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Abstract: All contemporary set theories have intersected classes. We have built the stairs of set theories with disjoint 
classes. We call such theories natural. We numerate these theories by ordinals. The first set theory is T_0. We build the 
theory from the set N of natural numbers by using the operations of direct products and of power set by finite times. The 
theory contains all results of Cantor’s theory. We argue that the theory can satisfy all needs of applied mathematics. We 
build theory T_1 by using the universe set of all sets of T_0 and by using the operations of direct products and of power set 
by finite times. We build theory T_α+1 from the set of previous by using the operations of direct products and of power set 
by finite times, too. We build theory T_ω from the set of all sets of T_α with α < ω again by using the operations of direct 
products and of power set by finite times. And so on for every theory T_α, if theory T_α-1 does not exists. We use the join 
of all these sets to build theory T_On without operation of power set. We call members of T_On families, members of 
families  sets, families, which are not members of families,  up-sets. Families are an analog of classes of the MK set 
theory and up-sets are an analog of proper classes of MK theory. The theory T_On is more strong than MK theory because 
we use more strong axiom of comprehension. The last theory T_On+1 is external to T_On. We use T_On+1 to prove those 
theorems of T_On that are unproved in T_On.  
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1. Introduction 

The main problem of every theory is the classification of 
all objects of the theory by using their properties based on 
theorem results. Every object must belong to a class and 
classes must be disjoint. We call such classification natural.  
We have constructed the stairs of set theories with the 
natural classification of all its objects. All existed set 
theories have not such classification. We will name set 
theories with natural classification natural. 

The first set theory was created by Cantor (1874, [1]). It 
contains modern theory of cardinal and ordinal numbers 
and the theory of well-ordered sets almost whole. Cantor 
also pointed out the paradox in his theory, later it was 
called Cantor’s paradox. 

The first set theory without paradoxes was the type 
theory T  (shortening of Type), created by Russel (1903, 
[2]). Types in the theory form a hierarchy of objects. The 
first level of the hierarchy has atoms, the second level 
contains sets of atoms, the next level has sets of sets and so 
on. Objects of a level have the same type, sets of such 
objects have type that is more that the type of their objects. 

So the set }},{,{ cba  is absent in the theory because 

objects of the set have different types. 
Then Russel created the new type theory RT  

(shortening of Ramified Theory, 1908, [3]). A set in the 
theory can have objects of different types if their types are 
less than the type of the set. Non-predicative formulas exist 
but only if they can be replaced by a sequence of 
predicative formulas. 

The other way to exclude paradoxes was introduce by E. 
Zermelo (1908,[4]) in the theory Z . The two ways of 
excluding paradoxes are basic now. 

The type theory T  was investigated by K. Gödel (1931, 
[5]) and A. Tarski (1931, [6]). 

The theories NF  (shortening of New Foundation, W. 
Quine, 1937, [7]), ML  (shortening of Mathematical Logic, 
W. Quine, 1940. [8]) and STT  (shortening of Simple 
Theory of Types, A. Church, 1940, [9]) are extensions of 
T  theory. The theory Σ  (Hao Wang, 1954, [10]) was an 
extension of the theory RT . 

The theory Z  was extended by A. Fraenkel (1922, [11]). 
The name of the theory is ZF . With the choice axioms the 
theories are ZC  and ZFC . The theories have infinite 
number of axioms. 
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The theory NBG  (J. Neumann, 1925-1928, [12], R. 
Robinson, 1937, [13], P. Bernays, 1937-1954, [14], K. 
Gödel, 1940, [15]) replaces infinite number of axioms of 
ZFC  by finite number. 

The next extension of NBG  is MK  theory (J. Kelley, 
1955, [16], A. Morse, 1965, [17]). In the theory domain of 
variables can contain all classes including proper (the 
variables are bounded to quantifiers). 

The theory ICS  (shortening of Iterative Conception of 
Set, G. Boolos, 1971, [18]) is an extension of ZF  and 
RT . The signature of the theory is added by symbols of 
two-place predicates E , F  and by symbols of new 
variables ,...,, 210 sss . The variables are interpreted as steps 

of construction of sets. The predicate 21Ess  is interpreted 

as a step 1s  is before a step 2s . The predicate 11Fsx  is 

interpreted as a set 1x  created at a step 1s . 

Some works are dedicated to large cardinals as an 

extension to ZFC  theory (P. Maddy, 1988, [19], W. 
Woodin, 2001, [20], A. Kanamori, 2003, [21]). 

One more extension of ZFC  by adding new axioms 
was presented by J. Steel, (2000, [22]). 

More information can be found in Handbook of set 
theory (M. Foreman, A. Kanamory, ed., 2010, [23]. 

Type theories. We use a type theory but the type theory is 
not our starting point. The type theory is the corollary of 
our natural classification of sets. 

Now the term type theory does not have a rigidly fixed 
value. In this theory its objects belong to layers forming an 
hierarchy, every layer has a type. This hierarchy is not 
necessarily linear and does not necessarily countable. 
Values of variables are objects of the same type. 
Superscripts of variables equal types of their objects. The 
axiom of compression has the form 
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where ϕ  is any well formed (wf) formula (see 3.12). The 
formula is predicative. The type 0t  of 0x  is greater than 
types of the other variables. 

This formula can be replaced by non-predicative. Then 
axiom of compression is 
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where 0
0

t
x  is constructed step-by-step: 0

0

t
x  in ϕ  is 

empty at step 0 and at step 1+i  ϕ  uses value of 0
0

t
x  at 

step i . 
There are type theories with finite types and with types 

that are any initial interval of ordinals. There are type 

theories with quantifiers on sets of types. And there are 
type theories such that their wfs have types. 

In the article, types are corollary of the natural 
classification. And so all variables have the same domain 
(in type theories number of domains equals number of 
types). In the article, types belong to sets but do not belong 
to variables. This means we use new type theory which is 
free from difficulties of type theories and which has all 
properties of MK  set theory. We use predicative and 
non-predicative wfs. We use linear hierarchy of types. 
Values of types are ordinals ωα +≤  On<0 . If all 
members of a set have the same type then the type of the 
set is more than the type of members by a finite number. 
Members of some sets have infinite spectrum of types but 
the such sets have types that are next to all types of their 
members. 

About article.The article consists of 5 sections.  
In section 1 we give an informal construction of the 

theories. This construction begins from the theory 0T  and 

comes to the end with the external theory 1 On +T . We state 

that the theories 0T  and  OnT  are basic. The theory 1T  

and 1 On +T  are external for 0T  and  OnT  respectively. 

In section 2 we construct the theory 0T . All objects of 

the theory are sets. We take definition of natural numbers 
from arithmetics, then construct the set of natural numbers, 
and then construct all other sets by using finite times the 
operation of direct product and the function of power set. 
We construct ordinals and cardinals. We construct the 
classification of sets of the theory on the basis of an 
equivalence relation. This classification has a denumerable 
number of disjoint classes (not to be confuse with classes of 
MK theory). We argue that the theory 0T  can satisfy 

almost all needs of applied mathematics. 
In section 3 we construct the set theory 1T  as external to 

0T . The sets of this theory are: all sets of 0T , the set 1U  

of all these sets, and sets that are results of applying the 
operations of direct product and the power set to 1U  by 

finite times. We give the definition of the sets of 0T  to 

distinguish them from the other sets of the theory 1T . This 

definition cannot be given in the theory 0T . By the 

definition, all sets constructed in 0T  exist. We prove 

theorem for sets of 0T  that cannot be proved in 0T . In 

particular, we prove that the classification of sets of 0T  

covers all sets of 0T . We find the natural classification of 

all sets of the theory 1T , too. This classification differs a bit 

from the natural classification of sets of 0T . 

In section 4 we construct the natural set theory  OnT . We 

call objects of the theory  families. Families simulate 
classes of MK theory. Families can be sets or  up-sets. The 
families are: all sets of previous theories, the family U  of 
all these sets (an analog of universe V  of MK theory), and 
the families constructed by the operations of direct product 



Pure and Applied Mathematics Journal 2014; 3(3): 49-65 51 
 

and subfamily. The operation (function) of power set is not 
used in order to limit powers of families. The maximal 
power of families is  Onℵ . Up-sets are not members of any 

families. Some up-sets are empty. Then we construct the 
natural classification of families. 

In section 5 we construct the theory 1 On +T  as external to 

the natural theory. We name objects of the theory  

up-families. Up-families are: the collection of all families 
of  OnT , sub-collections, and direct products of these 

collections. We prove some theorems that are not proved in 
the natural theory. 

Notation and agreements.We call variables, values of 
which are names of sets, briefly sets and denote them by 
the letter x  with subscripts.  

We denote a power set by )(xP . The )(xPn  means the 

n -times application of the operation P . In particular, 

))((=)(),(=)(,=)( 210 xPPxPxPxPxxP , etc. 

The use of quantifiers is a bit simplified by reducing the 
number of brackets. And universal quantifiers are absent, if 
they must be in the beginning of formulas. 

Using inductive (non-predicative) definitions we 
construct any collections step-by-step. In particular, the 
definition of classes in 0T  is presented by the formula: 

212100  class class = class xxxxNxx ∧∀∀∨↔  

)(== 10210 xPxxxx ∨×→  

The class of natural numbers N  exists at step 0 of the 
formula realization. At step 1 the class NN ×  is generated 

first, then the class )(NP  is generated. At step 2, ten more 

classes are generated sequentially. And so on. This 
sequence of the realization is taken from the algorithm 
theory1. 

Some theorems are presented as statements without 
proofs, if these proofs are obvious. 

Ordinals and cardinals. Hear we give informal 
definitions of ordinals and cardinals. The formal definitions 
are given in 2.14-2.16 and 4.6, 4.7. 

We use Cantor’s definitions of ordinals and cardinals. We 
call them  Cantor ordinals and  Cantor cardinals and we 
call representatives of Cantor ordinals and Cantor cardinals 
briefly ordinals and  cardinals. 

The construction of ordinals differs from the generally 
accepted constructions because, by Cantor, every ordinal 
must be well ordered set, i.e. the ordered pair 〈 a set, its 
ordering relation 〉 . But we call an ordering relation a  well 

ordered set because a set can have several ordering 
relations but an ordering relation has only one set. Hence 
the ordered pair can be replaced by only ordering relation. 

                                                             
1 The formal definition of the rule for inductive (non-predicative) definitions 

and proofs belongs to logic. We exclude all formal definitions belonging to 

logic because logic must be up theories but not be repeated in every theory. 

This allows to simplify the construction of ordinals. 
Ordinals2 0 and 1 are 0 and {0}. We state that 0-member 

and 1-member sets are well ordered. 
But 2-member sets are not well ordered. Every 

2-member set has two well ordered sets. For example the 
set {0}}{0,  has two well ordered sets (well ordering 

relations) }{0}0,{ 〉〈  and }{0},0{ 〉〈 . This means {0}<0  

and 0<{0}  respectively. But we use only the well 

ordering relation }{0}0,{ 〉〈  and we call the relation  

ordinal 2. 

For simplification we denote 0 by 0ɺ , {0} by 1ɺ , 

{0,{0}}={ 0ɺ ,1ɺ } by 2ɺ  and so on. We denote { 0ɺ ,1ɺ , 2ɺ ,...} 

by ωɺ  and },...,2,1,0{ ωɺɺɺɺ  by 1+ɺω . 

Then ordinal 3 is the ordering relation 

}2,1,2,0,1,0{ 〉〈〉〈〉〈 ɺɺɺɺɺɺ . This means 2<1<0 ɺɺɺ . 

We will give in 2.15 and 2.16 the rule to construct 
ordinals. This rule does not limit the construction. But the 
collection of all constructed ordinals exists, it is On. And 
On is the next to all the ordinals. We call On up-ordinal. 

The construction of cardinals (representatives of Cantor 
cardinals) does not differ from the generally accepted. 

Cardinal 0 is 0ɺ =0, cardinal 1 is 1ɺ ={ 0ɺ }, cardinal 2 is 

2ɺ ={ 0ɺ ,1ɺ }, and so on. 

2. Stairs of Theories 

There are next stairs of theories and their objects. All 
definitions are inductive. 

Sets of theory 0T  are: 

- set N  of natural numbers and members of N , 
- a direct product of sets and its members, 
- a power set of a set and members of the power set. 
The theory is simple but powerful to satisfy all needs of 

applied mathematics. It contains all Cantor’s results 
without any paradoxes because there is an axiom system. 
Arithmetic is the sub-theory of 0T . 

Sets of theory 1T  are: 

- universe 1U  (the set of all sets of 0T ) and its 

members, 
- a direct product of sets and its members, 
- a power set of a set and members of the power set. 
We include sets of 0T  in 1T  because some subsets of 

U  are sets of 0T . 

The theory 1T  is external for 0T . And we use 1T  to 

search some properties of sets of 0T  and to prove theorems 

of 0T  which are not proved in 0T . 

Sets of theory 1+αT  are constructed similarly. 

Sets of theory ωT  are: 

- the universe ωU  (the set of all sets of previous 

                                                             
2 We use the same notations for finite ordinals, for finite cardinals, and for 

natural numbers in hope this does not lead to misunderstanding. 
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theories) and its members, 
- a direct product of sets and its members, 
- a power set of a set and members of the power set. 
Sets of theory αT , for which theory 1−αT  is absent, are 

constructed similarly. 
Objects of theory  OnT  are families: 

- universe U  (the collection of sets of all previous 
theories) and its members, 

- a direct product of families and its members, 
- a sub-families of families and its members. 
We do not use the power set operation in order to restrict 

cardinals of families by  Onℵ . 

We call families that are not members of families up-sets. 
We call the other families  sets. All sets are members of 

U . 
Families are an analog of classes of MK set theory. 

Up-sets are an analog of proper classes of MK set theory. 
Some up-sets are empty. 

Objects of last theory 1 On +T  are up-families: 

- universe +U  (the collection of all families) and its 

members, 
- a direct product of up-families and its members, 
- sub-collections of up-families and its members. 
We can research in the theory the other characteristics of 

families and can prove some theorem of  OnT  which can 

not be proved in  OnT . 

The more interesting set theories are 0T ,  OnT , and their 

external theories 1T , 1 On +T . 

3. Theory 0T  

3.1. Signature and Variable Notation 

The theory T0 is ordered four: ),,(0, ∈〈〉' , where 0 is 

constant, ' is the one-place function of the succession (this 
function is partial 3  and its domain is the set of natural 
numbers), 〈〉  is the two-place function of the ordered pair, 

and ∈  is the two-place predicate of membership. This 
means that the symbols are undefinable. But 0 is a set and 

∈〈〉,,'  generate sets, because all objects of 0T  are sets. 

We take the first two symbols of the signature from 
arithmetic. This allows to use the standard definition of 
natural numbers and not to invent something new. The third 
symbol allows not to invent a definition of the ordered pair. 
The fourth symbol is standard. 

We add symbols ,...,, 210 xxx  to the alphabet of the 

theory and use them as variables (of functions and 

predicates). Sometimes we use x  instead 0x . The domain 

of these variables is the universe 1U  of the external theory 

1T . 

We must define ordered n -tuples as a generalization of 

                                                             
3  This function is partial because we use the other way to construct 

ordinals 1+α , see 3.14. 

ordered pairs. 
Definition. 11 = xx 〉〈 , 

〉〉〈〈〉〈 − nnn xxxxx ,,...,=,..., 111  

But 〉〈≠〉〉〈〉〈〈 43214321 ,,,,,, xxxxxxxx . 

3.2. Axiom 1 

We will present the system of axioms of the theory later. 
Now we present only one axiom. The axiom states 
inequality of natural numbers and ordered pairs. But 
preliminary we shall give the definition of natural numbers. 

Definition. A natural number is 0 or a result of the 

success operation: 

101100 = nat 0= nat ′∧∃∨↔ xxxxxx  

where nat is a predicate for natural numbers.  

Axiom 1. 〉〈¬ 21, nat xx . 

Now we can define atoms. 
Definition. An atom is a natural number or an ordered 

pair: 

〉〈∃∃∨↔ 2102100 ,=  nat atom xxxxxxx  

Atoms are sets. And so they present in the domain of 
variables because the domain is the collection of all sets. 
Atoms can be components of ordered pairs because values 

of 1x  and 2x  in the definition can be atoms. 

3.3. Set of Natural Numbers and Direct Product 

We can define the set of natural numbers and the direct 
product of sets4. 

Definition. The set of natural numbers N is: 

00  nat xNx ↔∈  

Definition. A set 21 xx ×  is a  direct product of sets 1x  

and 2x , if 21 xx ×  contains ordered pairs which first 

components are members of 1x  and second components 

are members of 2x : 

),= 

( atom atom

430241343

21021

〉〈∧∈∧∈∃∃↔
×∈→¬∧¬

xxxxxxxxx

xxxxx
 

By definition the operation ×  is partial because it is not 

defined for atoms. And by definition 0x  is an empty set {}, 

if 1x  or 2x  are empty. 

3.4. Power Set 

First we shall define subsets. 

                                                             
4 The collection of natural numbers and results of direct product are sets but 

the proof of this belongs to 1T . 
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Definition. Set 1x  is a subset of set 2x , if both sets are 

not atoms and if all members of 1x  are members of 2x : 

23133

2121

 

 atom atom

xxxxx

xxxx

∈→∈∀∧
¬∧¬↔⊆

 

By definition atoms are not subsets of sets and have no 
subsets. The definition allows a set to have several empty 
subsets and an empty subset to be the subset of several sets.  
The other axioms do not allow a set to have several empty 
subsets. 

And 21 xx ⊂  if 2121 xxxx ≠∧⊆ . Then 1x  is the 

proper subset of 2x . 

Now we can define the power set5. 

Definition. The set of all subsets of 1x  is the  power set 

)( 1xP : 

))(( atom 10101 xxxPxx ⊆↔∈→¬  

By definition the operation P  is partial. This operation 

is not defined, if 1x  is an atom. If 1x  is an empty subset 

then 0x  is an empty subset, too. Atoms are not members 

of power set due to the definition of subsets. 
Remark. The definition 1010 )( xxxPx ⊆↔∈ is not well 

because a predicate exists even if a part of it is undefined, 

in this case the predicate is false. So if 1x  is an atom then 

10 xx ⊆  is false and then (for all 0x ) )( 10 xPx ∈  is false, 

i.e. )( 1xP  is empty but exists. 

3.5. Classes of Sets 

We shall define the natural classification of sets. Every 
set must belongs to some class and classes must be disjoint. 

Definition. A class is the set N  or a set constructed 
from N  by the direct product and power set operations: 

))(==( class 

 class     = class

102102

12100

xPxxxxx

xxxNxx

∨×∧∧
∃∃∨↔

 

By definition, each class is both a set and a member of 
some other class. This is natural because the class does not 
contain itself as a member. In particular, class N  contains 
all natural numbers but it is a member of the other class 

)(NP . 

Classes can be well ordered in the sequence of their 
construction 

                                                             

5 Results of power set are sets but proof of this belongs to 1T , too. 

...  );()(),()(

),(,)(),(

),(),(,

),(),( );(, ;

2

NPNPNNNP

NPNNPNPNN

NNNNNNPNNN

NPNNNNNPNNN

×××
×××

××××××
××××

 

Here the semicolons separate sets constructed at the next 
step. 

It is useful to present this sequence as parenthesis-free 

record: 

...  ;,,,

,,,

,,,;,  ;

PNPNNNPNPPNPNN

NNPNNNNNNNP

NNNNPNNNNPNNNN

××××
××××××

××××××
 

We will say that a class begins at symbol ×  or P , if the 
first symbol in the record is ×  or P . And only class N  
begins at N . 

The classes can be numbered in the sequence of their 
construction. This means that 0T  is a type theory. 

Members of a class have a type that equals the ordinal 
number of the class. A class has a type greater than the type 
of members of the class. In particular, members of N  have 

type 0, members of NN ×  have type 1, the set N  and 
the other members of )(NP  have type 2. 

So we define at first classes then, as a corollary, types. 
Classes are not types because types are not sets. Types are 
superscripts in names of sets (but not of variables). For 
simplification we do not use the superscripts but we mean 
them. 

3.6. Finite Descent Rule 

Because the definition of classes is inductive then the 
induction rule is used for proving of theorems. The finite 
descent rule is used, too6. Here this rule is given informally. 

The finite descent rule uses finiteness of a 
parenthesis-free record of classes. The structure of a 
parenthesis-free record of classes is analyzed at the first 
symbol of the record and to the end of the record at proving 
of theorems. The transition from analysis of a symbol to 
analysis of the next symbol is called a  descent. The finite 

descent rule confirms the end of these descents. 
Remark. Classes of sets have the next property: descents 

finish at the symbol N . 

3.7. Main Theorem 

We must prove that two different classes have no 
common members. 

Lemma. The sets N  and )( 1xP  have no common 

members: )( 100 xPxNx ∉∨∉ . 

Proof. Members of )( 1xP  are not atoms but members of 

                                                             
6 The rule was introduced in 17-th century by Pierre Fermat. He named the rule 

infinite descent. In 19-th century Adrien-Marie Legendre used the rule and 

renamed it finite descent. This rule is used to prove theorems. And so it belongs 

to logic. 
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N  are.                        □ 

Lemma. The sets 21 xx ×  and )( 3xP  have no common 

members: )( 30210 xPxxxx ∉∨×∉ . 

Proof. Members of 21 xx ×  are atoms but members of 

)( 3xP  are not.                      □ 

Lemma. The sets N  and 21 xx ×  have no common 

members: 2100 xxxNx ×∉∨∉ . 

Proof. Members of N  are natural numbers. Members of 

21 xx ×  are ordered pairs. By axiom 1, ordered pairs are 

not natural numbers.                                  □ 
Theorem. Two different classes have no common 

members: 

20100

2121

 

 class class

xxxxx

xxxx

∉∨∉∀→
≠∧∧

 

Proof. We use the symbol-by-symbol comparison of 
parenthesis-free records of classes. If the first compared 
pair of symbols has equal symbols then we pass to compare 
the next pair. By the finite descent rule there will be a pair 
of unequal symbols. It follows from the lemmas that sets 
generated by a pair of unequal symbols have no common 
members.                      □ 

3.8. Completeness of Set Classification 

The classification of sets covers all sets: every set is a 
member of a class. 

This statement holds for members of N , for members of 
direct products, and for members of power sets. But this list 
of sets is not complete because theory 0T  does not give the 

answer to the question: what object is a set and what object 
is not a set. The answer to this question is only in the 
external theory 1T . In the theory the definition of sets will 

be done (see 4.2) and completeness of the set classification 
will be proved (see 4.3). 

3.9. Non-Transitivity and Foundation (Regularity) 

The transitivity relation is not realized in the theory: if 
one (the first) set is a member of a second set, and the 
second set is a member of a third set, then the first set is not 
a member of the third set. This statement is an addition to 
the main theorem. 

The other addition is the statement of existence of 
foundations for sets. 

Both statements will be proved in the theory 1T  because 

these proofs use the completeness of set classification (see 
4.4). 

3.10. Atoms and Null-Sets 

We continue to list the axioms of the theory. First of all 
we must add the axiom of the emptiness of atoms. 

Axiom 2. 0110   atom xxxx ∉∀→  

The ordered pair 〈〉  and the succession ' are functions. 

This axiom states that the functions construct only empty 
sets (see 3.2). 

Definition.  An empty set is a null-set, if this empty set is 

not an atom: 

01100   atom null xxxxx ∉∀∧¬↔  

Null-sets exist because they are subsets of every set (not 
atom). The next axiom states that every set (not atom) has 
only one empty subset. 

Axiom 3. ∧∧ 21  null null xx  

2132313 =) ( xxxxxxx →⊆∧⊆∃∧  

If a parenthesis-free record of a class begins at a symbol 

P  then any member of this class has an empty subset in 
the class. The next theorem states that the number of such 
subsets in the class equals 1. 

Theorem. Each class, which parenthesis-free record 

begins at symbol P , contains only one null-set: 

21323133

21

=))()( class(

 null null

xxxPxxPxxx

xx

→∈∧∈∧∃∧
∧

 

Proof. By definition each member of a class )( 3xP  is a 

subset of the class 3x . Hence each empty subset from the 

class )( 3xP  is a subset of 3x  but this class 3x  has only 

one empty subset (by axiom 3).                         □ 
Atoms have the next property. They have no braces. The 

other sets have braces. In particular, null sets are {}. We 

will point out types of null sets. For example, 2{}  is the 

empty subset of N  because the types of N  and of all 

subsets of N  are 2. 
Remark. The proved theorem is true only in 0T . 

3.11. Additional Axioms and Definitions 

The axiom system of the theory includes two axioms of 
arithmetic7. 

Axiom 4. 0' nat 00 ≠→ xx . 

Axiom 5. 212121 ='=' nat nat xxxxxx →∧∧  

This axiom states equalities for natural numbers. Two 
natural numbers equal if their preeccessors equal. Then we 
use the finite descent rule. 

We must add the equality axioms for the other empty 
sets. 

Ordered pairs equal if their components equal: 
Axiom 6. 42314321 ==,=, xxxxxxxx ∧→〉〈〉〈  

Null sets equal if its classes equal: 
Axiom 7. 21  null= null xx   

323133  class xxxxxx ∈∧∈∧∃→  

                                                             
7 We have excluded the induction axiom because the axiom belongs to logic as 
for definitions as for proofs. The other two Peano axioms are presented in 2.1: 

0 is a natural number, and x′  is a natural number if x  is a natural number. 
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The extensional axiom states that nonempty sets equal, if 
their members equal: 

Axiom 8. ) ( 133 xxx ∈∃  

2123133233 =) () ( xxxxxxxxxx →∈↔∈∀∧∈∃∧  

If 21 = xx  then values of 1x  and 2x  are different 

names of the same object of 0T . In particular, a natural 

number has different names in different number systems 
but they are names of the same object. 

Many definitions of the theory coincide with definitions 
of set theory MK or a bit differ from them. The definition 
of the set complement is an exception. 

Definition. The 1x  is complement (com) to 2x , if 1x  

and 2x  are disjoint and contain all members of a class: 

)( 

 class  com

241434432

313321

xxxxxxxxx

xxxxxx

∉↔∈→∈∀∧⊆∧
⊆∧∃↔

 

We use 21 = xx  if 21  com xx . And xx = . 

The set operations of union and intersection are partial. 
Both sets in these operations should belong to the same 
class. 

3.12. Comprehension Axiom and Russel Paradox 

There are two atomic formulas in 0T : 21 xx ∈  and 

21 = xx , the last formula belongs to logic. A formula is 

well formed (wf), if it is constructed from atomic formulas 
by logical connectives ¬ , ∧ , ∨ , → , ↔  and 

quantifiers ∀ , ∃  (the formal definition of wf belongs to 
logic, for example [24], p. 54). A wf can be true or false for 
some values of variables. If some operations of wf are 
partial then wf is false for undefined values of variables. 
Then a collection of true values of any wf is a collection of 
objects of 0T  (these collections can be not sets of 0T  but 

then they are sets of 1T ). 

So every wf constructs some collection of sets. In 
particular, the wf 21 xx ⊆  constructs the collection of 

〉〈 21, xx , where for all 2x , which are not atoms, values of 

1x  are all subsets of 2x . The collection is not a set in 0T  

but it is the set in 1T . The wf 00 ⊆  constructs the null set 

in the class )( NNP ×  because N∈0 . 

It is generally accepted to present a collection 
constructed by a wf in the form 

)},...,,(|,...,{= 1010 nn xxxxxx ϕ〉〈  

where 01,..., xxx n ∈〉〈 , ϕ  is a wf, and 0x  can be the 

fictive variable in ϕ . 

We call wf  admissible, if it constructs only sets. But 
any wf cannot construct atoms because wfs construct only 
members of some collection. 

Definition. A wf is  admissible (adm), if it constructs a 

set (not atom), 

)},...,,(|,...,{= ,...,

 atom  adm

10101

00

nnn xxxxxxxx

xx

ϕ
ϕ

〉〈∀∧
¬∃↔

 

By comprehension axiom any set (not atom) is 
constructed by some admissible wf (inverse, all admissible 
wf construct a set,  is true by definition). 

Axiom 9. →¬ 0 atom x  

)},...,,(|,...,{= ,..., 10101 nnn xxxxxxxx ϕϕ 〉〈∀∃→  

The wf xx ∉  is well known as Russel paradox. This 

wf generates all sets of 0T  but the collection of these sets 

is not a set of 0T . So the wf is not admissible. 

3.13. Choice Axiom 

The choice axiom is last. It makes the theory more 
informative. Cantor used this axiom implicitly. 

We must give the exact definition of well ordering 
predicate because the predicate is used to formulate the 
choice axiom. 

Definition. A predicate 01  We xx  is ‘ 1x  well orders 

0x ’: 

14334244233

202212313232

001010001

,      

 null     ),, ,( 

)=1|=|0|=(| We

xxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxx

∈〉〈→≠∧∈∀∧∈∃→
¬∧⊆∀∧∉〉〈↔∈〉〈∀∧

×⊆∨→∨↔

 

where  

0110  0|=| xxxx ∉∀↔ , 01110  1|=| xxxx ∈∃↔ . 

The first operand of the disjunction in the right part of 
definition (in parentheses) states that 0-member and 
1-member sets are well ordered. The second operand of the 
disjunction contains three operands of the conjunction. The 

first operand deletes superfluous members of 1x . The 

second operand excludes from 1x  ordered pairs 〉〈 23, xx  

if 132 , xxx ∈〉〈 . This means that we put the strict order. The 

third operand (in last line) provides the existence of the 

least (in sense of the relation 1x ) member in each subset of 

set 0x . 

We call a set that will be well ordered  ordering and set 

after ordering  ordered. The set 1x  is called  well 

ordering relation. 

Each n -member ordering set has !n  ordered sets. Each 
denumerable ordering set has the nondenumerable set of 
ordered sets. The choice axiom states that any 
nondenumerable set can be well ordered. 

Axiom 10. 011  We xxx∃  (for all 0x ). 

It will be very useful the next definition. 
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Definition.  A predicate 0 WO x  is true, if 0x  well 

orders some set: 

1010  We  WO xxxx ∃↔  

The well known definition of a well ordered set states 

that the set is an ordered pair, 〈 a set, its well ordering 

relation 〉 . But the first component of the pair is 

superfluous because one ordering set has many ordered sets 
but one ordered set has only one ordering set. 

Theorem. Each ordered set with well ordering relation 

0x  has the unique ordering set 1x : 10110  We xxxWOx ∃→ . 

Proof. The set 1x  is the union of domain and range of 

0x .                                   □ 

So we can exclude the first component of the pair and 
name the well ordering relation  well ordered set. This is 
very useful: to put some definitions, to formulate some 
theorems, and to prove some theorems. But we will use the 

ordered pair 〈 a set, a semantics of ordering relation 〉 . For 

example, 〉〈 <,0x  means that 21 < xx  but 〉〈 >,0x  

means that 21 > xx  in 〉〈 21, xx , 01 xx ∈ , 02 xx ∈ . And 

⊂〉〈 ,0x  means that 21 xx ⊂  in 〉〈 21, xx . 

The next definition finds ordering set for given ordering 
relation. 

Definition. Let the map OS take each ordering relation to 

ordering set: 

),, )( OS( WO 1021202101 xxxxxxxxxx ∈〉〈∨∈〉〈∃↔∈→  

3.14. Cantor Ordinals 

A Cantor ordinal is a collection of all similar ordered 
sets. 

Definition. Two sets are similar ordered ( ≈ ), if 

∧∨∧↔≈ 1|=|  0|=|0|=| 12121 xxxxx  

)(Fnc)( OS)( OS  WO WO  1|=| 012100212 xxxxxxxx ∧×⊆∃∧∧∨∧  

→∈〉〈∧∀ 14343 , , xxxxx  

06405326565 ,,, , xxxxxxxxxxx ∈〉〈∧∈〉〈∧∈〉〈∃→  

where )(Fnc 31 x  means that 3x  is a one-one function:  

4323213211 ,,) ,()(Fnc xxxxxxxxx ∀∧×⊆∃↔  

)=,,(

)=,,(

42134132

43142132

xxxxxxxx

xxxxxxxx

→∈〉〈∧∈〉〈∧
→∈〉〈∧∈〉〈

 

The first two operands of disjunctions in right part of the 
first definition state that all 0-member sets are similar 
ordered and all 1-member sets are similar ordered. The 

third operand of the disjunction defines the other similar 
ordered sets . This operand has five operands of 
conjunctions. The first two operands demand that 1x  and 

2x  must be well ordered. The next two operands state that 

there is one-one function for all members of sets ordering 

by 1x  and 2x . The last operand (in the last line) states 

that mapping of the ordering sets keeps their order. 
Cantor ordinals are not sets in 0T  but they are sets in 1T . 

Members of Cantor ordinals are constructed from sets of 

0T . So we must define Cantors ordinals in 0T  but the 

definition is well only in 1T . 

Definition. The predicate COrd defines Cantor ordinals, 

210201210  , COrd xxxxxxxxx ≈→∈∧∈∀↔  

We can use one of similar sets as a representative of a 
Cantor ordinal. We will call these representatives briefly  

ordinals. 

3.15. Quasi-Ordinals 

Quasi-ordinals will be used to construct ordinals and 
cardinals. 

We denote natural number 0 by 0ɺ . We denote { 0ɺ } by 

1ɺ , { 0ɺ ,{ 0ɺ }}={ 0ɺ , 1ɺ } by 2ɺ , 

{ 0ɺ ,{ 0ɺ },{ 0ɺ ,{ 0ɺ }}}={ 0ɺ ,1ɺ , 2ɺ } by 3ɺ  and so on. We call 
these sets  quasi-ordinals and denote their collection8 by 

αɺ . 
Definition (non-predicative). 

αα ɺɺɺ =0= xxx ∨↔∈  

We have }0{= ɺɺα  at step 0, }1,0{=}}0{,0{= ɺɺɺɺɺα  at 

step 1, and so on. In particular, we get the set },...,1,0{ nɺɺɺ  at 

step n . So every finite member can be got and there is a 

set containing all finite members. This set we denote by ωɺ . 

Then we have set },...,1,0{ ωɺɺɺ , which we denote by 1+ɺω . 

And then we have set 1},,...,1,0{ +ɺɺɺɺ ωω , which we denote 

by 2+ɺω . And so on. 

This construction of αɺ  is ended, if the next step 

generates the new collection such that is not a set (in 1T ). 

We can put the order ≤〉〈 ,αɺ . 

Definition. The predicate αɺ≤  puts the natural linear 

order, 

)=( 21212121 xxxxxxxx ⊂∨∧∈∧∈↔≤ ααα ɺɺ
ɺ  

                                                             

8 Except 0ɺ  and 1ɺ  all quasi-ordinals are sets in 1T , they are not sets in 0T  

(and αɺ  is the set only in 2T ). We can construct ordinals and cardinals 

without quasi-ordinals (using only sets of 0T ) but such construction is very 

complex. Results, that use quasi-ordinals and results that use only sets of 0T , 

are the same. 
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Hear 21 xx ⊂  points out that there is a well ordering 

relation with members 〉〈 21, xx . We will call the well 

ordering relation natural. 
We will use the next definition to construct cardinals. 
Definition  The predicate min defines a minimal 

quasi-ordinal into some set of quasi-ordinals, 

1332332121  min xxxxxxxxxx αα ɺ
ɺ ≤∧∈→∈∀∧∈↔  

3.16. Ordinals 

We denote finite ordinals by natural numbers. And we 
use quasi-ordinals to construct the collection of all ordinals. 

 The first two ordinals 0 and 1 are 0ɺ  and 1ɺ  because 
they are representatives of 0-member and 1-member sets, 
which are well ordered. But the other ordinals are not 
quasi-ordinals because the other quasi-ordinals are not well 

ordered. So the next two ordinals 2 and 3 are }1,0{ 〉〈 ɺɺ  and 

}2,1,2,0,1,0{ 〉〈〉〈〉〈 ɺɺɺɺɺɺ . The ordinal 2 has quasi-ordinal 2ɺ  as 

the next to the all components in the ordinal. And the 

ordinal 3 has quasi-ordinal 3ɺ  as the next to the all 
components in the ordinal. The ordinal ω  is 

...} ,...3,1,2,1,...,2,0,1,0{ 〉〈〉〈〉〈〉〈 ɺɺɺɺɺɺɺɺ  and it has the quasi-ordinal 

ωɺ  as the next to all components of the ordinal. So every 
ordinal has the quasi-ordinal as the next to all components 
of the ordinal. This means there is a one-one 
correspondence between ordinals and quasi-ordinals. 
Cantor used the correspondence implicitly. 

Definition. The collection of all ordinals is Ord, 

1=0= Ord 000
ɺɺ xxx ∨↔∈  

021211011 , ,) COrd ( xxxxxxxxx ∈〉〈∀∧∈∧∃∨  

2121 < xxxx ααα ɺ
ɺɺ ∧∈∧∈→  

There are three operands of the disjunction. The first two 

operands state that 0ɺ  and 1ɺ  are ordinals. The third 
operand states that ordinals are members of some Cantor 
ordinal and members of ordinals are ordered pairs such that 
both components are quasi-ordinals and the first component 
is less than the second component. 

We can put the order for ordinals. 

Definition. The predicate o≤  puts the natural linear 

order for ordinals, 

)=(  Ord Ord 21212121 xxxxxxxx o ⊂∨∧∈∧∈↔≤  

We have used ordinals as subscripts. 

2.17. Cantor Cardinals and Cardinal Representatives 

A Cantor cardinal is a collection of all isomorphic sets. 
Definition. Two sets are isomorphic ( ≅ ), if there is a 

one-one correspondence between them, 

)(Fnc 01210021 xxxxxxx ∧×⊆∃↔≅  

where )(Fnc 01 x  means that 0x  is a one-one function. 

Cantor cardinals are not sets in 0T  but they are sets in 

1T . Because all members of a Cantor cardinal belong to 0T , 

we define Cantor cardinals in 0T . 

Definition. The predicate CCar defines Cantor cardinals, 

210201210  , CCar xxxxxxxxx ≅→∈∧∈∀↔  

We can use one of isomorphic sets as a representative of 
a Cantor cardinal. We will call these representatives briefly  

cardinals. 
All ordinals are members of Cantor cardinals but there 

are Cantor ordinals without ordinals. For example, ordinals 
with two members do not exist, hence the Cantor cardinal 
of two member sets does not contain ordinals. But 
quasi-ordinals are members of every Cantor cardinals. We 
use a minimal quasi-ordinal of a Cantor cardinal as a 
cardinal9. 

Definition.  Collection Car contains all cardinals, 

αɺ∈∧∈∧∃↔∈ 010110 ) CCar(Car xxxxxx  

102021221 min) ( xxxxxxxxx ∧∈∧≅↔∈∀∧∃ αɺ  

We state (in the first line) that cardinal 0x  is a member 

of a Cantor cardinal and an quasi-ordinal. We create (in the 

othert lines) set 1x  of all quasi-ordinals which are 

isomorphic to 0x  and we demand that 0x  is minimal into 

the set. 
A finite cardinal with n  members is equal to 

quasi-ordinal nɺ . The cardinals are not natural numbers but 
we will denote them by the numbers: 0, 1,... . This 
denotation is generally accepted. 

We can put the natural order for infinite cardinals. This 
means that all infinite cardinals can be numbered by 
ordinals α  by beginning with 0. It is generally accepted 

to denote infinite cardinals by αℵ . 

For any set x , || x  is a cardinal which is isomorphic to 

x . 

3.18. Absent Existence Axioms 

The other existence axioms are absent because the 

external theory 1T  has the definition of sets of 0T  and by 

definition all introduced above objects are sets. This means 
they exist. In particular, a direct product of sets is a set and 
a power set is a set, too. So we need not give axioms of 
existence of these sets. 

                                                             
9 The other way is to use quasi-ordinals with minimal type (D. Scott, 1965, 
[25]). 
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It is natural that some definitions of objects of 0T  

present in 1T . In particular the definition of variable 

domain of 0T  can be given only in 1T . And some 

theorems that cannot be proved in 0T  will be proved in 

1T . 

3.19. Applied Mathematics 

The theory 0T  can satisfy almost all needs of applied 

mathematics. As an example we shall consider Hilbert 
space. 

Hilbert space is infinite-dimensional. Hence this space 
uses an infinite number of direct product operations × . 

The operation ×  is used only finite times in the theory. 
Nevertheless Hilbert space exists in the theory. We can use 
the infinite sequence of real numbers as a point in Hilbert 
space instead of an infinite number of the operations. 

Because real numbers belong to the class )( 3NP , a 

member of the sequence belongs to the class )( 3NPN ×  

(members of sequences are numbered) and the sequence 

belongs to the class ))(( 3NPNP × . Hence Hilbert space 

belongs to the class ))(( 32 NPNP × . 

Similarly we can construct Hilbert vector space over the 
field of real or complex numbers. 

4. Set Theory 1T  

4.1. Signature, Axioms, and notation of Variables 

We inherit the signature and axioms of the theory from 
theory 0T . Hence theory 1T  is an extension of theory 0T . 

We use the new notation of variables of the theory: 

,...,, 1
2

1
1

1
0 xxx , because the domain of these variables is not 

the domain of variables of 0T . Accordingly we must 

change the notation of variables in the axioms of the theory 

0T . 

The domain of the new variables is the universe 2U . 

This universe is not defined in the theory. But universe 1U  

of all sets of 0T  is defined. 

Before we shall define what collections of sets of 0T  are 

sets of 0T  and what collections are not sets of 0T . 

4.2. Definition of Sets of 0T  

This definition can be presented only in 1T . 

Definition (non-predicative). A set of 0T  is: N  and its 

members, a direct product of sets of 0T  and its members, a 

power set of a set of 0T  and its members: 

))(

)(==(

setset  

    =set

1
1

1
0

1
1

1
0

1
2

1
1

1
0

1
2

1
1

1
0

1
20

1
10

1
2

1
1

1
0

1
0

1
00

xPx

xPxxxxxxx

xxxx

NxNxx

∈∨

∨×∈∨×∧

∧∃∃∨

∈∨↔

 

where set 0  is a set of 0T . 

By definition, all these objects exist. 

4.3. Completeness of Classification in 0T  

The definition of 0set  specifies what sets are of 0T  and 

what sets are not of 0T . Hence now we can prove that the 

classification of sets of 0T  covers all the sets. 

Theorem.  Any set of 0T  is a member of a class of 0T : 

1
1

1
0

1
10

1
10

1
11

1
00 classset set xxxxxx ∈∧∧∃→  

where class 0  is a class of 0T . 

In the other words, any set of 0T  has a type  because 

any class is numbered by a finite ordinal and any member 
of a class has type which equals the ordinal number of the 
class. 

Proof. We use the induction rule. Let class N  and its 
members exist at the step 0. The class N is a member of the 
class )(NP , members of N  are members of the class N . 

So the theorem is true at this step. 
We assume that only members of classes exist at a step 

n . And we shall prove that only members of classes are 
generated at the step 1+n . 

By definition, the sets generated at the step 1+n  are 
only: 

- any direct product of sets that are generated at the 
previous steps, 

- any member of the direct products, 
- any power set of sets that are generated at the previous 

steps, 
- any member of the power set. 
Let: 

- sets 
1
1x  and 

1
2x  (but not atoms) be generated at 

previous steps, 

- these sets be members of classes 
1
3x  and 

1
4x  

respectively, 

- the sets 1
2

1
1 xx ×  and )( 1

1xP  be generated at the step 

1+n . 

The set 
1
2

1
1 xx ×  is a subset of the class 1

4
1
3 xx ×  and a 

member of the class )( 1
4

1
3 xxP × . Members of the set are 

members of the class 
1
4

1
3 xx × . Then the theorem is true for 

this set and its members. 

The set )( 1
1xP  is a subset of the class )( 1

3xP  and a 

member of the class )( 1
3

2 xP . Members of the set are 
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members of the class )( 1
3xP . The theorem is true for this 

set and its members, too. This completes the proof. □ 
Remark. The given theorem illustrates that some 

properties of sets of theory 0T  unprovable in the theory 

can be proved in a more powerful theory. 

4.4. Non-Transitivity and Foundation (Regularity) in 0T  

We use the completeness of set classification in 0T  to 

prove non-transitivity and foundation of sets of 0T . 

Theorem (of non-transitivity). The transitivity relation is 

not realized in the theory 0T : 

1
3

1
1

1
30

1
3

1
2

1
2

1
1 set xxxxxxx ∉→∧∈∧∈  

In other words, set 
1
3x  of 0T  does not contain both set 

1
2x  and its member 

1
1x . 

Proof. Set 3x  does not contain both set 
1
2x  and its 

member 
1
1x  because 

1
2x  and 

1
1x  have different types. □ 

Corollary. Every set of 0T  does not contain itself: 

111
0set xxx ∉→ . 

Proof. A set and its members have different types.     □ 

Theorem  (of foundation). Every nonempty set 
1
1x  of 

0T  contains a set 
1
2x  such that 

1
1x  and 

1
2x  do not 

contain common members: 

1
1

1
0

1
2

1
0

1
0

1
1

1
2

1
2

1
1

1
0

1
0

1
10   ) (set xxxxxxxxxxxx ∉→∈∀∧∈∃→∈∃∧  

Proof. By non-transitivity theorem every nonempty set 
1
1x  of 0T  does not contain a set 

1
2x  and its member.  □ 

4.5. Construction of Sets of Theory 1T  

First we shall construct the set of all sets of 0T . 

Definition.  The set of all sets of 0T  is universe 1U : 

1
001

1
0 set xUx ↔∈  

Now, using universe 1U  we can construct all other sets. 

Definition. A set 
1
2

1
1 xx ×  is a  direct product of sets 

1
1x  

and 
1
2x , if 

1
1x  and 

1
2x  contain ordered pairs which first 

components are members of 
1
1x  and second components 

are members of 
1
2x : 

1
2

1
1

1
0

1
2

1
1 ( atom atom xxxxx ×∈→¬∧¬  

),= 1
4

1
3

1
0

1
2

1
4

1
1

1
3

1
4

1
3 〉〈∧∈∧∈∃∃↔ xxxxxxxxx  

Definition.  A set 
1
1x  is a  subset of a set 

1
2x , if both 

sets are not atoms and all members of 
1
1x  are members of 

1
2x : 

1
2

1
3

1
1

1
3

1
3

1
2

1
1

1
2

1
1   atom atom xxxxxxxxx ∈→∈∀∧¬∧¬↔⊆  

If 
1
2

1
1 xx ≠  then 

1
2

1
1 xx ⊂ . 

Definition. The set of all subsets of a set 
1
1x  is the  

power set )( 1
1xP : 

))(( atom 1
1

1
0

1
1

1
0

1
1 xxxPxx ⊆↔∈→¬  

4.6. Classes of Sets 

The natural classification of sets differs from the natural 
classification of sets of 0T . 

Theorem.  Sets 11 UU ×  and 1U  have common 

members. 

Proof. If 
1
1x  is a set of 0T  then set 〉〈

1
1

1
1 , xx  is a 

member of 1U  and a member of 11 UU × ,   □ 

Theorem. Sets )( 1UP  and 1U  have common members. 

Proof. If 
1
1x  is a set of 0T  then set }{ 1

1x  is a member 

of 1U  and a member of )( 1UP .          □ 

But natural classification of sets exists, if we construct 
classes by partial operations. These classes are disjoint and 
cover all sets. 

Definition. A partial direct product 
1
2

1
1

ˆ xx ×  contains 

only members which are not members of 1U : 

1
1
0

1
2

1
1

1
0

1
2

1
1

1
0 ˆ Uxxxxxxx ∉∧×∈↔×∈  

Definition. A partial power set )(ˆ 1
1xP  contains only 

members which are not members of 1U : 

1
1
0

1
1

1
0

1
1

1
0 )()(ˆ UxxPxxPx ∉∧∈↔∈  

Definition.  A class is: 

- the universe 1U , 

- a nonempty partial direct product of classes, 
- a partial power family of a class: 

)(ˆ=ˆ=classclass 

=class
1
1

1
0

1
2

1
1

1
0

1
21

1
11

1
2

1
1

1
1
0

1
01

xPxxxxxxxx

Uxx

∨×→∧∃∃∨

↔
 

Classes can be numbered by ordinals 2< ωαω ≤  in 
the sequence of their construction: 

××××× ˆ),(ˆˆ),ˆ(ˆ );(ˆ,ˆ ; 1111111111 UUPUUUUUPUUU  

),ˆ(ˆˆ),ˆ(ˆ,ˆˆ 11111111 UUUUUUPUU ××××××  

×××× ˆ)(ˆ),(ˆ,ˆ)(ˆ),(ˆˆˆ 11
2

11111 UPUPUUPUPUU  
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...  );(ˆˆ)(ˆ),ˆ(ˆ 1111 UPUPUU ×××  

The semicolons separate the classes constructed at the 
next step. 

The classes can be numbered by ordinal numbers 
beginning at ω . So class 1U  has ordinal number ω , 

class 11ˆ UU ×  has ordinal number 1+ω , and so on. But 

the ordinal numbers are less than 2ω . 

This means that 1T  is a type theory as a corollary of the 

classification. Members of 1U  have all spectrum of finite 

types. But members of an another class have the same type 
which equals the ordinal number of the class minus 1. In 
particular, members of 11 UU ×  have type ω , U1 and the 

other members of )( 1UP  have type 1+ω . 

4.7. Disjointness of Classes and Completeness 

The classes have no common members. 

Lemma.  The set )(ˆ 1
1xP  and the universe U1 have no 

common members: 1
1
0

1
1

1
0 )(ˆ UxxPx ∉∨∉ . 

Proof. By definition members of )(ˆ 1
1xP  are not 

members of U1.                                  □ 

Lemma. The sets 
1
2

1
1

ˆ xx ×  and )(ˆ 1
3xP have no common 

members: )(ˆˆ 1
3

1
0

1
2

1
1

1
0 xPxxxx ∉∨×∉ . 

Proof. Members of 
1
2

1
1

ˆ xx ×  are atoms but members of 

)(ˆ 1
1xP  are not atoms.           □ 

Lemma.  The sets 
1
2

1
1

ˆ xx ×  and the universe U1 have no 

common members: 1
1
0

1
2

1
1

1
0 ˆ Uxxxx ∉∨×∉ . 

Proof. Members of 
1
2

1
1

ˆ xx ×  are not members of U1. □ 

Theorem. Two different classes have no common 

members: 
1
2

1
0

1
1

1
0

1
2

1
1

1
21

1
11 classclass xxxxxxxx ∉∨∉→≠∧∧  

Proof. We use the symbol-by-symbol comparison of 
parenthesis-free records of classes. If the first compared 
pair of symbols has equal symbols then we pass to 
comparison of the next pair. By the finite descent rule there 
will be a pair of unequal symbols. It follows from the 
lemmas that sets generated by a pair of unequal symbols 
have no common members.                         □ 

The classification is complete. All sets excluded by the 

partial operations are members of the class 1U . But 

completeness of the classification is proved in the theory 

2T . 

4.8. Transitivity and Null-Sets 

If we do not use partial operations then the transitivity 
relation can be realized. 

Theorem (of transitivity). The transitivity relation can be 

realized in the theory 1T  for some sets, 

1
3

1
1

1
3

1
2

1
2

1
1

1
3

1
2

1
1  xxxxxxxxx ∈→∈∧∈∃∃∃  

Proof. Because N  is both a member and a subset of 

1U , then 

)()( 1111 UPNUPUUN ∈→∈∧∈  

By axiom 3 each set (not atom) has only one empty 
subset (null-set). In particular, the universe 1U  has only 

one empty subset. But U1 contains infinite number of 
null-sets because 1U  contains null-sets of each class of the 

theory 0T .                                              □ 

4.9. Foundation (Regularity) 

Theorem (of foundation). Every nonempty set 
1
1x  

contains a set 1
2x  such that 

1
1x  and 

1
2x  do not contain 

common members: 

1
2

1
3

1
1

1
3

1
3

1
1

1
2

1
2

1
1

1
0

1
0   ) ( xxxxxxxxxxx ∉∨∉∀∧∈∃→∈∃  

Proof. All types are numerated by ordinals. This means 
that any subset of types contains the minimal type. Hence 

set 
1
1x  contains set 

1
2x  with a minimal type. Then 

members of 
1
2x  are not contained in 

1
1x  because they 

have types less than the minimal type.                   □ 

5. Natural Theory  OnT  

5.1. Signature, Axioms, and Variable Notation 

There are no limit to construct ordinals α  because 
there are no limit to construct quasi-ordinals. But the 

collection of all quasi-ordinals αɺ  exists. The collection is 

Oɺ n. This means that On exists too, and On is next after all 
ordinals. We call On up-ordinal (see 6.6 for more details). 
So the theory  OnT  exists. 

The signature of the theory is inherited from theory 0T . 

The axioms are inherited from 0T , too. Then theory  OnT  

is an extension of theory 0T  and all theories αT . Objects 

of  OnT  are families and some families are not sets. Hence 

the families are an analog of classes in MK set theory. 
Families, which are not sets, are up-sets. They are an 
analog of proper classes of MK. 

The variables are 0X , 1X , 2X ,... . The domain of 

these variables is the universe +U  containing all families. 

This universe is not a family and the definition of universe 
belongs to the external theory. 

5.2. Construction of Families 

We use the universe U  to construct the other families. 
Definition.  The union of sets of all previous theories is 

the  universe U : 
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00 set XUX αα∃↔∈  

Definition. Family 21 XX ×  is a  direct product of 1X  

and 2X , if 21 XX ×  contains all ordered pairs which first 

components are members of 1X  and second components 

are members of 2X : 

21  atom atom XX ¬∧¬  

1343210  ,( XXXXXXX ∈∃↔×∈→  

),= 43024 〉〈∧∈∧ XXXXX  

Definition. Family 1X  is a  subfamily of 2X , if 1X  

and 2X  are not atoms and if all members of 1X  are 

members of 2X : 

2121  atom atom XXXX ¬∧¬↔⊆  

23133 XXXXX ∈→∈∧∀  

We do not use the power family operation to stop any 
growth of family cardinals. 

5.3. Sets and Up-Sets 

Sets are members of families, up-sets are not members of 
families. 

Definition. The predicate  set defines families that are 

members of the other families, 

1010   set XXXX ∈∃↔  

Members of U  are sets. 
Definition. The predicate  up-set defines families that 

are not members of the other families, 

1010   setup XXXX ∉∀↔−  

Below we will show that families are up-sets if they are 
not members of U. 

The empty subfamily of U  is not a member of U . 
Definition.  The empty subfamily of the universe U  is 

the family ∅  : 

10011  = XXXUXX ∉∀∧⊆↔∅  

5.4. Classes of Families 

The classification exists but classes containing up-sets 
are not families because otherwise up-sets are members of 
a family. So the well definition of classes belongs to 1 On +T  

but we will define classes in  OnT . 

We use the partial operations of direct product ×̂  and of 

power family P̂  to create classes. 

Definition. The partial direct product ×̂  constructs 

families which are not members of U : 

UXXXXXXX ∉∧×∈↔×∈ 0210210 ˆ  

Some partial direct products are empty. For example 
UU ×̂  is empty. But UU ×̂  are not members of U or any 

family. Hence UU ×̂  is an up-set. 

Definition. The partial power family P̂  constructs 

families which are not members of U : 

))(ˆ( atom 010100 UXXXXPXX ∉∧⊆↔∈→¬  

Definition. A  class of families is the universe U , a 

collection constructed from classes by the partial family 

power and a nonempty collection constructed from classes 

by the partial direct product, 

2102133

2 On1 On21

10 On1

00 On

ˆ=) (

classclass ,

))(ˆ=class (  

  =class

XXXXXXX

XXXX

XPXX

UXX

×∧×∈∃∧
∧∃∨

∧∃∨

↔

 

Classes can be well ordered in the sequence of their 
construction: 

,ˆ)(ˆ),ˆ(ˆ),(ˆˆ );(ˆ ; UUPUUPUPUUPU ×××  

...  );(ˆˆ)(ˆ UPUP ×  

Here the semicolons separate sets constructed at the next 

step. Except U  all classes contain P̂ . Classes with 2P̂  
do not exist. Only class U  is a family. Hence all up-sets 
are not members of families. 

The class sequence of parenthesis-free record is 

...  ;ˆˆˆ,ˆˆ,ˆˆ,ˆˆ;ˆ ; UPUPUUPUUPUPUUPU ××××  

Classes, which record begins at the symbol ×̂ , contain 

empty up-classes. The other classes (except U  and UP̂ ) 

have records beginning at symbols ×̂P̂ . 

The classes U , PU , UPU ˆ×̂ , UUP̂×̂ , and UPUP ˆˆ×̂  
are infinite. 

The class UUP ×̂ˆ  is finite, it has only one member, the 

member is the empty up-set 2 On{} + . 

The classes can be numbered in the sequence of their 

construction by beginning at On. So the class U  has 

ordinal number On, the class )(ˆ UP  has ordinal number 

1 On + , and so on. But all ordinal numbers are less than 
ω+ On . 

This means that  OnT  is a type theory. Members of U  

have types that are any ordinals  On<α . Members of an 
other class have the same type that equals ordinal number 
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of the class minus 1. In particular, U  and the other 

members of )(ˆ UP  have type On, members of )(ˆˆ UPU ×  

have type On+1. 

The class UPUP ˆˆ×̂  contains ordered pairs which 
components are up-sets. So up-sets cannot be members of 
families but can be components of ordered pairs. This 
means any up-set can be well ordered and the choice axiom 
is well in the theory. 

5.5. Disjointness of Classes 

The classes have no common members. 

Lemma. The set )(ˆ XP  and the universe U  have no 

common members: UXXPX ∉∨∉ 010 )(ˆ . 

Proof. By definition members of )(ˆ XP  are not 

members of U .                                         □ 

Lemma. The sets 21 ˆ XX ×  and )(ˆ XP  have no common 

members: )(ˆˆ 30210 XPXXXX ∉∨×∉ . 

Proof. Members of 21 ˆ XX ×  are atoms but members of 

)(ˆ
1XP  are not atoms.                                    □ 

Lemma. The sets 21 ˆ XX ×  and the universe U  have no 

common members: UXXXX ∉∨×∉ 0210 ˆ . 

Proof. Members of 21 ˆ XX ×  are not members of 1U . □ 

Theorem. Two different classes have no common 

members: →≠∧∧ 212 On1 On classclass XXXX  

2010 XXXX ∉∨∉→ . 

Proof. We use the symbol-by-symbol comparison of 
parenthesis-free records of classes. If the first compared 
pair of symbols has equal symbols we pass to comparison 
of the next pair. By the finite descent rule there will be a 
pair of unequal symbols. It follows from the lemmas that 
sets generated by a pair of unequal symbols have no 
common members.                                      □ 

The completeness of classification will be proved in the 

theory 1 On +T . 

5.6. Cantor Up-Ordinals and Up-Ordinal Representatives 

A Cantor up-ordinal is a collection of all similar ordered 
up-sets, its representative is up-ordinal. We have numerated 
classes by up-ordinals but have not defined the up-ordinals. 

Before we must define the up-quasi-ordinal Oɺ n and the 
predicate 

nOɺ
≤ . 

Definition. The up-quasi-ordinal Oɺ n is 

ααα ɺɺ ∈∃↔∈ XX  nO  

where ααɺ  is a quasi-ordinal defined in a theory αT . 

The predicate 
nOɺ

≤  is 

)=(

nOnO

2121

212nO1

XXXX

XXXX

⊆∨∧

∈∧∈↔≤ ɺɺ
ɺ

 

Definition.  The up-ordinal On is 

2nO121

021210

nOnO

, , Ord

XXXX

XXXXXX

ɺ
ɺɺ ≤∧∈∧∈→

∈〉〈∀↔∈
 

Next we construct On +ɺ 1: On +ɺ 1= Oɺ n ∪ { Oɺ n}, and 

construct On+1 by using On +ɺ 1. (by analogy with 
construction of On). The up-ordinal On+2 is constructed by 

using up-quasi-ordinal On +ɺ 2: 

On +ɺ 2=On +ɺ 1 ∪ {On +ɺ 1} 

And so on. 
Now we have all up-ordinals less than Om+ω . 
The other up-ordinals exist but they are unneeded. 

5.7. Cantor Up-Cardinal and Up-Cardinal Representative 

We call  Onℵ  and all next alephs  up-cardinals. The 

up-cardinal  Onℵ  is the next to all cardinals. 

The universe U  has up-cardinal  Onℵ . All subsets of 

U  cannot have up-cardinal greater than  Onℵ . And a 

result of direct product cannot have up-cardinal greater than 

 Onℵ  because |)||,(|max|=| 2121 XXXX × . This means 

that only one up-cardinal exists and only one Cantor 
up-cardinal exists. 

By definition  Onℵ  is Oɺ n. And |= On| Oɺ n. Hence 

| On=| Onℵ . This means that up-cardinal  Onℵ  is regular. 

More that, the up-cardinal is strongly inaccessible. 
There are empty up-sets but no other finite up-sets. Some 

infinite up-sets can have cardinals. Really, the up-set of all 

empty subsets of αU  has up-cardinal  Onℵ  but some 

up-sets, which are subfamily of the up-set and cofinal10 in 
the up-set, can have cardinals. 

5.8. Transitivity and Foundation 

If we do not use partial operations then the transitivity 
relation can be realized. 

Theorem (of transitivity). The transitivity relation can be 

realized in the theory  OnT  for some families: 

313221321  XXXXXXXXX ∈→∈∧∈∃∃∃  

Proof. Because N  is both a member and a subset of U  
then )()( UPNUPUUN ∈→∈∧∈ .                  □ 

Any family has a foundation but the theorem of 
foundation can be proved only in the external theory (see 
6.4) 

                                                             

10  A subfamily 0X  of a well ordered family 1X  is cofinal in 1X  

if 10 sup=sup XX . And the up-set can be well ordered. 
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5.9. Admissible Wfs and Russel Paradox 

A wf is  admissible, if it constructs families. But no wf 
constructs atoms. 

Definition. A wf is  admissible (adm), if it constructs a 

family (not atom), 

)},...,,(|,...,{= ,...,

 atom adm

10101

00

nnn XXXXXXXX

XX

ϕ
ϕ

〉〈∀∧
¬∃↔

 

where ϕ  is a wf and 0X  can be fictitious in ϕ . 

The wf XX ∉  is well known as Russel paradox. This 

wf generates the universe +U  but the universe is not a 

family. So the wf is not admissible. The wf XX ∈  is the 

negation of XX ∉  and generates the complement to +U . 
This complement is the empty collection and is not a family, 
too. 

6. External Theory 1 On +T  

6.1. Signature, Axioms, and Notation of Variables 

We inherit the signature and the axioms of the theory 

from the theory 0T . Hence 1 On +T  is an extension of 0T . 

And 1 On +T  is external to  OnT . We call objects of 1 On +T  

up-families if they are not families. 

We use the next notation of variables: +
0X , +

1X , 
+
2X  .... The range of these variables is an universe and the 

definition of the universe does not exist in the theory. But 

the definition of the universe +U  containing all families 

of  OnT  exists. Before giving the definition of +U  we 

must formalize the definition of families and set some 
properties of families. 

6.2. Definition of Families 

This definition belongs 1 On +T  but we presemt it here. 

Definition  (non-predicative). A family of  OnT  is: U 

and its members, a direct product of families and its 

members, a subfamily of a family: 

)=(

setset 

    =set

10210210

2 On1 On21

000 On

++++++++

++++

+++

⊆∨×∈∨×∧

∧∃∃∨

∈∨↔

XXXXXXXX

XXXX

UXUXX

 

By definition all these objects exist. 

6.3. Completeness of Classification 

The definition of the predicate  Onset  specifies what 

collections are families and what collections are not 
families. Hence now we can give the more precise 

definition of the class P̂  and can prove that the family 
classification covers all families. 

Definition. The collection of subsets of U , such that the 

subsets are not members of U , is the  class P̂ : 

UXUXPX ∉∧⊆↔∈ +++
000

ˆ  

Theorem.  The family classification covers all families: 

++++++ ∈∧∧∃→ 101 On1 On10 On classsetset XXXXXX  

in the other words, any set of  OnT  has a type  because 

any class is numbered by an up-ordinal and any member of 

an up-class (except members of U ) has type which equals 
the up-ordinal number of the class. 

Proof. We use the induction rule. Let class U  and its 
members exist at the step 0. The theorem is true at this step 

because U  (and every class) is a member of an other class. 

And all members of U  are members of the class U . 
We shall prove that only members of classes exist at step 

1+n , if only members of classes exist at step n . 
By definition, families generated at step 1+n  are only: 
- any direct product of families, which is generated at the 

previous steps, and its members, 
- any power family11, which is generated at the previous 

steps, and its members. 
Let: 

- families +
1X  and +

2X  (but not atoms) be generated at 

previous steps, 

- these families be members of classes +
3X  and +

4X  

respectively, 

- the families ++ × 21 XX  and )( 1
+XP  be generated at 

the step 1+n . 

The family ++ × 21 XX  is a subfamily of the class 
++ × 43 XX  and a member of the class )( 43

++ × XXP . 

Members of the family are members of the class ++ × 43 XX . 

Then the theorem is true for this family and its members. 

The set )( 1
+XP  is a subfamily of the class )( 3

+XP  and 

a member of the class )( 3
2 +XP . Members of the family are 

members of the class )( 3
+XP . The theorem is true for this 

family and its members, too. This completes the proof.   □ 

6.4. Foundation (Regularity) of Families 

We use the completeness of family classification to 
prove the theorem of foundation. 

Theorem (of foundation). Each nonempty family +
1X  

contains a family +
2X  such that +

1X  and +
2X  do not 

contain common members: 

                                                             

11 Power families exist in 1 On +T . 
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++++++++

++++

∉∨∉∀∧∈∃→

∈∃∧

10200122

1001 On

  

) (set

XXXXXXXX

XXXX
 

Proof. All types are numerated by ordinals and 
up-ordinals. This means that any subset of types contains 

the minimal type. Hence set +
1X  contains set +

2X  with a 

minimal type. Then members of +
2X  is not contained in 

+
1X  because they have types less than the minimal type. 

6.5. Construction of Up-Families 

We begin to construct up-families at the universe +U . 

Definition. The up-family containing all families is the  

universe +U : 

+
+

+ ↔∈ 0 On0 set XUX  

Definition. An up-family ++ × 21 XX  is a direct product 

of +
1X  and +

2X , if ++ × 21 XX  contains all ordered pairs 

which first components are members of +
1X  and second 

components are members of +
2X : 

+++++ ×∈→¬∧¬ 21021 ( atom atom XXXXX  

),= , 430241343 〉〈∧∈∧∈∃↔ +++++++++ XXXXXXXXX  

Definition. Up-family +
1X  is a sub-up-family of 

up-family +
2X , if these up-families are not atoms and if all 

members of the first up-family present in the second 
up-family: 

∧¬∧¬↔⊆ ++++
2121  atom atom XXXX  

+++++ ∈→∈∀∧ 23133  XXXXX  

Now we finish to construct up-families. 
The statement that other up-families do not exist is 

impossible to formalize in the external theory. But this is 
unnecessary because the external theory is used only to 
research characteristics of up-sets and to prove those 
theorems that cannot be proved in  OnT . 

7. Conclusion 

We have constructed stairs of set theories from the 
simple set theory for applied mathematics and to the set 
theory that is more strong than existing set theories. We 
have constructed external theories for these two theories 
and use former theories to prove some theorems that 
cannnot be proved in the latter theories, in particular, 
existence of natural classification of sets such that every set 
belongs to a class and classes are disjoint. All set theories 

have the same axiomatics and every new theory of the 
stairs is an extension of previouse theories. We have 
constructed the new base of ordinals and cardinals but we 
do not use the base to construct large cardinals. But we 
believe that the base will allow to costruct all existing and 
some new large cardinals. 
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