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Abstract: In this paper we define the weighted Cesaro sequence spaces ces (p, q).We prove the space ces(p, q) is a complete 

paranorm space. In section-2 we determine its Kothe-Toeplitz dual and continuous dual. In section-3 we establish necessary 

and sufficient condition for a matrix A to map ces (p, q) to ��  and ces(p, q) to �, where ��  is the space of all bounded 

sequences and �  is the space of all convergent sequences. We also get some known and unknown interesting results as 

corollaries. 
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1. Introduction 

Let � be the space of all (real or complex) sequences and 

let �� and � respectively the Banach spaces of bounded and 

convergent sequence � = (��) endowed with the norm 


|�|
 = �
�� ≥ 1 |��| 
In [8] Shiue introduce the Cesaro sequence space ���� as  

 ���� = �� = (��) ∈ �: � �1� �|��|�
��� �� < ∞�

��� !  "#$ 1 < �
< ∞ 

%�& ���� = �� = (��) ∈ �: �
�� ≥ 1 1� � |��|�
��� !  "#$ � = ∞ 

'� [4] Leibowitz studied some properties of this space and 

showed that it is a Banach space. Lim [9] defined this space 

in a different norm as 

 ���� = �� = (��) ∈ �: � � 12, �|��|
, �� < ∞�

,�- !  "#$ 1 < �
< ∞ 

and 

 ���� = .� = (��) ∈ �: �
�$ ≥ 0 12,  |��| < ∞0  "#$ � = ∞ 

where ∑ &��#2��,  a sum over the ranges [ 2, , 2,4�) , 

determined its dual spaces and characterize some matrix 

classes. Later in [10] Lim extended this space ����  2# ���(�) 

for the sequence � = (�,) with inf �, > 0 and defined as 

���(�) = �� = (��) ∈ �: � � 12, � |��|, ��9 < ∞�
,�- !. 

For positive sequence of real numbers (��), (;�) %�& <� = ;� + ;> + ⋯ + ;� 

Johnson and Mohapatra [11] defined the Cesaro sequence 

space ���(�, ;) %� 

���(�, ;) = �� = (��) ∈ �: � � 1<� � ;�
�

���
|��|��9 < ∞�

��� ! 

and studied some inclusion relations. 

What amounts to the same thing defined by Khan and 

Rahman [3] as  

���(�, ;) = �� = (��) ∈ �: � � 1<>9 � ;�|��|, ��9 < ∞�
,�- ! 

For � = (�,)  with inf �, > 0 , <>9 = ;>94 ;>94� + ⋯ +;>9@AB�  and ∑ denotes , a sum over the ranges [2, , 2,4� ). 
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They determined it’s Kothe -Toeplitz dual and characterized 

some matrix classes. 

In this paper we define the Cesaro weighted sequence 

space ���(�, ;) in the following way. 

Definition. If (;�) is a bounded sequence of positive real 

numbers, then for � = (�,)  with inf  �, > 0 , the Cesaro 

weighted sequence space ���(�, ;) is defined by  

���(�, ;) = �� = (��) ∈ �: � � 1<>9 � |;���|
,

��9 < ∞�
,�-

! 

where <>9 = ;>94 ;>94� + ⋯ + ;>9@AB�  and ∑ denotes ,  a 

sum over the range 2, ≤ � < 2,4�. 

If ;� = 1  for all � , then ���(�, ;)  reduces to ���(�) 

studied by Lim[10]. Also, if �� = � for all n and ;� = 1 for 

all n, then ���(�, ;)  reduces to ����  studied also Lim[9]. 

Obviously, �(�) ⊂ ���(�) ⊂ ���(�, ;) "#$ �, ≥ 1. 

In their paper [1] Maji and Srivastava defined the weighted 

Cesaro sequence space ���(�, ;) with a different norms and 

studied on some operators and inclusion results. 

The main purpose of this note is to define and investigate 

the weighted Cesaro sequence space ���(�, ;), determine its 

Kothe-Toeplitz dual and characterize the class of matrices (���(�, ;), ��)  and (���(�, ;), �),  where ��  and �  are 

respectively the spaces of bounded and convergent complex 

sequences. By specializing sequences (��) and (;�), we get 

the results of Lim([9], [10]) as corollaries. Meanwhile, we 

also determine all continuous linear functional on ���(�, ;) 

for all 1 < �, < ∞.  
With regard to notation, the dual space of ���(�, ;), i.e, 

the space of all continuous linear functionals on ���(�, ;), 

will be denoted by ���∗(�, ;). We write 

K,(�) = L%�$ M%�,�;� M 
where for each n the maximum with respect to k in [2, , 2,4�). 

Throughout the paper the following well-known inequality 

(see [6] or [7]) will be frequently used. For any N > 0 and 

any two complex numbers a and b we have  

|%O| ≤ N(|%|P  NBP + |O|P)                       (1) 

Where � > 1 %�& �� + �Q = 1 

To begin with, we show that the space ���(�, ;)  is 

paranormed by 

R(�) = S∑ S �TU9 ∑ |;���|, V�9�,�- V�/X
                (2) 

Provided Y = �
�$  �, < ∞ %�& Z = max {1, Y} 

Clearly 

R(`) = 0 

R(−�) = R(�), 

where ` = (0,0,0, … ) 

Since �, ≤ Z, Z ≥ 1 �# "#$ %�c �, c ∈ ���(�, ;) d� 

have by Minkowski’s inequality 

 �� � 1<>9 �|;�(�� + c�)|
,

��9�
,�-

��/X
 

 ≤ �� � 1<>9 �(|;���|
,

+ |;�c�|)��9�
,�-

��/X
 

≤ �� � 1<>9 �|;���|
,

��9�
,�-

��/X + �� � 1<>9 � |;�c�,
|��9�

,�-
��/X

 

which shows that g is subadditive.  

Finally we have to check the continuity of scalar 

multiplication. From the definition of ���(�, ;) , we have  inf pf > 0  . So, we may assume that inf �, ≡ h > 0. Now 

for any complex i with ||i|| < 1, we have 

R(i�) = �� � 1<>9 � |i;���,
|��9�

,�-
��/X

 

= |i|�9/X �� � 1<>9 � |;���,
|��9�

,�-
��/X   

 ≤ �
�$  jijk9l  R(�) 

≤  jij ml R(�) → 0 %� i → 0  
It is quite routine to show that ���(�, ;) is a metric space 

with the metric &(�, c) = R(� − c)  provided that �, c ∈���(�, ;), where g is defined by (2). And using a similar 

method to that in [3] one can show that ���(�, ;) is complete 

under the metric mentioned above. 

2. Kothe-Toeplitz Duals 

If X is a sequence space we define ([2], [5]) 

 o|4| = op = q% = (%�) ∈ �: �|%���| < ∞,
�

 
"#$ �r�$c � ∈ o s 

o4 = ot
= �% = (%�)
∈ �: � %���  u� �#�r�$R��2, "#$ �r�$c � ∈ o

�
! 

Now we are going to give the following theorem by which 

the generalized Kothe-Toeplitz dual ���4(�, ;)  will be 

determined. 

Theorem 1: If 1 < �, ≤ �
�$  �, < ∞ %�& ��9 + �P9 =1, "#$ $ = 0,1,2, … then  
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���4(�, ;) = [���(�, ;)]t 

= �% = (%�): ∑ v<>9L%�$ wxyQywzP9 NBP9 < ∞,"#$ �#L� u�2�R�$ N > 1�,�- !. 

Proof: Let 1 < �, ≤ �
�$  �, < ∞ %�& ��9 + �P9 =1, "#$ $ = 0,1,2, … Define 

{(2) = �% = (%�): ∑ v<>9L%�$ wxyQywzP9 NBP9 < ∞,"#$ �#L� u�2�R�$ N > 1 �,�- !  (3) 

We want to show that ���4(�, ;) = {(2). 

Let � ∈ ���(�, ;) and % ∈ {(2) . Then using inequality (1) 

we get 

�|%���| = � �|%���|
,

�
,�-

�
���  

 =∑ ∑ wxyQy ;���w,�,�-  

 = ∑ ∑ wxyQyw |;���|,�,�-  

 ≤ ∑ L%�$ wxyQyw ∑ |;���|,�,�-  

 = ∑ <>9L%�$ wxyQyw �TU9 ∑ |;���|,�,�-  

 ≤ N ∑ .v<>9L%�$ wxyQywzP9 NBP9 + S �TU9 ∑ |;���|, V�90�,�-  

 = N �� S<>9L%�$ M%�;� MVP9 NBP9 + � � 1<>9 �|;���|
, ��9�

,�-
�

,�- ! 

 < ∞ 

which implies that the series ∑ %�������  convergent. 

Therefore,  % ∈ &
%� #" ���(�, ;) = ���4(�, ;) 

This shows, {(2) ⊂ ���4(�, ;) 

Conversely, suppose that ∑ %���   is convergent for all � ∈ ���(�, ;) but % ∉ {(2). Then   ∑ v<>9L%�$ wxyQywzP9  NBP9 = ∞�,�- , for every integer N > 1  

So we can define a sequence 0 = �(0) < �(1) < �(2) <⋯, 

such that } = 0, 1, 2, …, we have  

Z~ = � S<>9 L%�$  M%�;� MVP9  (} + 2)BP9 �9��(~4�)B�
,��(~) > 1 

Now we define a sequence � = (��) in the following way: 

 ��(,) = <>9P9  
%�(,)
P9B� �R� %�(,) (} + 2)BP9  Z~B� 

for �(}) ≤ $ ≤ �(} + 1) − 1, } = 0, 1, 2, …  and �� =0 for 

� ≠ �($), where �($) is such that  
%�(,)
 = L%�$  wxyQyw, the 

maximum is taken with respect to k in [2, , 2,4�).  
Therefore, 

 � %���
>�(�@A)�A

��>�(�)
= � �<>9
%�(,)
�P9�(~4�)B�

,��(~)  (} + 2)BP9 Z~B� 

= Z~B� (} + 2)B� � �<>9
%�(,)
�P9�(~4�)B�
,��(~)  (} + 2)BP9 /�9  

 = Z~B� Z~ (} + 2)B�  = (} + 2)B� 

It follows that  ∑ %������� = ∑ (} + 2)B��~�-  diverges. 

Moreover  

 � � 1<>9 �|;���|
, ��9�(~4�)B�

,��(~)  

= � <>9(P9B�)�9  
%�(,)
(P9B�)�9  (} + 2)BP9/�9Z~B�9
�(~4�)B�

,��(~)  

≤ (} + 2)B> Z~B�  � <>9P9  
%�(,)
P9  (} + 2)BP9/�9
�(~4�)B�

,��(~)  

= (} + 2)B> Z~B� Z~  = (} + 2)B> 
Therefore 

� � 1<>9 �|;���|
, ��9 ≤ (} + 2)B> < ∞�

,�-  

That is, � ∈ ���(�, ;)  which is a contradiction to our 

assumption. Hence  % ∈ {(2). That is, {(2) ⊃ ���4(�, ;).  
Then combining the two results, we get ���4(�, ;) = {(2). 

The continuous dual of ���(�, ;)  is determined by the 

following theorem.  

Theorem 2: Let 1 < �, ≤ �
� $  �, < ∞. Then continuous 

dual ���∗(�, ;) is isomorphic to {(2), which is defined by (3) 

Proof: It is easy to check that each � ∈ ���(�, ;) can be 

written in the form  

� = � ����
�

��� , dℎ�$� �� = (0, 0, 0, … 0, 1, 0, … ) 

and the 1 appears at the k-th place. Then for any " ∈���∗(�, ;) we have 

"(�) = ∑ ��"(��) = ∑ ���������� %�.             (4) 

Where, "(��) = %� . By theorem 1, the convergence of ∑ %��� for every x in ���(�, ;)implies that % ∈ {(2). 

If � ∈ ���(�, ;) and if we take % ∈ {(2), then by theorem 

1, ∑ %���  converges and clearly defines a linear functional 

on ���(�, ;). Using the same kind of argument as in theorem 

1, it is easy to check that 
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�|%���| ≤ N �� S<>9L%�$ M%�;�MVP9 NBP9 + 1�
,�- ��

��� R(�) 

whenever R(�) ≤ 1, where R(�) is defined by (2). 

Hence ∑ %��� defines an element of ���∗(�, ;). 
Furthermore, it is easy to see that representation (4) is 

unique. Hence we can define a mapping �:  ���∗(�, ;) → {(2). 
by �(") = (%�, %>, … )  where the %�  appears in 

representation (4). It is evident that � is linear and bijective. 

Hence  ���∗(�, ;) is isomorphic to {(2). 
3. Matrix Transformations 

In the following theorems we shall characterize the matrix 

classes (���(�, ;), ��)  and (���(�, ;), �).  Let K =�%�,���, � = 1,2, … be an infinite matrix of complex numbers 

and X, Y two subsets of the space of complex sequences. We 

say that the matrix A defines a matrix transformation from X 

into Y and denote it by K ∈ (o, �)  if for every sequence � = (��) ∈ o the sequence K(�) = K� (�) is in Y, where  

K�(�) = � %�,� ��
�

���  

provided the series on the right is convergent.  

Theorem 3: Let 1 < �, ≤ �
�$ �, < ∞ . Then K ∈(���(�, ;), ��) if and only if there exists an integer N > 1, 

such that �(N) < ∞. . 
Where �(N) = �
��  ∑ �<>9K,(�)�P9�,�- NBP9  and 

��9 + �P9 = 1, $ =0, 1, 2, … 

Proof: Sufficiency: Suppose there exists an integer N > 1, 
such that �(N) < ∞. Then by inequality (1), we have 

�
%�,���
 = � � M%�,�;�  ;���M,
�

,�-
�

��� = � � M%�,�;�  M,
�

,�-
|;���| 

 ≤ � <>9L%�$ M%�,�;�  M 1<>9  �
,�- �|;���|

,  

 ≤ N ��(<>9K,(�))P9
�

,�-  NBP9 + � � 1<>9 �|;���|
, ��9�

,�- �
< ∞ 

Therefore, K ∈ (���(�, ;), ��). 

Necessity: Suppose that K ∈ (���(�, ;), ��), but 

�
�� ��<>9K,(�)�P9�
,�- NBP9 = ∞ "#$ �r�$c u�2�R�$ N > 1. 

Then ∑ %�,�������  converges for every � %�& � ∈���(�, ;), whence �%�,�����,>,… ∈ ���4(�, ;) for every n. 

By theorem 1, it follows that each K� defined by  

K�(�) = � %�,���
�

���  

is an element of ���∗(�, ;). Since ���(�, ;)is complete and 

since 
�
�� |K�(�)| < ∞  on ���(�, ;) , by the uniform 

boundedness principle there exists a number L independent 

of n and a number � < 1, such that 

 |K�(�)| ≤ �                                   (5) 

for every n and � ∈ �[`, �] where �[`, �] is the closed sphere 

in ���(�, ;) with centre at the origin ` and radius �. 

Now choose an integer � > 1, such that  ��X > �. 

Since  

�
�� �(<>9K,(�))P9
�

,�-  �BP9 = ∞ 

there exists an integer L- > 1, such that  

 � = ∑ (<>9K,(�))P9��,�- �BP9 > 1                (6) 

Define a sequence � = (��) as follows: 

�� = 0 u" � ≥ 2��4� 

��(,) = <>9P9 �X/�9(�R� %� , �($))
%�,�(,)
P9B��B��BP9/�9 

and �� = 0 u" � ≠ �($)  for 0 ≤ $ ≤ L-, where �($)  is the 

smallest integer such that 


%�,�(,)
 = L%�$ M%�,�;� M 
Then one can easily show that R(�) ≤ � but |K�(�)| > �, 

which contradicts (5). This complete the proof of the 

theorem. 

Corollary 3.1 (see [10]). Let 1 < �, ≤ �
�$ �, < ∞. Then K ∈ (���(�), ��) if and only if there exists an integer E >1 

such that �(N) < ∞, where 

�(N) = �
��  �(2,K,(�))P9
�

,�-  %�& 1�, + 12, = 1, $
= 0, 1, 2, … 

Proof: If ;� = 1 for every n in the above theorem, then we 

obtain the result. 

Corollary 3.2 (see [9]). Let 1 < � < ∞ . Then K ∈(���� , ��)  if and only if 
�
��  (∑ (2,K,(�))P�,�- )�/P <∞ dℎ�$� �� + �P = 1 

Proof: If ;� = 1  and �� = � for all n in the above 

theorem, then we get the result. 

Theorem 4. Let 1 < �, ≤ �
�$ �, < ∞ . Then K ∈(���(�, ;), �) if and only if 

(i) %�,� → �� (� → ∞, � u� "u��&) and 
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(ii) there exists an integer N > 1, such that �(N) < ∞, where 

�(N) = �
��  ∑ �<>9K,(�)�P9�,�- NBP9  

and 
��9 + �P9 = 1, $ = 0, 1, 2, … 

Proof: Necessity. Suppose K ∈ (���(�, ;), �). Then K�(�) 

exists for each � ≥ 1  %�& �uL� → ∞K�(�)  exists for every � ∈ ���(�, ;). Therefore by an argument similar to that in 

theorem 3 we have condition (ii). Condition (i) is obtained by 

taking � = �� ∈ ���(�, ;), where �� is a sequence with 1 at 

the k-th place and zeros elsewhere. 

Sufficiency. The conditions of the theorem imply that 

 ∑ v<>9L%�$ wpyQywzP9 NBP9 ≤ �(N) < ∞�,�-  (7) 

By (7) it is easy to check that ∑ ��� ��  is absolutely 

convergent for each � ∈ ���(�, ;).  For each  � ∈ ���(�, ;) 

and � > 0, we can choose an integer L- > 1, such that  

R��(�) = � � 1<>9 �|;���|
, ��9�

,���
< �X 

Then by inequality (1), we have 

� 
%�,� − ��
|��|�
��>��

 

≤ N � � (<>9�,(�))P9
�

,���
NBP9 + 1� �R��(�)��/X

 

< N(2�(N) + 1)�, 

where  �,(�) = L%�$ wx�,yBpyQy w and 

� �<>9�,(�)�P9NBP9 ≤ 2�(N) < ∞�
,���

 

It follows immediately that  

�uL� → ∞ � %�,��� = � ����
�

���
�

���  

This shows that K ∈ (���(�, ;), �)  which proved the 

theorem. 

Corollary 4.1 (see [10]). Let 1 < �, ≤ �
�$ �, < ∞. Then K ∈ (���(�), �) if and only if 

(i) %�,� → ��(� → ∞, � u� "u��&), %�&  
(ii) there exists an integer E >1 such that �(N) < ∞, where 

�(N) = �
��  �(2,K,(�))P9
�

,�- NBP9  %�& 1�, + 12, = 1, $
= 0, 1, 2, … 

Proof: If ;� = 1  for all n in the above theorem, then 

statements (i) and (ii) follow. 

Corollary 4.2 (see [9]). Let 1 < � < ∞ . Then K ∈(���� , �) if and only if  

(i)   %�,� → ��(� → ∞, � u� "u��&), %�&  
(ii) 

�
��  (∑ 2,PK,P�,�- (�))�/P < ∞, dℎ�$� �� + �P = 1. 
Proof: If ;� = 1  and �� = � for all n in the above 

theorem, then we get the results. 

Corollary 4.3. Let 1 < �, ≤ �
�, < ∞ . Then K ∈(���(�, ;), �-) if and only if  

� the condition of Theorem 3 holds, and 

�  %�,� → 0 (� → ∞, � u� "u��&),  where �-  is the space 

of all null sequences. 
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