosts due 

to the disease 

 v the rate of recovery of human host from the disease 

hλ  the per capita natural birth rate of humans 

vλ  the per capita natural birth rate of mosquitoes 
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hµ  the per capita natural death rate of humans 

vµ  the per capita natural death rate of the mosquitoes 

α  the ‘vaccination rate’ on human 

3. Equations of the Model 

The model formulated by Tumwiine et al. (2007) is giv-

ing as 

HhHH

H

VH

Hh
H SRvI

N

IabS
N

dt

dS µγλ −++−=  (3.1) 

HhHHH

H

VHH IIrIvI
N

IabS

dt

dI µδ −−−−=      (3.2) 

HhHH
H RRrI

dt
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Vv

H
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Vv

V S
N

IacS
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dS µλ −−=      (3.4) 

Vv

H

HVV I
N

IacS

dt

dI µ−=                    (3.5) 

We assumed that all infected human who recovered are 

moved to the recovered class and vaccinated human have 

temporary immunity that expires over time and again be-

come susceptible, hence by including a vaccination para-

meter, “ α ” the above model gives the modified model 

below 

HHhH

H

VH

Hh
H SSR

N

IabS
N

dt

dS αµγλ −−+−=   (3.6) 

HhHH

H

VHH IIrI
N

IabS

dt

dI µδ −−−=                  (3.7) 

HHhHH
H SRRrI

dt
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Vv

H
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Vv

V S
N

IacS
N
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dS µλ −−=          (3.9) 

Vv

H

HVV I
N

IacS

dt

dI µ−=                       (3.10) 

The total population sizes 
HN  and VN  can be deter-

mined by 
HS + 

HI +
HR = 

HN  and VS + VI = VN  or 

from the differential equations 

HHhh
H IN

dt

dN δµλ −−= )(   (3.11) 

and 

VVV

V N
dt

dN
)( µλ −=             (3.12) 

which are derived by adding equation (3.6) – (3.8) for 

the human population and (3.9) – (3.10) for the mosquito 

vector population. 

In the model, the term 
H

VH

N

IabS
denotes the rate at which 

the human hosts 
HS get infected by infected mosquitoes 

VI and 
H

HV

N

IacS
refers to the rate at which the susceptible 

mosquitoes VS are infected by infected human hosts 
HI . 

3.1. Existence and Stability of Equilibrium Solutions 

In this section, we establish that the disease free equili-

brium oE exists if OR <1. We also establish that the en-

demic equilibrium 
EE  exist for OR >1. 

Setting equation R.H.S of equation (3.6) - (3.10) to zero 

gives the disease equilibrium points: 

OE = ( )o

V

o

V

o

H

o

H

o
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The disease-free equilibrium oE exists for all nonnega-

tive values of its parameters. 

At the steady states of the model, the Jacobian matrix at 

E is given by 

EJ =

v

H
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(3.13) 

Evaluating the Jacobian matrix at OE  gives 

OEJ = 

( )
( )

( )
( )

v
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(3.14) 

The stability of the disease free equilibrium state can be 

obtained from studying the eigenvalues of 
OEJ . If all the 

eigenvalues have negative real parts, then the equilibrium 
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points are locally asymptotically stable. 

The five eigenvalues of 
OEJ  are 

hµλλ −== 41 <0 

( )CBK +−=2λ . This may be either nega-tive or positive 

( )CBK +−=3λ <0 

γαµλ −−−= h5 <0 

where 
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The condition for 
2λ  to be negative is that CB +−

<0,  

i.e CB −2 >0                  (3.17) 

Equation 3.17 simplifies to give further simplification 

leads to 
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The expression on the L.H.S is OR , the basis reproduc-

tion number, therefore 

OR = 
( )
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OR  is an important threshold quantity. It is the expected 

number of secondary infection that one infectious individ-

ual would create over the duration of the infectious period. 

It is a determining factor as to whether a disease dies out or 

assumes endemicity. 

Theorem 3.21 

The disease-free equilibrium oE  in 3.21 is locally 

asymptotically stable if and only if 1≤oR . Li et al (1999) 

From the above theorem, it has been proven that the dis-

ease-free equilibrium is asymptotically stable if OR <1 

Existence of Endemic Equilibrium 
EE  exist if OR  > 1 

The system of equation (3.5) – (3.10) has endemic equi-

librium 
EE = ( )''''' ,,,, VVHHH ISRIS  given by 
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Theorem 3.22  

The endemic equilibrium, 
EE  exists if OR >1. 

Proof: The endemic equilibrium point given in equation 

(3.6) – (3.10) from which theorem follows. We examine the 

following cases to establish the existence of the endemic 

equilibrium 

Case 1 

Invoking the positivity condition in the case of 
'

HI  and 

'

VI , it can be clearly verified that R > 1. 

Case 2 

In the case of 
'

HR , we have a different situation. Here 

0
1 >

++
−

+ αγµγµ hh

OR
 

If 1=R , 

αγµγµ ++
>

+ hh

11  

If 1>R , the inequality still holds. Therefore, the en-

demic equilibrium exists if 1>R . Clearly, the compo-

nents of R are the same as OR . Then the endemic equili-

brium exists if OR >1 
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Global Asymptotic stability of the disease free equili-

brium point 

Theorem: The disease free-equilibrium oE is globally 

asymptotically stable if OR ≤ 1. 

Given that OR ≤ 1, then there exist only disease free 

equilibrium points. 

Proof 

At the disease free equilibrium, oE , the following con-

ditions hold 

o

H

o

H

o

Hh

o

H

o

H

H

Hh SRSIS
N

ab
N αγµλ −+−








=  

( )
o

Hh

o

H

o

H RIrS γµα +=+  

 
o

Hh

o

HHh NIN µδλ =−  

( ) Hh

o

V

o

H

H

IrIS
N

ab δµ ++=







 

 
o

Vv

o

H

o

V

H

Vv SIS
N

ac
N µλ +








=  

o

Vv

o

H

o

V

H

IIS
N

ac µ=







 

Considering the Lyapunov function candidate 

( ) +→ RRISRISV VVHHH

5:,,,, defined as 

2

2

1







 −
o

HH SS +

2

2

1







 −
o

HH II +

2

2

1







 −
o

HH RR +

2

2

1







 −
o

VV SS +

2

2

1







 −
o

VV II  

Differentiating V gives 

•
V =

••
+







 − HHH

o

HH IISSS +
•








 − H

o

HH RRR +

•








 − V

o

VV SSS +
•

VV II +
•








 − H

o

HH NNN  

Imposing the condition on 
•

V , gives the following 

( )
( )

( )

( )

o o

H V

H

o o o o

H H h H H H

o

H V h H H H

H

o
o h H

h H
oH H H

h H h H

o o

H H h H h H

V

ab
S I

N

V S S S R S

ab
S I S R S

N

R
r I

I R R
r I R

N N N N

S

•

  
  
  
   = − −µ + γ − α  

   
   − − µ + γ − α       

   µ + γ µ + + δ     + + − + 
    − µ + + δ − µ + γ   

   − µ − µ      

+

o o

V H
o H

V
o

v V V H v V

H

o

V v V v V

ac
S I

N
S

ac
S S I S

N

I I I

  
  
   − +  

     −µ − − µ   
   

 µ + µ 
 

 

Finally 

( )

( )

o o

H V h

H

H V h

H

o

H H H h

2 2
o o

H H h H H h

o o o

V V V H v V H v

H H

o

V v V v V

ab
V S I

N

ab
S I

N

I I I r

R R N N

ac ac
S S S I S I

N N

I I I

•   
= + µ + α  

  

  
− + µ + α  

  

 − − µ + + δ 
 

   − − µ + γ − − µ   
   

         − − + µ − + µ         
          

 − µ −µ





 

The following assumptions are made for the Lyapunov 

function 
•

V above 

−







++








αµh

o

V

H

o

H I
N

ab
S 








++








αµh

H

H
N

ab
S   

is negative provided VI >
o

VI  

This condition warrants 






 −−
o

VvVvV III µµ  being 

negative. 

( )δµ ++






 −− rIII h

o

HHH   
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is negative if 
HI >

o

HI which when applied to  

o o o
H

V V V V H vH

H

v

ac
I ac

S S S S IN
N

   
      − − − + µ             +µ  

 

makes it negative. 

It is also assumed that 
o

HH RR =  

We have shown that 0≤
•

V  provided 
HS >

o

HS , 
HI >

o

HI , VI >
o

VI and VS >
o

vS  

It is also important to note that 0=
•

V  only at disease-

free equilibrium point, oE  

4. Numerical Experiment 

Some numerical experiments are performed on our mod-

el with two main strategies considered for controlling the 

infectious disease, malaria: 

a reduction in the number of infected humans through 

treatment and 

a reduction in the number of susceptible humans through 

vaccination. 

3.1. Graphical Representation of Results 

 
Figure 4.1.1. Graph showing the comparison between the dynamics of the 

disease between the original Tumwiine et al. (2007) model with a treat-

ment rate of 0.3 and the modified model with same treatment rate along 

with a vaccination rate of 0.3, on the infected human population, corres-

ponding to table 1 in the appendix. 

 
Figure 4.1.2.  Graph showing the comparison between the dynamics of 

the disease between the original Tumwiine et al. (2007) model with a 

treatment rate of 0.6 and the modified model with same treatment rate 

along with a vaccination rate of 0.6, on the infected human population, 

corresponding to table 2 in the appendix. 

 
Figure 4.1.3.  Graph showing the comparison between the dynamics of 

the disease between the original Tumwiine et al. (2007) model with a 

treatment rate of 0.9 and the modified model with same treatment rate 

along with a vaccination rate of 0.9, on the infected human population, 

corresponding to table 3 in the appendix. 

 
Figure4.1.4.  Graph showing the comparison between the dynamics of the 

disease between the original Tumwiine et al. (2007) model with a treat-

ment rate of 0.3 and the modified model with same treatment rate along 

with a vaccination rate of 0.3, on the infected vector population, corres-

ponding to table 4 in the appendix. 
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Figure 4.1.5.  Graph showing the dynamics of the disease on the modified 

model with a vaccination rate of 0.3, 0.6 and 0.9 on the susceptible human 

population, corresponding to table 5 in the appendix. 

4.2. Experiment One 

Here the dynamics of the disease is compared between 

the old model and the modified. The experiment is carried 

out to establish the fact that a combination of both treat-

ment and vaccination reduces the infectious population 

much more than applying treatment alone, as it was, in the 

result obtained from the old model. 

4.3. Experiment Two 

In this experiment, the dynamics of the disease of the 

modified model under the treatment and vaccination rate of 

0.6 is carried out and compared with the old model of 

treatment rate of 0.6. We observed that a combination of 

the control measures causes a further decline in the infec-

tious population from 0.24 to 0.008 through 0.0984 and 

0.0101 

4.4. Experiment Three 

In this experiment, the dynamics of the disease of the 

modified model under the treatment and vaccination rate of 

0.9 is carried out and compared with the old model with 

just treatment rate of 0.9. The result in this experiment 

shows that eradication is possible provided that both con-

trol measure rates are maintained. 

4.5. Experiment Four 

In this experiment, the dynamics of the disease on in-

fected vector of the modified model under the treatment 

and vaccination rate of 0.3 is carried out and compared 

with the old model of treatment rate of 0.3. The infected 

vector population drops from 0.330 to 0.2330 and 0.2320. 

This will mean that less infectious vector population will 

be available for susceptible human to become infectious. 

Furthermore, the existence of mosquitoes will not necessar-

ily increase the rate of malaria infection. There are many 

places in the world where mosquitoes abound but have not 

yet recorded malaria cases. Such places include Cape Town 

in South Africa, Maryland in USA, Kyoto in Japan, etc. 

4.6. Experiment Five 

In this experiment, we examine the effect of increasing 

vaccination rate from 30% through to 90%, we observed 

that the susceptible human population drop from 0.4000 to 

0.1654 through 0.2102. Since the susceptible human popu-

lation will not much be available, it makes it difficult for 

infectious mosquitoes to cause infections on human popu-

lation. This in the long run should result into a malaria-free 

society. 

4.7. Discussion of Results 

The result from experiment one shows that in the ab-

sence of vaccination, eradication of the disease cannot be 

achieved so fast compared with combining vaccination 

along with treatment, as in the case in experiment two and 

three. The result for the infectious human population in 

experiment three carried out under a combined treatment 

and vaccination rate of 0.9 declines faster, thus resulting in 

a malaria-free society. 

5. Summary, Conclusion, and Recom-

mendation 

5.1. Summary 

The Tumwiine et al. (2007) mathematical model for the 

dynamics of malaria within human host and mosquito vec-

tors was modified by adding a vaccination parameter. The 

model was analyzed in terms of actual population. The 

stability of the equilibrium point obtained were analyzed 

and found to be locally asymptotically stable. The effect of 

vaccination on the susceptible human class of the modified 

SIR host and SI vector model was considered. It was ob-

served that, gradually increasing the vaccination rate alone 

reduces the number of susceptible human population 

against possible re-infection, thus in the long run decrease 

the number of infectious human population gradually to a 

barest minimal level. Numerical experiments carried out on 

the modified model clearly shows that, with a proper com-

bination of treatment and a concerted effort aimed at pre-

vention, malaria can be eliminated.  

5.2. Conclusion 

This study modified a model of malaria formulated by 

Tumwiine et al. (2007) by including a vaccination parame-

ter, α . Analytical study was carried out on both models 

using the method of linearized stability and the results 

showed that the disease-free equilibrium points are locally 

asymptotically stable for both models. The results of nu-

merical experiments carried out on both models also re-

vealed that eradication is possible if a combination of both 

treatment and vaccination rate are maintained at least 0.65 

level. 
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Recommendations 

In consideration of the findings of this study as well as 

the incidental observations, we recommend that a combina-

tion of treatment and vaccination rates should be main-

tained at 0.65 level in order to eradicate malaria in the pop-

ulation.  

Finally, it should be possible to validate this model by 

applying it to a smaller population, and then to a larger 

portion of any country. This will allow us to make in-

formed decisions about the level of control strategies, 

“vaccination”, that provide the most effective way of eradi-

cating malaria. 
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