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Abstract: In this paper the two classes of filiform Leibniz algebras ��		�  and ��		�  in (� + 1) dimensions of filiform Leibniz 

algebras such that � ≥ 2	 will be considered. The study includes derivations of naturally graded Leibniz algebras of first class �� and second class ��, be algebras whose multiplications rules are defined by the  ��		�  and ��		� , respectively. The algebras of 

derivations of naturally graded Leibniz algebras are described by linear transformations and dimensions derivations. Finally, 

we determine number of derivations of naturally graded Leibniz algebras.  
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1. Introduction 

In 1955 Jacobson established that, over a field of 

characteristic zero, any Lie algebra which has non-

degenerate derivations is nilpotent [17]. In the same paper 

[11] he asked for the converse. This result is assumed to be 

the origin of the theory of characteristically nilpotent Lie 

algebras. An example of a nilpotent Lie algebra all of whose 

derivations are nilpotent (hence degenerate), answering the 

above question negatively, was constructed in Dixmier and 

Lister [6]. Lie algebras whose derivations are nilpotent 

endomorphisms have been called characteristically nilpotent. 

The result of Dixmier and Lister is assumed to be the origin 

of the theory of characteristically nilpotent Lie algebras. 

They defined a generalization of the central descending 

sequence and called the algebras satisfying the nullity of a 

power characteristically nilpotent.The (co)homology theory, 

representations and related problems of Leibniz algebras 

were studied by Loday. and Pirashvili, [15],and others.Since 

the class of Leibniz algebras are a noncommutative 

generalization of the class of Lie algebras, we naturally face 

the problem of finding a good relationship (as well as in the 

case of Lie algebras [7]) for the algebra of derivations of L. 

The investigations in the present paper are devoted to this 

problem. In particular, for naturally graded complex Leibniz 

algebras, we describe their algebras of derivations generating 

the algebras of derivations of filiform Leibniz algebras. This 

description enables us to distinguish the characteristically 

nilpotent algebras in the class of filiform Leibniz algebras. In 

the present paper we study the derivation algebras of low-

dimensional Leibniz algebras. The outline of the paper is as 

follows. Section 1 is a brief introduction. Section 2 we give 

derivations of filiform Leibniz algebras Ln. In Section 3 we 

give derivations of filiform Leibniz algebras Wn. 

Definition 1.1. [17] An algebra L over F a field is said to 

be Leibniz if the Leibniz identity: 

[x, [y, z]] = [[x, y], z] + [[x, z], y] 

holds for any x,y, z in L, where [,] stands for the 

multiplication in L. 

Note that if the identity [x, x] = 0 holds in L, then the 

Leibniz identity becomes the Jacobi identity. Thus, the 

Leibniz algebras are the "noncommutative" analog of Lie 

algebras. For an arbitrary algebra L, we define the sequence 

 

Definition 1.2. [18] A Leibniz algebra L is said to be 

nilpotent if there exists a positive integer s in N such that 

. The smallest integer s for which Ls = 0 

is called the nilindex of L. 

Definition 1.3. [7] An n-dimensional Leibniz algebra L is 

said to be filiform if dim Li = n-i, where  

Definition 1.4. [1] Given a filiform Leibniz algebra L, put 

, 1	 ≤ 	i	 ≤	and .Then 

and we obtain the graded algebra grL. If grL 

and L are isomorphic, denoted by grL = L, we say that the 

algebra L is naturally graded. 
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Theorem 1.1. [2] Every (n+1)-dimensional naturally 

graded complex non-Lie filiform Leibniz algebra is 

isomorphic to one of the following two algebras: 

µ
�0: [e0 ,e0 ] = e2 , [ei ,e0 ] = ei+1 , 1 ≤ i ≤ n – 1 

µ
�1: [e0 ,e0 ] = e2 , [ei ,e0 ] = ei+1 , 2 ≤ i ≤ n – 1 

where e0,e1,…, en is a basis of the algebra L.  

Corollary 1.1. [2] Every (n+1)-dimensional complex non-

Lie filiform Leibniz algebra is isomorphic to one of the 

following non-Lie filiform Leibniz algebras: 

µ
�0 (β): [e0 ,e0 ] = e2 , [ei ,e0 ] = ei+1 , 1 ≤ i ≤ n − 1, 

[e0 ,e1 ] = α3 e3 + α4 e4 + ... + αn−1 en−1 + θen 

[ei ,e1 ] = α3 ei+2 + α4 ei+3 + ... + αn+1−ien , 1 ≤ i ≤ n − 2 

where α3 ,α4 ,...,αn ,θ ∈ C,, and 

µ
�1 (β): [e0 ,e0 ] = e2 , [ei ,e0 ] = ei+1 , 2 ≤ i ≤ n − 1, 

[e0 ,e1 ] = β3 e3 + β4 e4 + ... + βn en , [e1 ,e1 ] = γen , 

[ei ,e1 ] = β3 ei+2 + β4 ei+3 + ... + βn+1−ien , 2 ≤ i ≤ n − 2, 

where β3 ,β4 ,...,βn ,γ ∈ C,, and e0, e1,…,en is a basis of the 

algebra L. 

Definition 1.5. [1] A linear transformation d of a Leibniz 

algebra L is called a derivation if for any x, y in L 

d([x, y]) = [d(x), y] + [x, d(y)] 

The space of all derivations of the algebra L equipped with 

the multiplication defined as the commutator, forms a lie 

algebra which is denoted by Der(L). It is clear that the 

operator of right multiplication Rx by an element x of the 

algebra L (that is Rx(y) = [y,x] ) is also derivation. 

Derivations of this type are called inner derivations. Similar 

to the lie algebras case the set of the inner derivation Inn(L) 

forms an ideal of the algebra Der(L). 

Lemma 1.1. [17] For any  r ≤ (p − 1)(1 − j),, one has Fr Z
j 

(L,L) = Z j (L,L). 

Let Ln and Wn be algebras whose multiplication rules are 

defined by the multiplication  and , respectively. 

2. Derivation of Filiform Leibniz Algebra 

Ln 

Proposition 2.1. The linear transformations t1 ,t2, t3, t4 and  

d k ,1 ≤ k ≤ n − 2 of Ln defined by the rules: 

t1 (e0 ) = e0 , t1 (ei ) = iei, 1 ≤ i ≤ n, 

t2 (e0 ) = e1 , t2 (ei ) = ei, 1 ≤ i ≤ n, 

t3 (e0 ) = en 

t4 (e1 ) = en 

dk (e0 ) = ek+1 , dk (ei ) = ek+i , 1 ≤ i ≤ n − k. 

form a basis of the space Der(Ln). 

Proof. We introduce a grading of the algebra by setting Ln 

= L1 ⊕L2 ⊕...⊕Li by setting L1 = lin(e0 ,e1 ),Li = lin(ei )for 

2 ≤ i ≤ n. Since Z1 (Ln ,Ln ) = Der (Ln ) and grading of the 

algebra Ln is finite, there is a finite grading in the space 

der(Ln). Let d in Der(Ln). In this case, by Lemma 1.1 we have 

d = d0 +d1 +...+dn−2 +dn−1, where di in Der(Ln) and di (Lj ) ⊆ 

Li+j . 

Consider the element d0 ∈ Der(Ln ) It is clear that 

d0 (ei)=�α�	e� + α�e�,		for	� = 0,
β� + β�β�,				for	� = 1,
γ�e�,				for	2	 ≤ 	�	 ≤ 	n, � 

where α0 ,α1 ,β0 ,β1 ,γi ,2 ≤ i ≤ n, are scalars (elements of the 

field). 

Consider the family of derivations 

d0 ([ei ,ej]) = [d0 (ei ),ej ] + [ei ,d0 (ej)]. 

If j = 1 we obtain 

[ei ,d0 (e1 )] = [ei ,β0 e0 + β1 e1 ] = β0 ei+1 = 0 ⇒ β0 = 0 

If i = 1 and j = 0 then 

d0 (e2) = [d0 (e1 ),e0 ] + [e1 ,d0 (e0 )] ⇒ γ2 e2 = (β1 + α0 )e2 ⇒ 

γ2 = β1 + α0 

i.e., γ2 = β1 + α0 

If i = 0 and j = 0 then 

d0 (e2 ) = [d0 (e0 ),e0 ] + [e0 ,d0 (e0 )] ⇒ γ2 e2 = α0 e2 + α1 e2 + 

α0 e2 ⇒ γ2 e2 = (2α0 + α1 )e2 

i.e, γ2 =2α0 + α1 

If j = 0 and 2 ≤ i ≤ n we obtain 

d0 (ei+1 ) = γi ei+1 + α0 ei+1 ⇒ γi+1 = γi + α0 

However, since γ2= 2α0 + α1 it follows that γ1= iα0 + α 

Thus, 

d0 (Σ
��=0λi ei ) = λ0 (α0  + α1 e1 ) + λ1 (α0 e1 + α1 e1 ) +Σ

��=2λi 

ei (iα0 + α1 )= α0 (λ0 e0 +Σ
�� = 1iλiei ) + α1 (λ0 e1 +Σ

�� = 1 λi ei ), 

i.e., d0 = α0 t1 + α1 t2 

Consider the elements dk ∈ Der(Ln ) for 1 ≤ k ≤ n − 2.It is 

clear that 

dk (ei ) =� τ 	e	!"�	,											for	�	 = 	0,
τ�e	!"#	,								for	1	 ≤ 	i	 ≤ 	�	 − 	k,� 

where τi ,0 ≤ i ≤ n − k are scalars (elements of the field). 

Consider the following property of the derivations 

dk ([ei ,ej ]) = [dk (ei ),ej ] + [ei ,dk (ej )]. 

If j = 0 and i = 1, we have 

dk (e2 ) = τ1 [ek+1 ,e0 ] ⇒ τ2 ek+2 = τ1 ek+2 ⇒ τ2 = τ1. 

If j = 0 and i = 0, we have 

dk (e2 ) = τ0 [ek+1 ,e0 ] ⇒ τ2 ek+2 = τ0 ek+2 ⇒ τ2 = τ0. 
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if j = 0 and 1	 ≤ 	i	 ≤ 	�	 − 	k,,we obtain 

dk (ei+1 ) = τi ek+i+1 ⇒ τi+1 ek+i+1 = τi ek+i+1 ⇒ τi+1 = τi . 

i.e., τ0 = τ1 = ... = τn−k . 

Thus, 

dk (Σ
�� = 0 λi ei ) = τ0 (λ0 ek+1 + Σ

� − 1� = 1 λi ek+i ). 

Consider the elements dn−1 ∈ Der(Ln ). It is clear that 

dn−1 (ei ) =�δ�&�	,δ�e', �      for	i	 = 	0,for	i	 = 	1, 
whereδ0, andδ1 are scalars (elements of the field). 

Consider the following property of the derivations 

dn−1 ([ei ,ej ]) = [dn−1 (ei ),ej ] + [ei ,dn−1 (ej )]. 

If i = 0 and j = 0, we have 

dn−1 (e2 ) =δ0 [en ,e0 ] +δ0 [e0 ,en ] ⇒ 0 = 0 

If i = 1 and j = 0, we have 

dn−1 (e2 ) =δ1[en ,e0 ] +δ0 [e1,en ] ⇒ 0 = 0 

Thus, 

dn−1 (Σ
�� = 0λiei ) = λ0δ0en + λ1δ1en . 

This proves the proposition. we note these mappings are 

derivations and are linearly independent. 

Corollary 2.1. 

dim Der(Ln ) = dimZ1 (Ln ,Ln ) = n + 2. 

Corollary 2.2. 

dimH1 (Ln ,Ln ) = n + 1 

3. Derivation of Filiform Leibniz Algebra 

Wn 

Proposition 3.1. The linear transformations t1 ,t2 ,t3 ,t4 ,t5 

and dk of 1 ≤ k ≤ n − 2 defined by the rules: 

t1 (e0 ) = e0 , t1 (ei ) = iei, 2 ≤ i ≤ n, 

t2 (e0 ) = e1 , 

t3 (e1 ) = e1 , 

t4 (e0 ) = en , 

t5 (e1 ) = en , 

d k (e0 ) = ek+1 , d k (ei ) = ek+i , 2 ≤ i ≤ n − k. 

form a basis of the space Der(Wn). 

Proof. We introduce a grading of the algebra Wn = W1 

⊕W2 ⊕...⊕by setting W1 = lin(e0 ,e1 ),Wi =lin(ei ) for 2 ≤ i ≤ 

n. Since Z1 (Wn ,Wn ) = Der(W n ) and grading of the algebra 

Wn is finite, there is a finite grading in the space der(Wn). Let 

d in Der(Wn). In this case, by lemma 1.1 we have 

d = d0 + d1 + ... + dn−2 + dn−1 where di ∈ Der(Wn ) and 

di (Wj ) ⊆ Wi+j . 

Consider the element d0 in Der(Wn). It is clear that 

d0 (ei)=�α�	e� + α�e�,		for	� = 0,
β� + β�β�,				for	� = 1,
γ�e�,				for	2	 ≤ 	i	 ≤ 	n, � 

where α0 ,α1 ,β0 ,β1 ,γi ,2 ≤ i ≤ n, are scalars (elements of the 

field). 

Consider the family of derivations 

d0 ([ei ,e j ]) = [d 0 (ei ),e j ] + [e i ,d0 (ej )] 

If j = 1 we obtain 

[ei ,d0 (e1 )] = [ei ,β0 e0 + β1 e1 ] = β0 ei+1 = 0 ⇒ β0 = 0. 

If i = 0 and j = 0 then 

d0 (e2 ) = [d0 (e0 ), e0 ] + [e0 , d0 (e0 )] ⇒ γ2 e2 = 2α0 e2 

i.e., γ2= 2α0 

If j = 0 and 2 ≤ i ≤ n we obtain 

d0 (ei+1 ) = γi ei+1 + α0 ei+1 ⇒γi +1 = γi + α0 . 

i.e., γi = iα0 

Thus, 

d0 (Σ
�� = 0λiei ) = λ0 (α0 e0 + α1 e1 ) + λ1 β1 e1 + α0 Σ

�� = 2λiei =α0 

(λ0 e0 +Σ
�� = 2λiei) + α1 λ0 e1 + β1 λ1 e1 

i.e., d0=α0t1 +α1t2 +β1t3 

Consider the elements dk in Der(Wn) for  1 ≤ k ≤ n − 2. It 

is clear that 

dk (ei ) =� τ 	e	!"�	,											for	�	 = 	0,
τ�e	!"#	,								for	1	 ≤ 	i	 ≤ 	�	 − 	k,� 

whereτ�,0 ≤ i ≤ n − k are scalars (elements of the field). 

Consider the following property of the derivations: 

dk ([ei ,e j ]) = [dk (ei ),e j ] + [ei ,dk (ej )] 

If j = 0 and i = 1, we have 

τ1 [ek+1 ,e0 ] = 0 ⇒ τ1 ek+2 = 0 ⇒ τ1 = 0. 

If j = 0 and i = 0, we have 

dk (e2 ) = τ0 [ek+1 ,e0 ] ⇒ τ2 ek+2 = τ0 ek+2 ⇒ τ2 = τ0 . 

if j = 0 and 2 ≤ i ≤ n − k, we obtain 

dk (ei+1 ) = τi ek+i+1 , ⇒ τi+1 ek+i+1 = τi ek+i+1 ⇒ τi+1 = τi . 

i.e., τ0 = τ2 = ... = τn−k . 

Thus, 

dk (Σ
�� = 0λiei ) = τ0 (λ0 ek+1 +Σ

� − (� = 2 λi ek+i ). 

Consider the elements d n−1 ∈ Der(Wn ). It is clear that 
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dn−1 (ei ) =�δ�&�	,δ�e', �      for	i	 = 	0,for	i	 = 	1, 
whereδ0, and	δ0 are scalars (elements of the field). 

Consider the following property of the derivations 

dn-1 ([ei ,e j ]) = [d n-1 (ei ),e j ] + [e i ,dn-1 (ej )] 

If i = 0 and j = 0, we have 

dn−1 (e2 ) = δ0 [en ,e0 ] + δ0 [e0 ,en ] ⇒ 0 = 0 

If i = 1 and j = 0, we have 

δ1 [en ,e0 ] +δ0 [e1 ,en ] = 0 ⇒ 0 = 0 

Thus, 

dn−1 (Σ
�� = 0λiei ) = λ0δ0en + λ1δ1en . 

i.e, dn−1=δ0t4+δ1 t5 This proves the proposition. We note these 

mappings are derivations and are linearly independent. 

Corollary 3.1. 

dim Der(Wn ) = dim Z1 (Wn , Wn ) = n + 3. 

Corollary 3.2. 

dim H1 (Wn , Wn ) = n + 2 

4. Conclusion 

Notations of this paper about any (n + 1) dimensions of 

some filiform Leibniz algebras (Ln) and (Wn). 

1. notations about Derivations filiform Leibniz algebra 

(Ln). 

(a) The linear transformations t1, t2, t3, t4,and dk; 1 ≤ k ≤ n-

2 of Ln are a basis of the space Der(Ln). 

(b) We can find dimensions derivations of filiform Leibniz 

algebra (Ln), by using 

dim Der(Ln ) = n + 2. 

(c) we can determine that the number equations of 

derivations for filiform Leibniz algebra Ln for any (n + 

1) dimensions such that n ≥ 2 by using 

number Der (Ln ) = (n2 + 5n + 2)/2 

2. notations about Derivations filiform Leibniz algebra 

(Wn). 

(a) The linear transformations t1, t2, t3, t4, t5 ,and d k ,1 ≤ k ≤ 

n − 2, of Wn are a basis of the space Der(Wn). 

(b) We can find dimensions derivations of filiform Leibniz 

algebra (Wn), by using 

dim Der(W n ) = n + 3. 

(c) we con determine that number equations of derivations 

for filiform Leibniz algebra Wn for any (n + 1) 

dimensions such that n ≥ 2, by using 

numberDer(W n ) =�3n,																								(�, + � + 6)/2,� 		when	n	is	even,
when	n	is	odd,  
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