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Abstract: In this paper, based on a basic result on condensing mappings satisfying the interior condition, some new fixed 

point theorems of the condensing mappings of this kind are obtained. As a result, the famous Petryshyn's theorem and some 

results of the Reference [8] are extended to the condensing mappings satisfying the interior condition. 

Keywords: Condensing Mappings, Interior Condition, Fixed Point, Banach Space 

 

1. Introduction and Preliminaries

As is well known, the condensing mappings are a class of 

important nonlinear operators, existing extensively in the 

nonlinear differential and integral equations. So, the fixed 

point theorems of the condensing mappings play a central 

role in the study of existence of the solutions of these 

equations (see [1-8]). 

Let X be a real Banach space and D an open subset of X  

with D∈θ  where θ denotes the zero element of X . 

Denote by D and D∂ the closure and boundary of D  

respectively. It is well known that if D  is bounded and if 

XDA →: is a condensing mapping, then we have had 

some well-known theorems as follows (see [1-5, 8]). 

Theorem 1.1 Suppose that one of the following conditions 

is satisfied: 

(i) (Leray − Schauder) xAx λ≠ , Dx ∂∈∀ ; 

(ii) (Roth) ( ) ,A x x x≤ ∀ ∈∂Ω ; 

(iii) (Petryshyn) ( ) ( ) ,A x A x x x≤ − ∀ ∈∂Ω ; 

(iv) (Altman) 
22 2

( ) ( ) ,A x x A x x x− ≥ − ∀ ∈∂Ω . 

Then A has at least one fixed point in D . 

Recently, Antonio and Morales [7] introduce a new 

condition which resembles the Leray-Schauder boundary 

condition mentioned above. It is called the Interior Condition 

defined as follows. 

Definition 1.1
]7[

We say that a mapping 

XDA →: satisfies the Interior Condition if there exists 

0>δ  such that 

DAxDxxAx ∉>∈∀≠ ∗
,1,, λλ , 

where  

}),(:{ δ<∂∈=∗ xxdistDxD .       (1.1) 

Recall that the set-measure of non-compactness of a bounded 

subset E  of X  is defined as (see [2–4]) 

][Eγ = inf { 0>d : E  can be covered by finitely 

many sets of diameter d≤ }: 

A  mapping XXDA →⊂: is called a condensing 

mapping (see [2 – 4]), if A is continuous and 

][]][[ EEA γγ < for all bounded subset E  of D  

where 0][ >Eγ . 

Definition 1.2
]7[
Let X  be a real Banach space and D  

an bounded open subset of X  with D∈θ . We say that 

D  is strictly star-shaped with respect to the origin if the 

following condition is satisfied: 

        .},{}0:{ GxxGttx ∂∈∀=∂∩>          (1.2) 

From now on, we will assume without loss of generality, 
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that the star-shaped assumption will always be considered 

with respect to the origin, unless the contrary is mentioned. 

In this paper, based on a basic result on condensing 

mappings satisfying the interior condition, some new fixed 

point theorems of the condensing mappings of this kind are 

obtained. As a result, the famous Petryshyn’ s theorem and 

some results of the Reference [8] are extended to the 

condensing mappings satisfying the interior condition. 

2. Main Results 

Lemma 2.1
]7[
Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with .D∈θ If XDA →:  is a condensing mapping 

satisfying the Condition (I-C): there exists 0>δ  such that 

DAxDxxAx ∉>∈∀≠ ∗
,1,, λλ ,         (I-C) 

where  

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

We are now in the position to apply the above basic result 

to derive some new fixed point theorems for the condensing 

mappings satisfying the Condition (I-C) which extend many 

well-known results to the case of the mappings satisfying the 

interior condition. 

Theorem 2.1 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exist βα <≤1  or βα ≤<1  

such that 

Ax x x Ax Ax x Ax x
α β α β α β− ≥ + − ; 

∗∈∀ Dx  and DAx∉ ,          (2.1) 

where  

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof If the operator A has a fixed point on D∂ , then A  

has at least one fixed point on D . Now suppose that A has 

no fixed points on D∂ . Next we shall prove that the 

condition (I-C) is satisfied. 

Suppose it is not true. Then there exist Dx ∂∈0  and 

10 ≥µ  such that 000 xAx µ= . It is easy to see that 

10 >µ . Now, consider the function defined by  

( ) ( 1) ( 1) , 1f t t t t t tα α β α= − − + + ∀ ≥ . 

Since 
1 1 1 1

( ) ( 1) ( 1) ( 1)f t t t t t t t
α α β α α βα α α β− − − −′ = − − + + − +

0< by formal differentiation, ( )f t is a strictly decreasing 

function in ),1[ ∞ . And so )1()( ftf < for 1>t , i.e., 

( 1) ( 1)t t t t
α α β α− < + − , for any 1>t . Consequently, 

noting that 0 00, 1x µ≠ > , we have 

0 0 0Ax x x
α β−  

=
0 0 0 0x x x

α βµ −  

= ( )0 01 x
α βαµ +−  

<
0 0 0

( 1) x
α βα β α

αµ µ µ +
+ −    

=
0 0 0 0 0Ax Ax x Ax x

α β α β
+ − , 

which is a contradiction to (2.1), and so the condition (I-C) is 

satisfied. Therefore, it follows from Lemma 2.1 that the 

conclusion of Theorem 2.1 holds. 

From Theorem 2.1, we can easily get the subsequent four 

corollaries. 

Corollary 2.1 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exists 1>α , such that 

( ) ( ) ( )Ax x x Ax Ax x Ax xα α α− ≥ + − , 

∗∈∀ Dx  and DAx∉ , 

where  

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take βα = . It follows from Theorem 2.1 that the 

conclusion of Corollary 2.1 holds true. 

Corollary 2.2 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A satisfies the following condition 

3 3 3( ) ( ) ( )Ax x x Ax Ax x Ax x− ≥ + − ; 

∗∈∀ Dx  and DAx∉ , 

where  

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 
2

3== βα . It follows from Theorem 2.1 that 
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the conclusion of Corollary 2.2 holds true. 

Corollary 2.3 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A satisfies the following condition 

2 2 2( ) ( ) ( )Ax x x Ax Ax x Ax x− ≥ + −
; 

∗∈∀ Dx  and DAx ∉ ; 

where  

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 2= =α β . It follows from Theorem 2.1 that 

the conclusion of Corollary 2.3 holds true. 

Corollary 2.4 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exist 1>β , such that 

Ax x x Ax Ax x Ax x
β β β− ≥ + − , 

∗∈∀ Dx  and DAx ∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 1=α . It follows from Theorem 2.1 that the 

conclusion of Corollary 2.4 holds true. 

Theorem 2.2 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exist 1, 0α β≥ ≥ , such that 

Ax x Ax Ax x x
α β β α α β+ ++ ≤ − + ; 

∗∈∀ Dx  and DAx ∉ ,          (2.2) 

where  

}),(:{ δ<∂∈=∗ GxdistDxD
 

for some 0>δ , then A  has at least one fixed point in D . 

Proof If the operator A has a fixed point on D∂ , then A  

has at least one fixed point on D . Now suppose that A has 

no fixed points on D∂ . Next we shall prove that the 

condition (I-C) is satisfied. 

Suppose it is not true. Then there exist Dx ∂∈0  and 

10 ≥µ  such that 000 xAx µ= . It is easy to see that 

10 >µ . Now, consider the function defined by 

( ) ( 1) ( 1) 1, 1f t t t t tα β β α+= + − − − ∀ ≥ . 

Since 
1 1 1( ) ( 1) ( 1) ( 1) ( 1)f t t t t t t t+ − + − −      ′ = + − − + + − −α β β α α β β αα β

0>  by formal differentiation, ( )f t is a strictly decreasing 

function in ),1[ ∞ . And so )1()( ftf > for 1>t , Thus, 

( 1) ( 1) 1t t t
α β β α++ > − + , for any 1>t . Consequently, 

noting that 0 00, 1x µ≠ > , we have 

0 0Ax x
α β+

+  

= 0 0 0x x
α βµ +

+  

= ( )0 01 x
α βα βµ ++

+  

> 0 0 0( 1) 1 x
α ββ αµ µ +

− +    

= 0 0 0 0 0 0x x x x
β α α βµ µ +

− +  

= 0 0 0 0Ax Ax x x
β α α β+

− + , 

which is a contradiction to (2.2), and so the condition (I-C) is 

satisfied. Therefore, it follows from Lemma 2.1 that the 

conclusion of Theorem 2.2holds. 

From Theorem 2.2, we can easily obtain the subsequent 

five corollaries. 

Corollary 2.5 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exists 1>α such that 

2 2
Ax x Ax Ax x x

α α α α+ ≤ − + , 

∗∈∀ Dx  and DAx∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 1β α= > . It follows from Theorem 2.2 that 

the conclusion of Corollary 2.5 holds true 

Corollary 2.6 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A satisfies the following condition 

3
3 3

2( )Ax x Ax Ax x x+ ≤ − + , 
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∗∈∀ Dx  and DAx ∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 3 / 2= =α β . It follows from Theorem 2.2 

that the conclusion of Corollary 2.6 holds true. 

Corollary 2.7 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exists 1α ≥ such that  

Ax x Ax x x
α α α+ ≤ − + , 

∗∈∀ Dx  and DAx ∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 0=β . It follows from Theorem 2.2 that the 

conclusion of Corollary 2.7 holds true 

Corollary 2.8 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A satisfies the following condition 

2 2 2
Ax x Ax x x+ ≤ − + , 

∗∈∀ Dx  and DAx ∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 1,1 == βα . It follows from Theorem 2.2 

that the conclusion of Corollary 2.8 holds true. 

Remark 1 We can see that the formula which satisfies the 

condition of Corollary 2.8 above, must also satisfies the 

famous Altman’ s theorem, namely,  

2 2 2
Ax x Ax x− ≥ + ,

∗∈∀ Dx and DAx ∉  

Therefore, Corollary 2.8 and Theorem 2.2 are the useful 

supplements of the famous Altman’ s theorem. 

Corollary 2.9 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A satisfies the following condition 

3 1
2 2

2 2Ax x Ax x Ax x+ ≤ − + , 

∗∈∀ Dx  and DAx∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 
2

1
,

2

3 == βα . It follows from Theorem 2.2 

that the conclusion of Corollary 2.9 holds true. 

Theorem 2.3 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exist 0,1 ≥≥ βα , such that 

Ax Ax x Ax Ax x
α β β α

+ ≤ − , 

∗∈∀ Dx  and DAx∉ ;              (2.3) 

where  

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof If the operator A has a fixed point on D∂ , then A  

has at least one fixed point on D . Now suppose that A has 

no fixed points on D∂ .Next we shall prove that the 

condition (I-C) is satisfied. 

Suppose it is not true. Then there exist Dx ∂∈0  and 

10 ≥µ  such that 000 xAx µ= . It is easy to see that 10 >µ . 

Now, consider the function defined by 

( ) ( 1) ( 1) , 1f t t t t t tα β β α= + − − ∀ ≥ . 

Since 
1 1 1 1

( ) ( 1) ( 1) ( 1) ( 1)f t t t t t t t t t
α β α β α β β αα β− − − −′ = + − − + + − −      

0> by formal differentiation, ( )f t is a strictly decreasing 

function in ),1[ ∞ . And so )1()( ftf > for 1>t , Thus, 

( 1) ( 1)t t t t+ > +α β β α
, for any 1>t . Consequently, 

noting that 0 00, 1x µ≠ > , we have 

0 0 0Ax Ax x
α β

+  

= 0 0 0 0 0x x x
α βµ µ +  

= 0 0 0( 1) x
α βα βµ µ +

+  

> 0 0 0( 1) x
α ββ αµ µ +

−  
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= 0 0 0 0 0u x x x
β αµ −  

= 0 0 0Ax Ax x
β α

− , 

which is a contradiction to (2.3), and so the condition (I-C) is 

satisfied. Therefore, it follows from Lemma 2.1 that the 

conclusion of Theorem 2.3 holds. 

From Theorem 2.3 we can easily get the subsequent such a 

corollary. 

Corollary 2.10 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A satisfies the following condition 

Ax Ax x≤ − ,
∗∈∀ Dx  and DAx∉ ; 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 0,1 == βα . It follows from Theorem 2.3 that 

the conclusion of Corollary 2.10 holds true. 

Remark 2 Corollary 2.10 is the famous Petryshyn’ s 

theorem, so the Theorem 2.3 extends the famous Petryshyn’ s 

theorem to the case of condensing mappings satisfying the 

interior condition. 

Theorem 2.4 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exist 0,1 ≥≥ βα , such that 

2
Ax x x Ax Ax x x

α α β α α β α β+ + +
− ≥ + − , 

∗∈∀ Dx  and DAx∉ ,           (2.4) 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof If the operator A has a fixed point on D∂ , then A  

has at least one fixed point on D . Now suppose that A has 

no fixed points on D∂ .Next we shall prove that the 

condition (I-C) is satisfied. 

Suppose it is not true. Then there exist Dx ∂∈0  and 

10 ≥µ  such that 000 xAx µ= . It is easy to see that 10 >µ . 

Now, consider the function defined by 

1,1)1()1()( ≥∀++−−= + tttttf βααα . 

Since 
1 1 1

( ) ( 1) ( 1) ( 1) ( 1)f t t t t t t t t
α α α β α α β α α βα β− + + − + −′ = − − + − + − +      

0< by formal differentiation, ( )f t is a strictly decreasing 

function in ),1[ ∞ . And so )1()( ftf < for 1>t , Thus, 

( 1) ( 1) 1t t t
α α α β+− < + − , for any 1>t . Consequently, 

noting that 0 00, 1x µ≠ > , we have 

0 0 0 0x x x
α β αµ+

−  

=
0 0 0Ax x x

α α β+
−  

=
2

0 01)( x
α βαµ +

−  

<
2

0 0 0( 1) 1 x
α βα α βµ µ +++ −    

=
2

0 0 0 0 0 0u x x x x
α α β α βµ + +

+ −  

=
2

0 0 0 0Ax Ax x x
α α β α β+ +

+ − , 

which is a contradiction to (2.4), and so the condition (I-C) is 

satisfied. Therefore, it follows from Lemma 2.1 that the 

conclusion of Theorem 2.4 holds. 

From Theorem 2.4, we can easily obtain the subsequent 

three corollaries. 

Corollary 2.11 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that there exists 1≥α such that  

2
x Ax x Ax Ax x x

α α α α α− ≥ + − , 

∗∈∀ Dx  and DAx∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 0=β . It follows from Theorem 2.4 that the 

conclusion of Corollary 2.11 holds true. 

Corollary 2.12 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A  satisfies 

2
x Ax x Ax Ax x x− ≥ + − , 

∗∈∀ Dx  and DAx∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 0,1 == βα . It follows from Theorem 2.4 
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that the conclusion of Corollary 2.12 holds true. 

Corollary 2.13 Let X  be a real Banach space and let D  

be a bounded open and strictly star-shaped subset of  X  

with D∈θ . Let XDA →:  be a condensing mapping. 

Suppose also that A  satisfies 

2 2 3
Ax x x Ax Ax x x− ≥ + − , 

∗∈∀ Dx  and DAx ∉ , 

where 

}),(:{ δ<∂∈=∗ GxdistDxD  

for some 0>δ , then A  has at least one fixed point in D . 

Proof Take 1,1 == βα . It follows from Theorem 2.4 

that the conclusion of Corollary 2.13 holds true. 
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