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Abstract: Strategies for controlling the epidemiology of many infectious diseases such as malaria include a rapid reduc-
tion in both the infected and susceptible population via treatment and vaccination. In this paper, we have modified the
Tumwiine et al. (2007) mathematical model for the transmission of malaria by including a vaccination parameter. We have
shown that the model has a unique disease-free equilibrium state which is locally and globally asymptotically stable, if R,
< 1, and that the endemic equilibrium exist provided R > 1, where R is a parameter which depends on the given mod-
el parameters. Numerical simulations of the modified model clearly show that, with a proper combination of treatment and
vaccination, offered at about 65% each on the susceptible and infected population, malaria can be eradicated from the

community.
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1. Introduction

Malaria is the common name for diseases caused by sin-
gle-celled parasites of the genus Plasmodium. Among the
parasites of the genus Plasmodium four species have been
identified which can cause disease in humans. These in-
clude: Plasmodium falciparum, Plasmodium vivax, Plas-
modium malaria and Plasmodium ovale. Of these, Plasmo-
dium falciparum is of greatest risk to non-immune humans.
The Plasmodium falciparum variety of parasites account
for 80% of cases and 90% off deaths (Kakkilaya,
2003).Malaria remains arguably the greatest menace of our
society in terms of morbidity and mortality and the occur-
rence of malaria in our part of the world correlates with
poverty, ignorance and social deprivations in the communi-
ty. An accurate knowledge of the incidence of malaria in
endemic areas would be necessary towards the planning
and development of effective preventive measures against
the deadly scourge of malaria. Malaria is spread by the bite
of an infected female mosquito, of the genus anopheles
each time the infected insect takes a blood meal. The symp-
toms in an infected human include bouts of fever, headache,

vomiting flu-like, anemia (destroying red blood cell) and
malaria can kill by clogging the capillaries that carry blood
to the brain (cerebral malaria) or other vital organs. On the
average the incubation period of Plasmodium falciparum is
about 12 days in humans. Malaria is endemic to tropical
areas where the climatic and weather conditions allow con-
tinuous breeding of the mosquito. Malaria is one of the
most important parasitic and infectious diseases especially
in tropical and subtropical areas caused by protozoan para-
sites of the genus plasmodium. Malaria, affecting mainly
children and pregnant women is one of the greatest menac-
es of our society in terms of morbidity and mortality and
the occurrence of malaria in our part of the world correlates
with poverty and ignorance (Perandin, 2003). Malaria is a
major public health problem in the world. The WHO esti-
mates that in tropical countries among the 500 million cas-
es of malaria infection, one million deaths occur annually.
Malaria parasites are transmitted by female anopheles
mosquitoes. Four species of plasmodium (P) causes human
malaria. Among these, P. falciparum is responsible for most
of the mortality P. Vivax causes considerable morbidity and
P. malariae and P. ovale, are less prevalent around the
world (Aslan and Seyrek, 2007). This group of human-
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pathogenic Plasmodium species is usually referred to as
malaria parasites The parasites multiply within red blood
cells, causing symptoms that include symptoms of anaemia,
as well as other general symptoms such as fever, chills,
nausea, flu-like illness, and in severe cases, coma and death
(Deressa et al., 2000). It is a disease that can be treated in
just 48 hours, yet it can cause fatal complications if the
diagnosis and treatment are delayed.

2. Role of Mathematical Model

It is important to establish the transmission dynamics of
an epidemic in order to understand and predict it. Mathe-
matical models are particularly helpful as experimental
tools with which to evaluate and compare control proce-
dures and preventive strategies, and to investigate the rela-
tive effects of various sociological, biological and envi-
ronmental factors on the spread of diseases. These models
have played a very important role in the history and devel-
opment of vector-host epidemiology. Several authors have
used mathematical models to analyse the transmission and
spread of malaria. Mathematical models of malaria trans-
mission that include both mosquito and human populations
have been reviewed and discussed in detail by various au-
thors. Nedelman (1985), did some further work on malaria
model of Dietz et al. (1974), and showed that the “vaccina-
tion” rate depends on a pseudoequilibrium approximation
to the differential equation describing the mosquito dynam-
ics in the malaria model. Nedelman surveys various data
sets to statistically approximate parameters such as inocu-
lation rates, rates of recovery and loss of immunity in hu-
mans, human-biting rates of mosquitoes and infectivity and
susceptibility of humans and mosquitoes. Dietz et al. (1974)
proposed a model with two different classes of humans:
one without immunity to malaria and one class with some
immunity. As the non-immune class falls sick, some people
recover with immunity. The immune class can get infected,
but does not fall clinically ill and cannot be infectious. The
model by Dietz et al. (1974) also included super infection,
a phenomenon usually associated with macro parasites.

Yang (2000) describes a compartmental model where
humans follow an SEIRS-type (with more than one im-
mune class for humans) pattern and mosquitoes follow a
Susceptible-Exposed-Infectious (SEI) pattern. Yang (2000)
defines a reproductive number, = © for this model and
shows, through linear stabilit%analysis, that the disease-
free equilibrium is stable for = @ < 1. He also derived an
expression for an en%mic equilibrium that is biologically
relevant only when ~ © > 1. He used nR,merical simula-
tions to support his proposition that for  © > 1, the dis-
ease-free equilibrium is unstable and the endemic equili-
brium is stable. The model for malaria transmission that we
modified is an extension of the equations introduced by
Tunwiine et al. (2007). In the Tunwiine model, humans
follow an SIRS-like pattern and mosquitoes follow a SI
pattern, similar to that described by Yang (2000) but with
only one immune class for humans. Humans move from

the susceptible to the infected class at some probability
when they come into contact with an infectious mosquito,
as in conventional SIRS models. However, infectious
people can then recover with, or without, a gain in immuni-
ty; and either return to the susceptible class, or move to the
recovered class. A new feature of this model is that al-
though individuals in the recovered class are assumed to be
“immune”, in the sense that they do not suffer from serious
illness and do not contract clinical malaria, they still have
low levels of Plasmodium in their blood stream and can
pass the infection to susceptible mosquitoes. After some
period of time these recovered individuals return to the
susceptible class. Susceptible mosquitoes get infected and
move to the infected class, at some probability when they
come into contact with either infectious humans or recov-
ered humans (albeit at a much lower probability). Both
humans and mosquitoes leave the population through a
density dependent natural death rate. This allows the model
to account for changing human and mosquito populations.
Variations in mosquito populations are crucial to the dy-
namics of malaria, and constant population models do not
account for this. The model also includes human disease-
induced death as mortality for malaria in areas of high
transmission can be high, especially in infants. In the mod-
ified model, we aim to capture some of the more important
aspects of this epidemiology while still keeping it mathe-
matically tractable. One of the major important factors that
we include in the existing model is vaccination in order to
determine its impact as a control measure for the spread of
malaria.

2.1. Parameters and Terms of the Model

Sy, (t) the number of susceptible human host at time t
1, (t) the number of infected human host at time t

R,, (t) the number of partially immune human host at-
time t

S, (t) the number of susceptible mosquito vector at time

1, (t) the number of infected mosquito vectors at time t
_ N,
TN

host

a the average daily biting rate on man by a single mos-
quito (infection rate)

b the proportion of bites on man by a single mosquito
that produce an infection

¢ the probability that a mosquito becomes infec- tious

YV the per capita rate of loss of immunity in human host

r the rate at which human host acquire immunity

O the per capita death rate of infected human hosts due
to the disease

v the rate of recovery of human host from the disease

m

the number of female mosquitoes per human

H

A ,, the per capita natural birth rate of humans

/]v the per capita natural birth rate of mosquitoes
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M, the per capita natural death rate of humans

M, the per capita natural death rate of the mosquitoes
Q' the ‘vaccination rate’ on human

3. Equations of the Model

The model formulated by Tumwiine et al. (2007) is giv-
ing as

das absS ., 1
= AN _#-h}[H R, — 1,8y (3.1)

t H

dly _abS, 1, _

s T (T T T )
C%HwIH Ry~ MR, (3.3)
dj; =AN, aC;ZIH 1Sy (34
%:%—yvl,, (3.5)

We assumed that all infected human who recovered are
moved to the recovered class and vaccinated human have
temporary immunity that expires over time and again be-
come susceptible, hence by including a vaccination para-
meter, “d ” the above model gives the modified model
below

d b1,
iz"hNH_a Sily IRy~ 1Sy — a5y (3.6)

dt Ny
dcéf - abif’ZIV —rly = Ay iyl (3.7
df;;tH =rly =Wy - Ry +aSy, (-8)
dij AN, ‘%‘ LS, (39
d;V = % -, (3.10)

The total population sizes N, and N, can be deter-
minedby S, + [, +R,= N, and S, + I,=N, or
from the differential equations

dn
dt

=(A, - l,)N, —dl, (.11

and

dN
71/:(/11/ _)UV)NV

= (3.12)

which are derived by adding equation (3.6) — (3.8) for
the human population and (3.9) — (3.10) for the mosquito

vector population.
abS 1,
NH

In the model, the term denotes the rate at which

the human hosts S, get infected by infected mosquitoes
S 1 . .

I, and % refers to the rate at which the susceptible

H

mosquitoes S, are infected by infected human hosts / "

3.1. Existence and Stability of Equilibrium Solutions

In this section, we establish that the disease free equili-
brium £ exists if R,<1. We also establish that the en-

demic equilibrium E . exist for R,>1.

Setting equation R.H.S of equation (3.6) - (3.10) to zero
gives the disease equilibrium points:

E,=(S5.15,Rs, 80,12 )-

{AhNH(ILIh-'-y) 0 AhNHa A\)NV 0}
wu, +y+a) p(u, +y+a) u,

The disease-free equilibrium E, exists for all nonnega-
tive values of its parameters.

At the steady states of the model, the Jacobian matrix at
E is given by

—abl, - 0 y 0 —ab§,
NH NH
Wl sy 0 0 abs,
NH NH
Jp= a 7 rH 10 0 |(3.13)
0 ~ac§ 0o % _ . 0
NH NH
0 ac§, 0 acl, -
NH NH

Evaluating the Jacobian matrix at F o gives

-ab\ AN, (y+u,)
-y -a 0 v 0 (7) Ve h
' Ny, (g, +a+y)
0 —r-d-y, 0 0 [J]M
Ny )1, +a+y)
J}.;O: a r -y-4, O 0 (3.14)
—acAN,
0 —U, 0
]\;Hﬂ,,
acA N,
0 e 0 0 -U,
Ny i,

The stability of the disease free equilibrium state can be
obtained from studying the eigenvalues of J £, - Ifall the

eigenvalues have negative real parts, then the equilibrium
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points are locally asymptotically stable.

The five eigenvalues of J £, are
A=A =<0
4, =k[-B+/C). This may be either nega-tive or positive
A, =-K(B+C)<0

Ay ==, —a—y<o

where

1 1

3.15
2{ﬂvuh(#h +y+a)} G139
B=-0ap H,0-H,p, 1y

—QH M, T - L Oy - ap

o T VIR e T T R TR TR

SOHIH, “HIHL T HGHIY T HGH,

N =

H H H H

ab ac ab ac
4#5#VHAVAVNV(N J/]hNH(N J+4:uh/1vy2/]vNV(N_J/]hNH(N J+

821, AN, (;—bJMNH[;C ]y RS = ApP Y+ ity 2 ut S

H H

ab

tatulpy 20+ 4uiuv/hNV(N J/UNH (;—CJ +2ap )y 2p Y

H H

207 iy S =20t iy A g et R 2ap g = 2 a8t
c=l* QUG UITYIO HApy iy + AU Ul rYS = Apg utrya +dau g ory + g y? (3.16)
=20 p 0 —Aau 0+ Aau D S ity 2 ety

ab ac
Ap,p,aA N, (N—J/UNH (N—Jw 2p Ty 20u Y At ul

H H
Uy 20 O+ 20l Oy + dap g O + Aap Oy — dap ] Oy
20U Ty O 2 i = dap S+ Aau = [y IOy 2 ul Sy +
QUGHIOY T = AN Oy =2 Oyt + A Oy +2au Yy —Aau iy A Ty
a2 g 20 et =20 gy = 2 Y 2
= Ay =2y iyt S ity =2l g+ gl

The condition for /12 to be negative is that — B ++/C

ab ac
AN, | — A, N,| — +
<0, R0: v V(NHJ h H(NH J(iuh y) (3.20)
<1
ic B2 —=C>0 (3.17) oy, + 0+ r)a+y+p,)

Equation 3.17 simplifies to give further simplification R, is an important threshold quantity. It is the expected

leads to number of secondary infection that one infectious individ-

(m, +r ual would create over the duration of the infectious period.
", +y Hakty (+5 J It is a determining factor as to whether a disease dies out or

4{+q j“"“‘ ab ac >0(3.18)  assumes endemicity.
_)\"NV[EJA“N”[NH](““+y+a) Theorem 3.21

The disease-free equilibrium Eo in 3.21 is locally

AN, [“bj AN, [ ac J(ﬂ” +y) asymptotically stable if and only if R, <1. Lietal (1999)
Ny Ny <1 (3.19) From the above theorem, it has been proven that the dis-

i, +o+r)a+y+u,)

The expression on the L.H.S is Ro , the basis reproduc-

tion number, therefore

ease-free equilibrium is asymptotically stable if Ro <1

Existence of Endemic Equilibrium £, exist if R, >1
The system of equation (3.5) — (3.10) has endemic equi-
librium EE:(S}J,[}{,R}{,S;,,[;,) given by
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_c(z-1)
E

ab
A, N, AN +
where Z(NH J(NHJ ('uh y)

w2, +y+a)u, +r+9)

I

and

My, 0+ [y 1LY

HLSY AN, (;—C]uh
H

+A WN +
[Nﬂjy .

+p‘huvr

HaH, +HeH, T

AN (Nb

H

| +anu

+uh)\vNVr[;b

H

)+ CITHTIS A THUAS
B=1H,H 1y +H 1.0

a3+ [, A N (;bj

H

+uhy)\VNV (;b j+y6)\VNV (;b j
H H

+l, 1,0y

C=p i (, +o+r)a+y+u,)

z
T

D = [yl +HH, T

AN (Nb

H

oo

+U,A N r(Nb

H

jmu o
+HULHL Y+ LTy

HoH O+ ap 1,0+ 1, 8A Ny [ﬂj
NH

ab ab
+U, YA N, ( ]+y6)\N [—]+|J, M, oy
h NH NH h
Hy L O+ H kLY
ab
=— U, Oy +A N
E N, H,0Y (NHj“h
ANy, (ﬁjvwﬁuv tH T
NH

s o ]

@+ y+u,)

Theorem 3.22
The endemic equilibrium, £, exists if R,>1.

Proof: The endemic equilibrium point given in equation
(3.6) — (3.10) from which theorem follows. We examine the
following cases to establish the existence of the endemic
equilibrium

Case 1

Invoking the positivity condition in the case of [ H and
1,', , it can be clearly verified that R > 1.

Case 2
In the case of R}{ , we have a different situation. Here

Ry 1,

oty W tyra

IfR=1, 1 S 1
H, Yy U, tyra
If R > 1, the inequality still holds. Therefore, the en-

demic equilibrium exists if R >]. Clearly, the compo-

nents of R are the same as Ro . Then the endemic equili-

brium exists if Ro >1
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Global Asymptotic stability of the disease free equili-
brium point
Theorem: The disease free-equilibrium Eo is globally

asymptotically stable if R, <1.

Given that R, <1, then there exist only disease free

equilibrium points.
Proof

At the disease free equilibrium, £ . » the following con-
ditions hold

ab o o o o o
AhNH :(N_jSH Iy—, SytyRy—asy,
H

aS,+ri, =y, + V)R,

ANy =01, = Ny

b o o
(;_JSH I, = (:uh +V+5)IH

H

ac o o o

/]VNV :(N_HJSV IH+lL1v SV
ac o o o
(N_HJSV IH =H, [V

Considering the Lyapunov function candidate

V(S,.1,,R,,S,,1,): R° — R* defined as
1 o\ 1 o\ 1 o)’
5 SH_SH ""5 IH_IH ""E RH_RH +
1 o\ 1 o\
2l =5 ) 5l )

Differentiating ' gives
I./_(SH —SHJSH+IH 1, +(RH —RHJRH +
(SV —SVJSV Y, ]'V +(NH —NHJNH

Imposing the condition on V , gives the following

ab o o
(N_jSH Iv
H
\% :(sH —sHj -u,S,+yR,-as,

ab °
_|:{N_jsﬁlv _UhSH + VRH_GSH:|

H
° o B, tY)R
+IH[(M“+H6)IH }+(RH—RHj[( ) g }+
_(uh+r+6)IH _(uh+y)RH
(NH_NOHJ[U}] NOH_I"thH:|

aC o o
. [N—]S L
(s -5.)

S

v
° ac
M, SV_|INH jSVIH _Uvsv:|

Ly (Uv I+ uvIV]

ab |.°

[N—HJIWUNG}

ab
=Sy |:[N_H]IV i, +0‘}
_IH(IH_I;j(uh +1‘+5)

o 2 o 2

_(RH_RHJ (uh+y)_(NH_NHj My

o aC o
_(SV—SVJ{SV{(N—HJIH+uv:|_sv|: N
-1y (uvlv —H, Ivj

The following assumptions are made for the Lyapunov

+

Finally

0

V=S,

function V above

0 ab | ¢ ab
SHHN—JM } ) SHKEJ i }

o
is negative provided /> I,

This condition warrants — 1, (ﬂvl y M1, ) being

negative.

_IH(]H _I;j(:uh +r+5)
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is negative if [, > I; which when applied to

o ﬁ 1 o o
_(Sv _SV\J Sy |\ Ny ! -Sy (;_CJIH"'UV
H, !

makes it negative.

It is also assumed that RH - RH

We have shown that V < () provided S, > SOH Ay >
[; , ]V>](; and SV>S(')V

It is also important to note that V =0 only at disease-

free equilibrium point, F°

4. Numerical Experiment

Some numerical experiments are performed on our mod-
el with two main strategies considered for controlling the
infectious disease, malaria:

a reduction in the number of infected humans through
treatment and

a reduction in the number of susceptible humans through
vaccination.

3.1. Graphical Representation of Results
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Figure 4.1.1. Graph showing the comparison between the dynamics of the
disease between the original Tumwiine et al. (2007) model with a treat-
ment rate of 0.3 and the modified model with same treatment rate along
with a vaccination rate of 0.3, on the infected human population, corres-
ponding to table 1 in the appendix.
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Figure 4.1.2. Graph showing the comparison between the dynamics of
the disease between the original Tumwiine et al. (2007) model with a
treatment rate of 0.6 and the modified model with same treatment rate
along with a vaccination rate of 0.6, on the infected human population,
corresponding to table 2 in the appendix.
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Figure 4.1.3. Graph showing the comparison between the dynamics of
the disease between the original Tumwiine et al. (2007) model with a
treatment rate of 0.9 and the modified model with same treatment rate
along with a vaccination rate of 0.9, on the infected human population,
corresponding to table 3 in the appendix.
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Figured.1.4. Graph showing the comparison between the dynamics of the
disease between the original Tumwiine et al. (2007) model with a treat-
ment rate of 0.3 and the modified model with same treatment rate along
with a vaccination rate of 0.3, on the infected vector population, corres-
ponding to table 4 in the appendix.
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Figure 4.1.5. Graph showing the dynamics of the disease on the modified
model with a vaccination rate of 0.3, 0.6 and 0.9 on the susceptible human
population, corresponding to table 5 in the appendix.

4.2. Experiment One

Here the dynamics of the disease is compared between
the old model and the modified. The experiment is carried
out to establish the fact that a combination of both treat-
ment and vaccination reduces the infectious population
much more than applying treatment alone, as it was, in the
result obtained from the old model.

4.3. Experiment Two

In this experiment, the dynamics of the disease of the
modified model under the treatment and vaccination rate of
0.6 is carried out and compared with the old model of
treatment rate of 0.6. We observed that a combination of
the control measures causes a further decline in the infec-
tious population from 0.24 to 0.008 through 0.0984 and
0.0101

4.4. Experiment Three

In this experiment, the dynamics of the disease of the
modified model under the treatment and vaccination rate of
0.9 is carried out and compared with the old model with
just treatment rate of 0.9. The result in this experiment
shows that eradication is possible provided that both con-
trol measure rates are maintained.

4.5. Experiment Four

In this experiment, the dynamics of the disease on in-
fected vector of the modified model under the treatment
and vaccination rate of 0.3 is carried out and compared
with the old model of treatment rate of 0.3. The infected
vector population drops from 0.330 to 0.2330 and 0.2320.
This will mean that less infectious vector population will
be available for susceptible human to become infectious.
Furthermore, the existence of mosquitoes will not necessar-
ily increase the rate of malaria infection. There are many
places in the world where mosquitoes abound but have not
yet recorded malaria cases. Such places include Cape Town

in South Africa, Maryland in USA, Kyoto in Japan, etc.
4.6. Experiment Five

In this experiment, we examine the effect of increasing
vaccination rate from 30% through to 90%, we observed
that the susceptible human population drop from 0.4000 to
0.1654 through 0.2102. Since the susceptible human popu-
lation will not much be available, it makes it difficult for
infectious mosquitoes to cause infections on human popu-
lation. This in the long run should result into a malaria-free
society.

4.7. Discussion of Results

The result from experiment one shows that in the ab-
sence of vaccination, eradication of the disease cannot be
achieved so fast compared with combining vaccination
along with treatment, as in the case in experiment two and
three. The result for the infectious human population in
experiment three carried out under a combined treatment
and vaccination rate of 0.9 declines faster, thus resulting in
a malaria-free society.

5. Summary, Conclusion, and Recom-
mendation

5.1. Summary

The Tumwiine et al. (2007) mathematical model for the
dynamics of malaria within human host and mosquito vec-
tors was modified by adding a vaccination parameter. The
model was analyzed in terms of actual population. The
stability of the equilibrium point obtained were analyzed
and found to be locally asymptotically stable. The effect of
vaccination on the susceptible human class of the modified
SIR host and SI vector model was considered. It was ob-
served that, gradually increasing the vaccination rate alone
reduces the number of susceptible human population
against possible re-infection, thus in the long run decrease
the number of infectious human population gradually to a
barest minimal level. Numerical experiments carried out on
the modified model clearly shows that, with a proper com-
bination of treatment and a concerted effort aimed at pre-
vention, malaria can be eliminated.

5.2. Conclusion

This study modified a model of malaria formulated by
Tumwiine et al. (2007) by including a vaccination parame-
ter, & . Analytical study was carried out on both models
using the method of linearized stability and the results
showed that the disease-free equilibrium points are locally
asymptotically stable for both models. The results of nu-
merical experiments carried out on both models also re-
vealed that eradication is possible if a combination of both
treatment and vaccination rate are maintained at least 0.65
level.
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Recommendations

In consideration of the findings of this study as well as
the incidental observations, we recommend that a combina-
tion of treatment and vaccination rates should be main-
tained at 0.65 level in order to eradicate malaria in the pop-
ulation.

Finally, it should be possible to validate this model by
applying it to a smaller population, and then to a larger
portion of any country. This will allow us to make in-
formed decisions about the level of control strategies,
“vaccination”, that provide the most effective way of eradi-
cating malaria.
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