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Abstract: In the present paper, a shooting method for the numerical solution of nonlinear two-point boundary value problems 

is analyzed. Dirichlet, Neumann, and Sturm- Liouville boundary conditions are considered and numerical results are obtained. 

Numerical examples to illustrate the method are presented to verify the effectiveness of the proposed derivations. The solutions 

are obtained by the proposed method have been compared with the analytical solution available in the literature and the 

numerical simulation is guarantee the desired accuracy. Finally the results have been shown in graphically. 
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1. Introduction 

There are many linear and nonlinear problems in science 

and engineering, namely second order differential equations 

with various types of boundary conditions, are solved either 

analytically or numerically. Two-point boundary value 

problems occur in a wide variety of problem such as modeling 

of chemical reactions, the boundary layer theory in fluid 

mechanics and heat power transmission. The wide 

applicability of boundary value problems in engineering and 

sciences calls for faster and accurate numerical methods. 

Many authors have attempted to obtain higher accuracy 

rapidly by using a numerous methods. The shooting method to 

compute eigen-values of fourth-order two-point boundary 

value problems studied by D. J. Jones [1].Wang et al [2] 

investigated application of the shooting method to second 

order multi point integral boundary value problems. Kwong 

and Wong [3] have studied the shooting method and 

non-homogeneous multipoint BVPs of second-order ODE. 

Abd-Elhameed et al [4] have investigated a new wavelet 

collection method for solving second-order multipoint 

boundary value problems using Chebyshev polynomials of the 

third and fourth kinds. See [5] studied nonlinear two point 

boundary value problem using two step direct method. Meade 

et al [6] discussed about the shooting technique for the 

solution two- point boundary value problems. Rahman et al [7] 

have studied numerical Solutions for Second Order Boundary 

Value Problems using Galerkin Method. Fatullayev et al [8] 

investigated numerical solution of a boundary value problem 

for a second order Fuzzy differential equation. Granas et al [9] 

investigated the shooting method for the numerical solution of 

a class of nonlinear boundary value problems. Cole and 

Adeboye [10] studied an alternative approach to solutions of 

nonlinear two point boundary value problems.  

Qiao and Li [11] analyzed two kinds of important numerical 

methods forcalculating periodic solutions. TrungHieu [12] 

studied remarks on the shooting method for nonlinear 

two-point boundary value problem. Russell and Shampine [13] 

discussed numerical methods for singular boundary value 

problem. Sharma et al [14] studied numerical solution of two 

point boundary value problems using Galerkin-Finite element 

method. Hence the main objective of the present study is to 

solve nonlinear two point boundary value problems (BVP) by 

using simple and efficient shooting method. This well-known 

technique is an iterative algorithm which attempts to identify 

appropriate initial conditions for a related initial value 

problem that provides the solution to the original boundary 

value problem.  
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2. Mathematical Formulation 

For a general boundary value problem for a second-order 

ordinary differential equation, the simple shooting method is 

stated as follows:  

Let, ''( ) ( , ( ), '( )),x t f t x t x t=  [ ],t a b∈  

( ) ,x a α= ( )x b β=                 (2.1) 

be the BVP in question and let x(t,s)denote the solution of the 

IVP 

''( ) ( , ( ), '( )),x t f t x t x t= [ ],t a b∈  ( ) ,x a α= '( )x a s=  (2.2) 

where	� is a parameter that can be varied. The IVP (2.2) is 

solved with different values of s with, e.g., Rung Kutta-4 

method until the boundary condition on the right side 

( )x b β= becomes fulfilled. As mentioned above, the solution

( , )x t s of (2.2) depends on the parameters.  Let us define a 

function 

( ) : ( , )F s x b s β= −
 

 

If the BVP (2.1) has a solution, then the function F(s) has a 

root, which is just the value of the slope '( )x a giving the 

solution x(t)of the BVP in question. The zeros of F(s) can be 

found with, e.g., Newton’s method. 

Newton’s method is probably the best known method for 

finding numerical approximations to the zeroes of a 

real-valued function. The idea of the method is to use the first 

few terms of the Taylor series of a function F(s) in the 

vicinity of a suspected root, i.e., 

2
( ) ( ) '( ) ( )n n nF s h F s F s h Q h+ = + +

 
 

Where n
s is the �thapproximation of the root. Now if one 

inserts ,
n

h s s= − one obtains 

( ) ( ) '( )( )
n n n

F s F s F s s s= + −
 

 

As the next approximation ����to the root we choose 

the zero of this function, i.e, 

1 1

1

( ) ( ) '( )( ) 0

( )

'( )

n n n n n

n

n n

n

F s F s F s s s

F s
s s

F s

+ +

+

= + − =

⇒ = −        (2.3) 

The derivative '( )
n

F s can be calculated using the forward 

difference formula 

( ) ( )
'( ) n n

n

F s s F s
F s

s

δ
δ

+ −
=

 
 

where sδ  is small. Notice that this procedure can be 

unstable near a horizontal asymptote. 

3. Method of Solution Technique 

Consider the boundary value problem for the second-order 

differential equation of the form 

��� = 
��
�� + ���
� + ���
,  

� ≤ � ≤ �, ���
 = �	, ���
 = �	          (3.1) 

Then the two initial value problems is given by 

��� = 
��
�� + ���
� + ���
,	  

� ≤ � ≤ �, ���
 = �, ����
 = 0		        (3.2) 

��� = 
��
�� + ���
� + ���
,	  

� ≤ � ≤ �, ���
 = 0, ����
 = 1	        (3.3) 

Then if ����
 is the solution to (3.2) and ����
 is the 

solution to equation (3.3) the solution to equation (3.1) is 

���
 = ����
 + ������

����
 ����
, ����
 ≠ 0	      (3.4) 

For the nonlinear case, the technique remains the same as 

that used to obtain a solution to equation (3.1) except that a 

sequence of initial value problems of the form; 

��� = !��, �, ��
, � ≤ � ≤ �, ���
 = �, ����
 = "#  (3.5) 

where "#are real number are now required. 

Let ���, "#
 be solution of the initial value problem�3.5
.  

We want to have a sequence '�#(so that 

lim#→- ���, "#
 = ���
            (3.6) 

One of the choices for �.is; 

�. = ����
 = ���
���/

��/ = ��0

��/  

Choosing the parameter "#for 1 ≥ 1 to satisfy (3.6) is 

not easy and can be complicated by the fact that; 

���, "#
 − � = 0  

is a nonlinear equation; 

��� = !4�, ���, "
, ����, "
5, � ≤ � ≤ �, ���, "
 = �,  

����, "
 = "#                 (3.7) 

The subscript 1 is dropped inside the functional notation 

for convenience differentiating equation (3.7) with respect to 

t and assuming that the order of differentiation of x and t is 

reversible gives 

6
67 �����, "
 = 	 66� !4�, ���, "
, ����, "
5 667 ���, "
 +6

6�� !4�, ���, "
, ����, "
5 667 �′��, "
  

6
67 ���, "
 = 0,				 667 ����, "
 = 1  

Simplification using 9��, "
  to represent 
6
67 ���, "
 

results in 
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9�� = 6
6� !��, �, ��
9 + 6

6��!��, �, ��
9�, � ≤ � ≤ �, 9��
 =0, 9���
 = 1  

=!�9 + !��9�, � ≤ � ≤ �, 9��
 = 0, 9���
 = 1  

Finally, the Secant formula in general form is as follows: 

"# = "#�� − :�7;<�
�7;<��7;

:�7;<�
�:�7;<�
   

We can update "# using the information from 9��, "
 as 

follows: 

"# = "#�� − ����,7;<�
��

=��,7;<�
   

For a given accuracy >,	the algorithm terminated if; 

|���, "#��
 − �
| < >.  

4. Results and Discussion 

In this section, we explain five numerical examples of BVP 

which are available in the literature. The computations 

programming language, associated with the examples, are 

performed by MATLAB [15, 16, 17]. 

Example 1. Consider the boundary value problem;  

��� = �
A �32 + 2�C − ���
, 1 ≤ � ≤ 3,  

��1
 = 17, ��3
 = EC
C   

Solution: Let!��, �, ��
 = �
A ��32 + 2�C − ���
 

!� = − �
A ��,			!�F=− �

A �  

Solve a system of two second- order initial value 

problems: 

��� = �
A �32 + 2�C − ��′
, 1 ≤ � ≤ 3, ��1
 = 17, �′�1
 =�#  

9�� = !�9 + !�F9� = − �
A ���9 + �9�
, 1 ≤ � ≤≤ 3, 9�1
 =0, 9��1
 = 1  

Let G� = �,			G� = �′	, GC = 9,			GE = 9 ′. 
Solve a system of four first-order initial value problems: 

HI
J
IK

G�� = G�
G�� = �

A �32 + 2�C − G�G�
GC� = GE
GE� = − �

A �G�GC + G�GE

; 											

MN
NO
G��1
 = 17G��1
 = �#GC�1
 = 0GE�1
 = 1 PQ

QRS  

Using MATLAB function ode45.m 

Example 2.Consider the boundary value problem 

��� = −���
�—� + ln��
 , 1 ≤ � ≤ 2, ��1
 = 0, ��2
 =ln�2
  

Solution: Let 

!��, �, ��
 = −���
� − � + ln��
,  

!� = −1, !�F = −2��  

Solve a system of two second-order initial value problems: 

��� = −���
�—� + ln��
 , 1 ≤ � ≤ 2, ��1
 = 0, �′�1
 = �#  

9′′ = !�9 + !�F9� = −9 − 2��9�, 1 ≤ � ≤ 2, 9�1
 =0, 9��1
 = 1  

Let G� = �, G� = �′, GC = 9,			GE = 9 ′. 
Solve a system of four first-order initial value problems: 

HJ
K G�� = G�G�� = −�G�
� − G� + ln	��
GC� = GEGE� = −GC − 2G�GE

	; 		
MN
NO
G��1
 = 0G��1
 = �#GC�1
 = 0GE�1
 = 1 PQ

QRS  

Using MATLAB function ode45.m 

Example 3. Consider the boundary value problem 

��� = C
� ��, 0 ≤ � ≤ 1, ��0
 = 4, ��1
 = 1  

Solution: Let!��, �, ��
 = C
��� 

!� = 3�, !�F = 0  

Solve a system of two second-order initial value problem 

��� = C
� ��, 0 ≤ � ≤ 1, ��0
 = 4, ���0
 = �#  

9�� = !�9 + !�F9� = 3�9, 0 ≤ � ≤ 1, 9�0
 = 0, 9��0
 = 1  

Let G� = �, G� = ��, GC = 9, GE = 9�. 
Solve a system of four first-order initial value problem 

HI
J
IK G�� = G�
G�� = C

� G��GC� = GEGE� = 3G�GC
	; 											

MN
NO
G��0
 = 4G��0
 = �#GC�0
 = 0GE�0
 = 1 PQ

QRS  

Using MATLAB function ode45.m 

 

Figure 1. Plot of exact and approximate solution. 
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Figure 2. Plot of exact and approximate solution. 

 

Figure 3. Plot of exact and approximate solution. 

Figure 1, Figure 2 and Figure 3 shows that the approximate 

solution of Example 1, Example 2 and Example 3 is at the 

third iteration (shot), because the solution is almost coincident 

with the exact solution among the three shots. 

Example 4.Consider the boundary value problem 

��� = �C − ���, 1 ≤ � ≤ 2, ��1
 = �
� , ��2
 = �

C  

Solution: Let 

!��, �, ��
 = �C − ���  

!� = 3�� − ��,			!�F = −�  

Solve a system of two second-order initial value problems: 

��� = �C − ���, 1 ≤ � ≤ 2, ��1
 = �
� , ���1
 = �#  

9�� = !�9 + !�F9� = �3�� − ��
9 − �9�, 1 ≤ � ≤ 2, 9�1
 =0, 9��1
 = 1  

Let G� = �,			G� = ��, GC = 9,			GE = 9�. 
Solve a system of four first-order initial value problems: 

HI
J
IK G�� = G�G�� = �G�
C − u�u�GC� = GEGE� = 3�G�
�GC − G�GC − G�GE

	; 		
MN
NN
O G��1
 = �

�G��1
 = �#GC�1
 = 0GE�1
 = 1 PQ
QQ
RS  

Using MATLAB function ode45.m 

 

Figure 4. Plot of exact and approximate solution. 

Example 5.Consider the boundary value problem 

��� = �� + 2�� − ln �
C − �
W , 2 ≤ � ≤ 3,  

��2
 = �
�+ ln 2 , ��3
 = �

C+ ln 3  

Solution: Let 

!��, �, ��
 = �� + 2�� − ln �
C − �
W  

!� = 6�� − ln �
� , !�F = 1  

Solve a system of two second-order initial value problems: 

��� = �� + 2�� − ln �
C − �
W , 2 ≤ � ≤ 3, ��2
 = �

�+ln 2 , �′�2
 = �#  

9�� = !�9 + !�F9� = 6�� − ln �
� 9 + 9�, 2 ≤ � ≤ 3, 9�2
 =0, 9��2
 = 1  

Let G� = �, G� = ��, GC = 9, GE = 9′. 
Solve a system of four first-order initial value problems: 

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y(x,s
0
)

y(x,s
1
)

y(x,s
2
)

y"=-y12-y+ln(x),[1,2],y(1)=0,y(2)=ln(2)(secant)

exact solution y=log(x)
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HI
J
IK

G�� = G�
G�� = G� + 2�G� − ln��

C − �

WGC� = GEGE� = 6GC�G� − ln��

� + GE
	; 			
MN
NN
OG��2
 = �

�+ ln	�2
G��2
 = �#GC�2
 = 0GE�2
 = 1 PQ
QQ
RS  

Using MATLAB function ode45.m 

 

Figure 5. Plot of exact and approximate solution. 

Figure 4 and Figure 5 shows that the approximate solution 

of Example 4 and Example 5 is at the first iteration, because 

this solution is so close to the exact solution among the three 

shoots. 

5. Conclusion 

We have developed a Shooting method to solve non-linear 

two point boundary value problem analytically. The given 

problems were tested using three iterations of shooting 

method. In each figure, we represent the comparison between 

the exact solution and each iteration, which are made in order 

to solve these problems. The numerical results obtained by the 

proposed method are in good agreement with the exact 

solutions. 
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