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Abstract: Significant contributions can be found on the study of the cycle structure in graphs, particularly in Cayley graphs. 

Determination of Hamilton cycles and triangles, the longest and shortest cycles attracts special attention. In this paper an enu-

meration process for the determination of number of triangles in the Cayley graph associated with a group not necessarily abelian 

and a symmetric subset of the group. 
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1. Introduction 

The cycle structure of Cayley graphs associated with certain 

arithmetic functions were studied by Berrizbeitia and Giudi-

ci[2][3] and Dejter and Giudici [5]. Maheswari and Madhavi 

[7] [8] enumerated Hamilton cycles and triangles in arithmetic 

Cayley graphs associated with Euler totient function and qu-

adratic residues modulo a prime. The number of triangles in 

the arithmetic Cayley graph associated with the divisor func-

tion is determined in [4]. 

In [2] Berrizbeitia and Giudici consider sequences of Cay-

ley graphs ( , )
n n

Cay G S satisfying the multiplicative arith-

metic property, where n
G is a finite abelian group and n

S is a 

subset of n
G . The sequence of Cayley graphs 

( , )
n n n

X Cay G S=  as the multiplicative arithmetic property 

(map) if for each pair of positive relatively prime integers 

( , )m n there is a group isomorphism ,n mϕ from n mG  to 

n m
G G×  such that ,n mϕ maps n mS  onto n m

S S× . In [2], it is 

proved that if ( , )
n n n

X Cay G S=  is a sequence of Cayley 

graphs with the map, then that function 2 ( )
k

kp n  is a linear 

combination of multiplicative arithmetic functions, where 

( )
k

p n  denotes that number of induced k-cycles of n
X  us-

ing this formula the 3
( )p n  and 4

( )p n  are obtained for the 

sequence ( , )
n n

Cay Z U  in terms of prime divisors of n , 

where n
Z is the ring of integers modulo n  and n

U  is the 

multiplicative group of units modulo n . In this paper we give a 

formula for determining the number of triangles in a Cayley 

graph ( , )G X S  where X  is a finite group, not necessarily 

abelian and S  is a symmetric subset of X . 

2. Enumeration of Triangles in Cayley 

Graphs 

Let ( , )X ⋅  be a group. A subset S  of X  is called a 

symmetric subset if 1
s S

− ∈ for all s S∈ . The graph G  with 

vertex set X  and edge set ��g, h�: g�	hϵ S or hg�	ϵS� is 

called the Cayley graph of X corresponding to the symmetric 

sub set S of X .We denote this graph by ( , )G X S and assume 

that S  does not contain the identity element e of X  so that 

( , )G X S  contains no loops. Clearly ( , )G X S  is an undi-

rected graph which is S - regular with size 2X S and 

vertex transitive. 

( , )G X S  associated with a group ( , )X ⋅  not necessarily 

abelian, and a symmetric sub set S  of X . 

Definition 2.1: Let e  be the identity element of the group

( , )X ⋅ . For ,a b X∈ , if the triad ( ), ,e a b  is a triangle in 

( ),G X S then ( ), ,e a b  is called a fundamental triangle. 

Lemma 2.2: For a given a S∈  the number of fundamental 

triangles in ( ),G X S  is S aS∩ . 

Proof: Let a S∈ . For any b X∈ , ( , , )e a b  is a fundamental 

triangle ( , ), ( , )e a e b⇔  and ( , )a b  are edges in ( , )G X S

1
,e a

−⇔ 1
e b

−  , 1
a b S

− ∈  
-1, ,a b a b S⇔ ∈  a S⇔ ∈  and 
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b S aS∈ ∩ .That is, for a given a S∈  and for each 

b S aS∈ ∩  the triad ( , , )e a b  is a fundamental triangle in 

( , )G X S  and vice versa so that the number of fundamental 

triangles in ( , )G X S  is S aS∩ . 

Lemma 2.3: The number of distinct fundamental triangles 

in  is . 

Proof: By the Lemma 2.2, for each  the number of 

fundamental triangles in is so that the 

total number of fundamental triangles in  is

. 

However the triangles  and  represent 

the same fundamental triangle since S is a symmetric subset of

X , 

1
a b S

− ∈  ⇔ 1
b a S

− ∈ . 

So the number of distinct fundamental triangles in 

 is 

 

Theorem 2.4: The number of distinct triangles in 

 is 

 

Proof: Let  be the identity element of the group ( , )X ⋅
and let  be any vertex of . Since  is 

vertex transitive and regular, the number of triangles in 

 with as one vertex is equal to the 

number of fundamental triangles in  namely, 

 

and the number of triangles in is 

 

However each triangle in  is counted thrice, 

namely, once by each of its three vertices so that the number of 

distinct triangles in  is 

. 

The following Corollary is immediate. 

Corollary 2.5: The Cayley graph ( , )G X S  has no triangles 

if and only if S aS φ∩ =  for all a S∈ . 

Example2.6: For the Dihedral group and its symmetric 

subset 0 1 2 3 1 2 1 2
{ , , , , , , , }ρ ρ ρ ρ µ µ δ δ=  

, where 

0

1 2 3 4

1 2 3 4
ρ  

=  
 

, 1

1 2 3 4

2 3 4 1
ρ  

=  
 

, 2

1 2 3 4

3 4 1 2
ρ  

=  
 

,

3

1 2 3 4

4 1 2 3
ρ  

=  
 

, 1

1 2 3 4

2 1 4 3
µ  

=  
 

,

, 1

1 2 3 4

3 2 1 4
δ  

=  
 

 and 

2

1 2 3 4

1 4 3 2
δ  

=  
 

 

consider the Cayley graph 
4

( , )G D S  

 

Cayley Graph  

Since
1 0 2 3

{ , , }Sµ ρ ρ ρ= , 
2 2 0 1

{ , , }Sµ ρ ρ ρ= and 

1 1 2 0
{ , , }Sδ ρ ρ ρ= we have, 2 0S Sµ∩ =  and 1 0S Sδ∩ = . 

So the number of distinct triangles in 

is equal to 

 

and 4( , )G D S has no triangles . 

Example 2.7: Consider the Cayley graph  

where . 

( ),G X S
1

2 a S

S aS
∈

∩∑
a S∈

( , )G X S S aS∩

( ),G X S

a S

S aS
∈

∩∑

( ), ,e a b ( ), ,e b a

( ),G X S

1

2 a S

S aS
∈

∩∑

( ),G X S

1

6 a S

X S aS
∈

∩∑

e
g ( , )G X S ( , )G X S

( , )G X S g X∈
( ),G X S

1

2 a S

S aS
∈

∩∑

( ),G X S

1

2 a S

X S aS
∈

∩∑

( ),G X S

( ),G X S

1

6 a S

X S aS
∈

∩∑

4D

{ }1 2 1, ,S µ µ δ=

2

1 2 3 4

4 3 2 1
µ  

=  
 

( )4 ,G D S

( )4 ,G D S

4

1

6 a S

D S aS
∈

∩∑

( )4 ,G D S

{ }1 2 3 1 2, , , ,S ρ ρ ρ µ µ=
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Cayley Graph  

Since 3 0 1 2 2 1
{ , , , , }Sρ ρ ρ ρ δ δ= , 1 2 2 1 0 2

{ , , , , }Sµ δ µ δ ρ ρ=  

and 2 1 1 2 2 0
{ , , , , }Sµ δ µ δ ρ ρ= , we have 1 2S Sρ∩ = , 

2 4S Sρ∩ = , 3 2S Sρ∩ = , 1 2S Sµ∩ =  and 2 2S Sµ∩ = . 

So the number of distinct triangles in  is equal to 

. 

3. Deductions 

3.1. Enumeration of Triangles in the Euler Totient Cayley 

Graph 

Let  be an integer and let  be the group of 

residue classes modulo  with respect to the addition  

modulo . Then the set  and  is rela-

tively prime to is a symmetric subset of  . The 

Euler totient Cayley graph  is the graph whose 

vertex set is 

 

and the edge set 

. 

In [8] it is established that the graph  is 

- regular with size , Hamiltonian, connected, bi-

partite and contains no triangles if  is even. 

For any vertex  in ,
, 

 

⇔  and  belong to , or, they 

constitute a pair of consecutive integers less than  and 

relatively prime to . 

Thus , the Schemmel totient 

function which denotes the number of pairs of consecutive 

positive integers less than n  and relatively prime to n . Fur-

ther using the fact that  is a multiplicative subgroup 

of order of the semi-group , where

, and denotes the multiplication modulo

, one can see that ( ) (1 )S a S S S∩ + = ∩ + for a S∈ . To 

establish this, for define the map 

 

by for all . 

Let .Then  and  so 

that and for some

.Since  is a group, , ,a x s S∈  implies that 

,ax as S∈ so that . 

Hence the maps into . 

For , implies that

. Since is a group, this gives  

and  is one- to - one. 

Let . Then  and  for 

some .Since  is a group, for  there 

exist  such that  so that 

, 

or, 1

11 s a y S−+ = ∈ , since ,a y S∈ . 

Also  implies that .That is, 

. For this  and 

.This shows that is onto and 

hence a bijection showing that . 

So by the Theorem 2.4, the number of distinct triangles in 

the graph  is equal to 

 

6

n
n=

| |

2 1
(1 ) (1 )

p n p n

n
p p

− −∏ ∏

( )4 ,G D S

( )4 ,G D S

4

1

6 a S

D S aS
∈

∩∑ [ ]8
2 4 2 2 2 16

6
= + + + + =

1n ≥ ( , )nZ ⊕
n ⊕

n { :1S s s n= ≤ < s

}n ( , )nZ ⊕

( ),nG Z Φ

{ }0,1,2,..., 1nV Z n= = −

{ }( , ) : , ,E x y x y V x y S or y x S= ∈ − ∈ − ∈

( ),nG Z Φ ( )nϕ

( ) / 2n nϕ
n

a ( ),nG Z Φ

( )1 1a S S a S and a S∈ ∩ + ⇔ ∈ ∈ +

, 1a a S⇔ − ∈ a 1a − S

n

n

( ) ( ) ( )2
1S S nϕ∩ + =

( , )S ⊗

( )nϕ ( )*
,nZ ⊗

{ }*
0n nZ Z= − ⊗

n

a S∈

( ) ( ): 1f S S S a S∩ + → ∩ +

( )f x ax= ( )1x S S= ∩ +

( )1x S S∈ ∩ + x S∈ 1x S∈ +

1x s= + ( )1ax a s= + a as= +

s S∈ ( ),S ⊗
ax a as a aS= + ∈ +

f ( )1S S∩ + ( )S a S∩ +

( )1 2, 1x x S S∈ ∩ + ( ) ( )1 2f x f x=

1 2ax ax= ( ),S ⊗ 1 2x x=
f

( )y S a S∈ ∩ + y S∈ y a s= +

s S∈ ( ),S ⊗ ,a s S∈

1s S∈ 1s as=

1 1(1 )y a s a as a s= + = + = +

1s S∈ 11 1s S+ ∈ +
( )11 1s S S+ ∈ ∩ + ( )11 1s S S+ ∈ ∩ +

( ) ( )1 11 1f s a s y+ = + = f

( ) ( )1S S S a S∩ + = ∩ +

( , )nG Z Φ

( )
6

n

a S

Z
S a S

∈

∩ +∑ (1 )
6 a S

n
S S

∈

= ∩ +∑

( ) ( )2

6

n
n Sϕ=

( ) ( ) ( )2

6

n
n nϕ ϕ=



 Pure and Applied Mathematics Journal 2015; 4(3): 128-132  131 

 

3

|

2 1
(1 )(1 )

6 p n

n

p p
= − −∏ , 

since 
|

1
( ) (1 )

p n

n n
p

ϕ = −∏ and 
(2)

|

2
( ) (1 )

p n

n n
p

ϕ = −∏ (see 

p.147 of [6]). 

Remark 3.1.1: If n is even then 2 | n  and the term cor-

responding to 2p =  in the above product is zero so that 

( , )
n

G Z Φ  contains no triangles. 

Example 3.1.2: Consider the Euler totient Cayley graph 

for 45n = . Here 
2

3 5n = .
 
So the number of dis-

tinct triangles in the graph 
315

( , )G Z Φ  is 

3(45) 2 2 1 1
(1 )(1 )(1 )(1 )

6 3 5 3 5
− − − − 1620= . 

3.2. Enumeration of Triangles in the Quadratic Residue 

Cayley Graph 

Let  be an odd prime and consider the set of the 

quadratic residues modulo . Let . 

Then  is a symmetric subset of the additive abelian group

. The quadratic residue Cayley graph is the graph 

whose vertex set  and the edge 

set 

. 

For any vertex  in , we have 

* * *(1 )a Q Q a Q∈ ∩ + ⇔ ∈ and *1a Q∈ +  

*a Q⇔ ∈ and *1a Q− ∈  and  

are consecutive quadratic residues modulo . Thus 

* * (2)(1 ) ( )Q Q Q p∩ + = , 

where  denotes the number of pairs of consecutive 

integers less than , since  is a subgroup of the 

multiplicative group , one can see as in the case of 

Euler totient Cayley graph that 

* * * *( ) (1 )Q a Q Q Q∩ + = ∩ +  

for all 
*a Q∈ . 

So by the Theorem 2.4 the number of distinct triangles in 

the graph  is 

=

(2) *( )
6

p
Q p Q

 

If 1p ≡ (mod 4 ), then , and

(2) ( 1) 21 5
( ) [ 4 ( 1) ]

4 4

p p
Q p p

− −= − − − =
 

(see section 10.1 of 

[1]). So the number of distinct triangles in  is

( 1)
( 5)

48

p p
p

− − . 

If 3p ≡ (mod 4 ), then ,

and (2) ( ) 2Q p p= − so that the number of 

distinct triangles in is . 

Example 3.2.1: Consider the quadratic residue Cayley 

graph 73( , )G Z Q .Here 73 1≡  (mod 4 ). So the number of 

distinct triangles in 73( , )G Z Q is equal to 

( 1)( 5)

48

p p p− − 73 72 68
7446

48

× ×= = . 

Example 3.2.2: Consider the quadratic residue Cayley 

graph *

71( , )G Z Q . 

Here 71 3≡ (mod 4 ). So the number of distinct triangles in 

*

71( , )G Z Q  is equal to 

71 70 69
57155

6

× ×= = . 
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