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Abstract: In this paper we define the weighted Cesaro sequence spaces ces (p, ¢). We prove the space ces(p, g) is a complete
paranorm space. In section-2 we determine its Kothe-Toeplitz dual and continuous dual. In section-3 we establish necessary

and sufficient condition for a matrix A to map ces (p,
sequences and c is the space of all convergent sequences.
corollaries.

q) 0 lo
We also get some known and unknown interesting results as

and ces(p, q) to c, where [, is the space of all bounded
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1. Introduction

Let w be the space of all (real or complex) sequences and
let I, and c respectively the Banach spaces of bounded and
convergent sequence x = (x,) endowed with the norm

Jlel] = 2 Pl

In [8] Shiue introduce the Cesaro sequence space ces,, as

P
ces, = {x—(xk)Ew Z( lek|> <00} forl<p

n=1 k=
< 0

n
sup 1
and ceS,, = {x = (x) € I Z |xk|} forp =o
k=1

In [4] Leibowitz studied some properties of this space and
showed that it is a Banach space. Lim [9] defined this space
in a different norm as

o p
ces, = {x = (x) € w:z (%le”) < oo} forl1<p

< oo

and

_{ sup B
cesw—{x—(xk)Ew r>077 |xk|<oo} forp =

where Y, denotes a sum over the ranges [ 27,27%1),
determined its dual spaces and characterize some matrix
classes. Later in [10] Lim extended this space ces), to ces(p)
for the sequence p = (p,-) with infp, > 0 and defined as

@© 1 Dr
ces(p) = {x = (x) € w:z (?Z |xk|> < 00}.

For positive sequence of real

(Pn), (@) and Qn = q1 + q; + -+ qy,
Johnson and Mohapatra [11] defined the Cesaro sequence

space ces(p, q) as

[e9] n Pr
1
ces(p,q) = jx = (x) € “”Z (Q—Z i kal) < oo}
n=1 \ " k=1

and studied some inclusion relations.
What amounts to the same thing defined by Khan and
Rahman [3] as

ces(p,q)—{x—(xk)Ew Z( ZQk|xk|) <°°}

For p = (p,) with infp, >0, Qyr = qory qoreq + -+
g,r+1_; and Y, denotes a sum over the ranges [27,27*1).

numbers
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They determined it’s Kothe -Toeplitz dual and characterized
some matrix classes.

In this paper we define the Cesaro weighted sequence
space ces(p, q) in the following way.

Definition. 1f (q,,) is a bounded sequence of positive real
numbers, then for p = (p,) with inf p, > 0, the Cesaro
weighted sequence space ces(p, q) is defined by

0 pbr
ces(p,q) = {x = (%) € a):z (Qizrz |Qkxk|> < 00}
=0 T

where Q,r = qyry qoriq + -+ qyr+1_; and ). denotes a
sum over the range 2" < k < 2"*1,

If g, =1 for all n, then ces(p,q) reduces to ces(p)
studied by Lim[10]. Also, if p,, = p for all n and g, = 1 for
all n, then ces(p, q) reduces to ces, studied also Lim[9].
Obviously, [(p) < ces(p) < ces(p,q) for p, = 1.

In their paper [1] Maji and Srivastava defined the weighted
Cesaro sequence space ces(p, q) with a different norms and
studied on some operators and inclusion results.

The main purpose of this note is to define and investigate
the weighted Cesaro sequence space ces(p, q), determine its
Kothe-Toeplitz dual and characterize the class of matrices
(ces(p,q),lo) and (ces(p,q),c), where [, and ¢ are
respectively the spaces of bounded and convergent complex
sequences. By specializing sequences (p,) and (q,,), we get
the results of Lim([9], [10]) as corollaries. Meanwhile, we
also determine all continuous linear functional on ces(p, q)
forall 1 < p, < oo.

With regard to notation, the dual space of ces(p, q), i.e,
the space of all continuous linear functionals on ces(p, q),
will be denoted by ces*(p, q). We write

max
r

an,k

Ar(n) =
qk

where for each »n the maximum with respect to k in
[Z‘r 2r+1).

Throughout the paper the following well-known inequality
(see [6] or [7]) will be frequently used. For any E > 0 and
any two complex numbers a and b we have

lab| < E(la|® E™* + |b|*) (M
Where p > 1 and %-1-5:1

To begin with, we show that the space ces(p,q) is
paranormed by

1/M

900 = (220 (Z Zlgexel) ) @)
Provided H = sz;p pr < o0and M = max{1, H}
Clearly
g©)=0
g(=x) = g(x),

where 6 = (0,0,0, ...)
Since pr <M,M > 1so forany x,y € ces(p,q) we
have by Minkowski’s inequality

1/M

[ee]

(Z (Qizrzlqk(xk + }’k)|>pr>
CXVN pr
< <z (Q—ZTZ(WMH + |Qk}’k|)> )

(53l ) Sz

r=0

1/M

1/M 1/M

which shows that g is subadditive.

Finally we have to check the continuity of scalar
multiplication. From the definition of ces(p,q), we have
infp, > 0 . So, we may assume that inf p, = p > 0. Now
for any complex A with ||1|| < 1, we have

9a) = (i (Qiz 1Agsx |>p,>

=0

= |A|pr/M (i (Qizrz | i xx |>pr>

=0

1/M

1/M

Su br
<P 11211 g(x)

< ||/1||% gx)->0as1-0

It is quite routine to show that ces(p, q) is a metric space
with the metric d(x,y) = g(x —y) provided that x,y €
ces(p,q), where g is defined by (2). And using a similar
method to that in [3] one can show that ces(p, q) is complete
under the metric mentioned above.

2. Kothe-Toeplitz Duals
If X is a sequence space we define ([2], [5])

a= (@) €0 Y laxl <o,
k

Xt = xo =

foreveryx € X
Xt =xF
= {a = (ax)

€ w: Z a,x is convergent, for every x € X}
k

Now we are going to give the following theorem by which
the generalized Kothe-Toeplitz dual ces*(p,q) will be
determined.

If 1<prSS:ppr<ooandi+i=

Pr tr
1, forr =0,1,2, ... then

Theorem 1I:
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ces*(p,q) = [ces(p, 9)°
max |a

) {a = (ax): L7%o (0" i ) e < °°'}.

for some integer E > 1

Proof: Let 1<p, < stp p, < o and pl+i =

r tr
1, forr =0,1,2, ... Define

max |ay

Ho= {a = (@): X% (QZT T la ) s 00'} 3)

for some integer E > 1

We want to show that ces* (p, q) = u(t).
Let x € ces(p,q) and a € u(t) . Then using inequality (1)

we get
[ee] [oe]
Z|akxk| = ZZlakxkl
k=1 r=0 r

:Z?;O Zr

akqx|
‘Zkkk

= Z?:O Zr

ak|
— X
. | qrex|

max |a
< X0 r q_:: 2ol Qx|

max

oo
= Zr:o Qzr r

ak
qdk

ty — 1 Dr
) E r+(Q_Zr|quk|) }
27'

b © r
) E_tr+Z(Q_2TZ|CIkxk|> }
=0 T

< oo

1
Q Zrlqukl
2T

ak
qk

B (e

r
oS e

ax

dk

which implies that the series )5 a;X) convergent.
Therefore,
a € dual of ces(p,q) = ces*(p,q)
This shows, u(t) c ces™(p,q)
Conversely, suppose that ), a,x; is convergent for all
x € ces(p,q) buta & u(t). Then

- max |a,
Zr:o (QZ"~ r la

So we can define a sequence 0 = n(0) < n(1) < n(2) <

) " E~tr = oo, for every integer E > 1

such thaty = 0,1, 2, ..., we have

n(y+1)-1

max |ax |\ _ty
D (il o IR

r=n(y)
Now we define a sequence x = () in the following way:
_ ntr tr=1 —ty py-1
v = Qg lane| T sgnayey (v +2)7 My,

for n(p) <r<n(y+1)—-1,y=0,1,2,.. and x;, =0 for

max
T
maximum is taken with respect to k in [27,27*1).

Therefore,
2n(y+1)—1

ak

k # N(r), where N(r) is such that |aN(T)| = "

, the

n(y+1)-1

ave= > (Qrlave))” o+27 My

r=n(y)
n(y+1)-1

=M, (y+2)7!

k=2n)

tr —
(Qurlanem]) ™ (v +2)~tr/or

r=n(y)
=M,'M, (y+2)7*
=@+

It follows that

o1 Xy = Tymo(y + 2) 7 diverges.

Moreover
n(y+1)-1

3]

r=n(y)
n(y+1)-1

- (tr-Dp
= P Jag |

—ty/DPr \f P
(y +2)"/’rM,
r=n(y)
n(y+1)-1
PR . tr _
SO+DEMT Y O fave|” 0+ 2)
X L r=n(y)
=@y+2)°"M," M,
= +2)7?
Therefore

[oe]

1 123
Z <Q_2TZ|quk|> S¥+2)?<ow

=0

That is, x € ces(p,q) which is a contradiction to our
assumption. Hence

a € u(t). Thatis, u(t) o ces*(p, q).

Then combining the two results, we get

ces*(p,q) = u(®).

The continuous dual of ces(p,q) is determined by the
following theorem.

sup

Theorem 2: Let1 <p, < r

dual ces*(p, q) is isomorphic to p(t), which is defined by (3)
Proof: 1t is easy to check that each x € ces(p, q) can be
written in the form

pr < 0o, Then continuous

x = Z xiey,where e, = (0,0,0,..0,1,0,...)

k=1

and the 1 appears at the k-th place. Then for any f €
ces™(p, q) we have

f(x) = X1 X f (ex) = Xig=q Xk Q. 4

Where, f(e;) = a;. By theorem 1, the convergence of
Y a,x; for every x in ces(p, q)implies that a € u(t).

If x € ces(p, q) and if we take a € u(t), then by theorem
1, Y aix, converges and clearly defines a linear functional
on ces(p, q). Using the same kind of argument as in theorem
1, it is easy to check that
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ag

Zlakxkl <E (Z <Q2Tmax
k=1 a

k

) E~r + 1>g(x)

whenever g(x) < 1, where g(x) is defined by (2).

Hence Y, a; x; defines an element of ces*(p, q).

Furthermore, it is easy to see that representation (4) is
unique. Hence we can define a mapping

T: ces™(p,q) = u(t).

by T(f) =(aj,a,..) where the a; appears in
representation (4). It is evident that T is linear and bijective.
Hence ces*(p, q) is isomorphic to u(t).

3. Matrix Transformations

In the following theorems we shall characterize the matrix
classes (ces(p,q),lo) and (ces(p,q),c). Let A=
(an,k)n, k = 1,2, ... be an infinite matrix of complex numbers
and X, Y two subsets of the space of complex sequences. We
say that the matrix 4 defines a matrix transformation from X
into Y and denote it by A € (X,Y) if for every sequence
x = (x) € X the sequence A(x) = A, (x) is in Y, where

Ap(x) = Z Ank Xk

k=1

provided the series on the right is convergent.
Theorem 3: Let 1<p, < Szppr <o . Then A€
(ces(p,q),ly) if and only if there exists an integer E > 1,

such that U(E) < oo..
Where

Su (o) tr —_
U(E) = np Zr:O(QZTAr(n)) E~tr and _r+_r =1r=
0,1,2,..

Proof: Sufficiency: Suppose there exists an integer E > 1,
such that U(E) < o. Then by inequality (1), we have

Zlankxk| ZZ quxk| iz Znke | x|
=0 1
SZermfx Znke O Zlqukl
<E<Z(erA () B +Z< kam) )
< oo

Therefore, A € (ces(p,q), ).
Necessity: Suppose that A € (ces(p, q), l»), but

szp Z(erAr(n))tr E~' = o for every integer E > 1.
r=0
Then X, a,xx, converges for every nandx €
ces(p, q), whence (an,k)k=1 , € ces™(p, q) for every n.
By theorem 1, it follows that each A,, defined by

Ap(x) = Z An,k Xk

k=1
is an element of ces*(p, q). Since ces(p, q)is complete and
"Pla,@) <0 on ces(p,q)

boundedness principle there exists a number L independent
of n and a number § < 1, such that

since by the uniform

A, ()| <L (5)

for every n and x € S[6, §] where S[6, §] is the closed sphere
in ces(p, q) with centre at the origin 6 and radius §.

Now choose an integer G > 1, such that

GSM > L.

Since

SUu
P @A) G =
r=0

there exists an integer m, > 1, such that
R=%2°

Define a sequence x = (x,) as follows:

0(Q2rA; (M) 67 > 1 (6)

Xk = Olfk = 2m0+1

tr=1_ 4
XNy = Q;$5M/pr(sgn an'N(r))|an,N(r)| RGP
and x;, = 0if k = N(r) for 0 < r < m,, where N(r) is the
smallest integer such that

max

An,k
|annen| = r

dx

Then one can easily show that g(x) < & but |A,(x)| > L,
which contradicts (5). This complete the proof of the
theorem.

Corollary 3.1 (see [10]). Let1 <p, <°

A € (ces(p),ly) if and only if there exists an integer E >1
such that U(E) < oo, where

l:,ppr < oo. Then

- 1 1
uE) =P Z(err(n))tr and -+ =1

T T
=0

=0,12,..

Proof: If g, = 1 for every n in the above theorem, then we
obtain the result.

Corollary 3.2 (see [9]). Let 1<p <o . Then A€
(cesy l,) if and only if S;‘lp (5 (27 A, (n)D)ME <
o where ~+-=1

p t

Proof: 1f q, =1 and p, =
theorem, then we get the result.

Theorem 4. Let 1<p, < s

(ces(p,q),c) if and only if
(D) any = ay (n = o,k is fixed) and

p for all n in the above

prr<oo . Then A€
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(ii)there exists an integer E > 1, such that U(E) < oo, where
SUP oo tr
uE) =P 520(Qra )T Er

and —+-=17=0,12,..

Proof: Necessity. Suppose A € (ces(p, q),c). Then A, (x)
exists for each n>1 and nLi)mooAn(x) exists for every
x € ces(p,q). Therefore by an argument similar to that in
theorem 3 we have condition (ii). Condition (i) is obtained by
taking x = e, € ces(p, q), where e is a sequence with 1 at
the k-th place and zeros elsewhere.

Sufficiency. The conditions of the theorem imply that

max
r

Ak

ax )tr E™r <U(E) <o (7)

Zf:o (er

By (7) it is easy to check that ), a; x; is absolutely
convergent for each x € ces(p, q). For each x € ces(p, q)
and € > 0, we can choose an integer m, > 1, such that

[ee)

Gm,(X) = Z <Qi2r2|(hcxk|>pr <M

r=my

Then by inequality (1), we have

|an,k - akllxkl
k=2Mo0
<E( Y @B Er+1 | (gm, 00)"
r=mg
< EQU(E) + 1)e,
max
T

where B,.(n) = and

an,k—ak|

Z (erBr(n))t’E‘fr <2U(E) < o

r=mgo

It follows immediately that

Lim
n — oo

This shows that A € (ces(p,q),c) which proved the
theorem.
sup
Corollary 4.1 (see [10]). Let1 < p, < y Pr <. Then
A € (ces(p), c¢) if and only if
(i) anx = ar(n — oo,k is fixed), and
(ii)there exists an integer E >1 such that U(E) < oo, where

1

—=1,r
t‘l"

= 1
uE) =P Z(err(n))fr Erand -+
r=0 r

=0,12,..

Proof: 1f g, =1 for all n in the above theorem, then
statements (i) and (ii) follow.

Corollary 4.2 (see [9]). Let 1<p <.
(cesp, ¢) if and only if

(i) apy — ax(n - o,k is fixed),and

(ii)Sl:lp (35, 27 AL ()t < o0, where %+% = 1.

Proof: If g, =1 and p, =p for all n in the above
theorem, then we get the results.

Corollary 4.3. Let 1<p, <sup, <oo .
(ces(p, q), cy) if and only if

¢ the condition of Theorem 3 holds, and

* an, — 0(n - oo, kis fixed), where ¢y is the space

of all null sequences.

Then A €

Then A€
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