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Abstract: In this paper, we employed the use of Boundary Integral Equation Method to obtain numerical solutions of 

specific unconfined aquifer flow problems. Of the two formulations presented in this paper, that in which the piezometric head 

and its normal derivative are assumed to vary linearly with time over each time step has proved more accurate than that in 

which both piezometric head and its normal derivative remain constant at each node throughout each time step. Comparisons 

between Method 2 of section-3 and the analytical solutions have demonstrated the superior accuracy of the integral equation 

formulation. 
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1. Introduction 

The study of groundwater flow is of great importance due 

to the rapid increasing for the demand of water. This has 

necessitated the need to explore new methods of exploiting 

water, especially water in aquifers, one of the main tasks in 

studies concerning aquifers flow is the determination of the 

distribution of the piezometric head and its normal derivative 

n

φ∂
∂

. In order to find the distribution of piezometric head, φ , 

throughout an aquifer it is necessary to solve a partial 

differential equation subject to specified initial and boundary 

conditions, [1], [4]. It is desirable to calculate analytical 

solutions to these problems, but this is seldom possible due, 

often, to irregularities in the shape of aquifer boundaries. 

Consequently, approximate solutions must be calculated 

either by analogue methods, which are based on the 

similarity between groundwater flow and other physical 

systems obeying the same partial differential equation, or by 

numerical techniques [4], [7]. Many numerical techniques 

been employed to solve both steady and unsteady 

groundwater flow problems. Probably the simplest and most 

widely used of these is the finite element method and the 

finite difference method, [14], [3], [8]. 

Another more direct method of solving time-dependent 

problems is with integral equations, in which the time 

derivative is written in finite-difference form, [11], [12], [13]. 

In this way, the solution at one time can be calculated from the 

solution at a previous time in terms of an integral equation 

containing only boundary data and a surface integral over the 

entire solution domain [10], [16]. The principal advantage of 

integral equation techniques is that if only boundary data is 

used in the calculations the dimensionality of the problem is 

essentially reduced by one. Thus, the amount of data 

preparation is considerably less than that required by either the 

finite-difference or finite-element methods. Solutions within 

the flow region can readily be calculated from an integral 

equation solution, as it will be shown, and the advantage of 

reduced data preparation is still significant because only points 

at which the solution is required need to be specified. 

The flow of groundwater is essentially a three dimensional 

problem, but in many real situations the horizontal dimension 

of an aquifer are much greater than the vertical dimensions. 

In such cases it is possible to accept the Dupuit 

approximation [5], [15], which assumes that flow is 

horizontal. Consequently, the problem is reduced to two 

dimensions in the horizontal plane. The relative scarcity of 

published work in groundwater literature concerning the use 

of the boundary element method (BEM) to solve the equation 

that describes the flow in unconfined aquifer, is mainly due 

to the numerical difficulties encountered in applying this 

method to resolve non-linearity. The accuracy of the BIEM 

depends on the size of nodes and on the type of the 

interpolation function [9]. 
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In this paper, BIEM with the constant interpolation 

function and BIEM with the linear interpolation function 

were formulated and used for the solution of two 

dimensional, unsteady homogenous, unconfined aquifer flow 

(not including well). The results obtained by the two methods 

were investigated and a comparison between them and with 

the exact solution was held. 

2. Integral Equation Techniques 

The horizontal dimensions of many aquifer are orders of 

magnitude larger than vertical dimensions. In such cases, it is 

possible to make use of the Dupuit approximation, which 

assumes that velocities are horizontal and that piezometric 

heads are constant along a vertical line. Under these 

conditions, unconfined flows satisfy following partial 

differential equation; [2], [5] 

1.( ) ( ) ( )i i i

i

h
T S Q x x y y R

t
φ δ δ∂∇ ∇ = + − − +

∂ ∑          (1) 

in which S is the storage coefficient or effective porosity, Q. 

is the flow rate in well i located at (xi, yi), and the rate of 

recharge, R
I
, is positive for evaporation and negative for 

replenishment, φ  is the piezometric head. The transmissivity, 

T, is given by [11]; 

0

0

( , , ) ( , , )

z B

Z

T x y t K x y z dz

+

= ∫                          (2) 

in which ZO (x, y) is the elevation of the bottom boundary of 

the aquifer and B (x, y, t) is the saturated aquifer thickness 

(which depends on φ  for unconfined flows). 

If the Dupuit approximation is applied, confined flows 

satisfy 

1.( ) ( ) ( )i i i

i

h
T h S Q x x y y R

t
δ δ∂∇ ∇ = + − − +

∂ ∑            (3) 

Here S, is a function of the elasticity of the aquifer. The 

transmissivity, T, is given by Eqn.(2), but the aquifer thickness, 

B, is constant at any point. Consequently, Eqn. (1) is nonlinear 

in φ , while Eqn. (3) is linear. However, if Eqn. (1) is 

linearized by assuming that T is independent of changes in φ , 

[16], [2], then both confined and unconfined flows will obey a 

partial differential equation of the same form. Furthermore, if 

the aquifer is homogeneous and isotropic, both confined and 

unconfined flows are governed by: 

2 2 1( ) ( )i i i

i

T S Q x x y y R
t

φφ δ δ∂∇ = + − − +
∂ ∑            (4) 

Where T and S are constants. Integral equation techniques 

was used in [11] to analyze problems with combinations of 

leaky, layered, confined, unconfined, and non isotropic 

aquifers under steady state conditions. 

To illustrate the basic technique for unsteady flows, 

consider unconfined flow through a homogeneous, anisotropic, 

non-leaky region, R, that is bounded by a contour, Γ , and in 

which the principal axes of seepage are parallel to the x and y 

axes. The permeabilities for directions parallel to the x and y 

axes are given by kx and ky' respectively [6], and if there is no 

recharge, Eqn. (1) can be written as 

2 2 2

2 2

* *

2

x

S

K tx y

φ φ φ∂ ∂ ∂+ =
∂∂ ∂

                             (5) 

In which *x x=  and * *

x

y

k
y y

k
=  If a backward-difference 

approximation is adopted for the time derivative as in [15], 

Eqn. (5) can be written as 

* *

2 2

,

2 2
[ ( )] ( ) ( )x y

x x

s
t t t t h t

tk tk
φ φ −∇ + ∆ − + ∆ =

∆ ∆
        (6) 

In which values of φ at time t are known and at time 

t t+ ∆  are unknown In order to solve Eqn. (6) by integral 

equation techniques, it must be linearized [8], [14]. The 

following was suggested in [11]: 

[ ] [ ]
,* *

2 22 2 2
( ) ( ) ( )

( )X Y

x x

s S
t t t t t

tk t t tK
φ φ φ

φ
−∇ + ∆ − + ∆ =

∆ + ∆ ∆
 (7) 

In which, ( )t tφ + ∆ ) is an average value of φ  over the 

region. From Eqn. (6), it, can be shown that; 

( , ( , ) 2
( , ) ( , ) ( , ) ( ) ( , ) ( , )

( ) ( )Γ

 ∂ ∂ + ∆∂ + ∆ = + ∆ − − ∂ ∂ ∆ 
∫ ∫

x R

U P Q Q t t S
p t t Q t t U P Q ds Q U P Q Q t dA

n Q n Q tk
φ φ φ                           (8) 

Where: 

0

2
( , ) ( , )

( )x

S
U P Q K r P Q

tK h t t

 
= −  

∆ + ∆  
              (9) 

And r (P, Q) is the distance from a fixed point, P, on the 

boundary to another point, Q. The variable,θ , is the angle 

between the boundary tangents at P. The solution is obtained 

iteratively by assuming a value of ( )t tφ + ∆  and then solving 

Eqn. (7) as in [7], [2]. The estimate of ( )t tφ + ∆  is then 

revised and the process repeated until there is essentially no 

change in successive solutions. The obvious disadvantage of 

such a formulation is that because the final term on the right 

side of Eqn. (7) is non-zero, in general, integrations must be 

performed throughout the solution domain at each time step. 

Thus, although the method can be extended to solve 

problems' in leaky aquifers with recharge [12], it does not 

have the advantage of reducing the dimensionality of the 

problem. The use of time-dependent fundamental solutions to 
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solve problems having the same form as Eqn. (4) was first 

presented and the transient heat conduction through an 

anisotropic medium was analyzed in [4]. 

The method has since been used by many, [2], [15] where 

the solutions to the following form of the heat conduction 

equation were presented; 

2 V
C V

t

∂∇ =
∂

                                      (10) 

0( , , 0) ( , )V x y t V x y= =  for ( , )x y R∈                 (11) 

( , , ) ( , , )V x y t f x y t=  for /( , )x y onΓ ∈ Γ               (12) 

( , , ) ( , , )
V

x y t g x y t
n

∂ =
∂

 for / /( , )x y onΓ ∈ Γ            (13) 

in which V is the temperature, C is the thermal diffusivity, 

and Eqn. (10) is a special form of Eqn. (4), Eqn. (11) is the 

initial condition which must be satisfied throughout the 

solution domain, R, and Eqns. (12) and (13) are the boundary 

conditions which must be satisfied on the respective portions 

of the boundary contour, / / /Γ = Γ ∪ Γ . A fundamental 

solution, u, of Eqn. (10) is given in [4] as: 

[ ] [ ]
2

[ ( , ) ]

4 ( )1
( ) ( ), ( ) ( ), ( , ), ,

4 ( )

r P Q

C tu x Q x P y Q y P t u r P Q t e
C t

ττ τ
π τ

−
−− − − = − =

−
                                    (14) 

in which r (P, Q) is the distance from a fixed point, P, within R, to another point, Q, and 0 tτ≤ ≤ 0 [5], so (9) can be written as: 

[ ]
/ //0

( , ) [ ( , ), ]
( , ) [ ( , ), ] ( , ) ( ) [ ( , ), ] ( , 0

( ) ( )Γ +Γ

 ∂ ∂ −= − − + = ∂ ∂ 
∫ ∫ ∫
t

R

V Q u r P Q t
V P t C u r P Q t V Q ds Q d u r P Q t V Q dA

n Q n Q

τ ττ τ τ τ         (15) 

If P is a point on the boundary contour; 

[ ]
/ /0

( , ) [ ( , ), ]
( , ) [ ( , ), ] ( , ) ( ) [ ( , ), ] ( , 0)

2 ( ) ( )Γ +Γ

 ∂ ∂ −= − − + = ∂ ∂ 
∫ ∫ ∫
t

R

V Q u r P Q t
V P t C u r P Q t V Q ds Q d u r P Q t V Q dA

n Q n Q

θ τ ττ τ τ τ
π

    (16) 

In which θ  is the angle between the boundary tangents at p. The solution of equation (16) was calculated by assuming that 

V and 
V

n

∂
∂

remained constant over a sufficiently small time step and by performing the time integrations stepwise as in [4]. 

[16]. Using this assumption in Eqn. (15) and changing the order of integration gives; 

[ ]

2 2

/ / /
1 1

2 2

2 2 2)

2 1 1

( , ) [ ( , ), ]
( , ) [ ( , ), ] ( , ( )

2 ( ) ( )

[ ( , ), ] ( , )

Γ + Γ

 ∂ ∂ −
= − − 

∂ ∂  

+ − =

∫ ∫ ∫

∫

t t

t t

R

V Q t u r P Q t
V P t C u r P Q t d V Q t d ds Q

n Q n Q

u r P Q t t V Q t dA

τθ τ τ τ
π

τ
                  (17) 

The time integrals on the right side of Eqn. (17) can be 

evaluated analytically, and it can be shown that; 

2
2

2 1

1

[ ( , )]

4 ( )2
[ ( , ), , ] cos( , )

( ) 2 ( , )

r p Qt

C t t

t

u r p Q t t r n
d e

n Q Cr p Q

ς τ
π

−
−∂ − −=

∂∫      (18) 

In which (r, n) is the angle between r (P, Q) and the unit 

normal at point Q. 

The obvious disadvantage of using Eqn. (17) is that, as with 

the formulation as mentioned in [11], a surface integral must 

be calculated at the start of each time step, and thus negating, 

to some extent, the advantage of integral equations over the 

more traditional techniques. However, the methods do retain 

their accuracy, it was claimed in [11] and [16], that the grid 

spacing used to calculate surface integrals can be greater than 

that used in a finite-element solution [14]. In [4], both Time 

dependent fundamental solution, linear time interpolation 

functions in Eqn. (17) were used to solve axisymmetric 

problems, in an effort to improve accuracy. An alternative 

formulation for the solution of Eqn. (16) was presented in [11] 

by calculating the contour integrals, assuming that V and 
V

n

∂
∂

 

varied linearly along a straight line joining adjacent nodes and 

integrating the expression analytically around the boundary. 

The trapezium rule was used to calculate integrals in the time 

domain. It was concluded in [11], that the initial portions of 

the time integrations were critical and had to be calculated 

accurately to avoid the introduction of a consistent error into 

the solution. This formulation, also, required the evaluation of 

an integral over the solution domain. A solution of Eqn. (16) 

may be obtained by dividing the time interval 0 tτ≤ ≤  into N 

time steps and reversing the order of integration to give; 
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[ ]
2

/ / /
1

2

( , ) [ ( , ),
( , ) [ [ ( , ), ] ( , ) ] ( ) [ ( , ), ] ( , 0 ,

2 ( )=Γ +Γ

 ∂ ∂ −= − − + = 
∂ ∂  

∑∫ ∫ ∫
tN

k t R

V Q u r P Q t
V P t C u r P Q t V Q d ds Q u r P Q t V Q dA

n n Q

θ τ ττ τ τ τ
π

   (19) 

In which tl = 0 and tN = t. At first glance, it may appear that Eqn. (19), is not better than any of the previous formulations 

because of the surface integral that appears on the right side. However, because the governing partial differential equation, 

Eqn. (10), is linear with constant coefficients, the principal of superposition can be applied. 

If /

0V V V= −                                                                                 (20) 

In which Vo is the initial condition at t = 0, given by Eqn. (10), then; 

2

/ /
1

/
/ /

2

( , ) [ ( , ), ]
( , ) [ [ ( , ), ] ( , ) ] ( )

2 ( ) ( )

tN

k t

V Q u r P Q t
V Q t C u r P Q t V Q ds Q

n Q n Q

θ τ ττ τ τ
π =Γ +Γ

 ∂ ∂ −= − − ∂ 
∂ ∂  

∑∫ ∫                  (21) 

Which must be solved subject to the following boundary 

conditions Vi 

/

0( , )( , , ) ( , , ) x yV x y t f x y t V= − , for (x, y) on /Γ ∈ Γ     (22) 

/

0( , , ) ( , , ) ( , )
VV

x y t g x y t x y
n n

∂∂ = −
∂ ∂

, for (x, y) on 
/ /Γ ∈ Γ  (23) 

Although the amount of data storage and computational 

effort required is greater for this method than for the others in 

the field, the advantage of reduced data preparation is very 

significant. Eqn. (20) was used in [6] to analyze problems of 

thermal shock by assuming that V and remain constant 

throughout each time step. Such a solution can be used as a 

starting point for the solution of the linearized groundwater 

flow equation (4), for φ  when R' = 0. A second formulation, 

in which φ  and 
n

φ∂
∂

 vary linearly with time, will be used in 

an equation analogous to Eqn. (19) and the results compared 

with those obtained when φ  and 
n

φ∂
∂

 are assumed constant 

over each time step. 

3. Solution of Homogenous Unsteady 

Unconfined Aquifer Flow Equation 

without Well 

Homogenous regions without well can be modeled by [5]: 

/ / /

2

0

( , , ) ( )
2

t
u

x y t a u dsd
n n

θ φφ φ τ
π Γ +Γ

∂ ∂= −
∂ ∂∫ ∫              (24) 

in which θ  is the interior angle between the boundary 

tangents at (x, y) and a
2
 is the ratio of transmissivity to 

storage coefficient i.e. 
k

S
 

S = storage coefficient, 

φ (x, y, t) piezometric head, 

Q = flow rate. 

t = time. 

An algebraic approximation to Eqn. (24), can be written of 

M nodes, which gives M equations containing 2m unknowns 

( φ  and 
n

φ∂
∂

 at each node). The remaining M equations 

required for a complete solution are obtained from the 

boundary conditions. To solve equation (24) two methods 

was used. 

3.1. Method (1) - BEIM with Constant Interpolation 

The simplest way to integrate Eqn. (24) numerically is to 

divide the time interval (0, t) into N time steps and to assume 

that both h an 
n

φ∂
∂

 remain constant at each node throughout 

each time step. The order of integration in Eqn (24) can be 

changed to give; 

2

2

/ / / / / /

/ / / / //

42 2

1 2 2

1

2
2

cos( , ) ( ) cos( , )

[ ] ( ) ln[ ] 2
4 4

( ) 2 ln ln[ 2
4

N

r
N N

a tN N

N N

N kN
k

kN

r n p r n
e dsr r e

E p ds r r
n na t a t

e h
p rds E G r ds

n na t

γ

γ

φ φ
φ φ

φ φ

−
∆

Γ +Γ Γ +Γ

−

=Γ +Γ Γ +Γ

 
   −∂ ∂+ +   
 ∂ ∂∆ ∆ 

   ∂ ∂+ = − +   ∂ ∂∆    

∫ ∫

∑∫ ∫

                                 (25) 

 

In which G is as defined as 
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1

2 2

1 2 2

1
4 ( ) 4 ( )

N k N k

r r
G E E

a t t a t t−

   
= −   − −   

            (26) 

And F is as defined as 

2 2

2 2
1

4 ( ) 4 ( )cos( , )
N k N k

r r

a t t a t tr n
F e e

r
−

− −
− −

 
 = −
 
 

                   (27) 

The right hand side of Eqn. (25) contains only known 

information from previous time steps, while the left hand 

side contains the unknown values of φ  and 
n

φ∂
∂

 at time t = 

tN. Eqn. (25) is applied successively to each boundary node, 

and this together with the boundary conditions, gives a set of 

simultaneous equations which can be solved by Gauss 

Elimination to give the solution for φ  and 
n

φ∂
∂

at each 

boundary node. The first integral on the left hand side of 

Eqn. (25) is calculated numerically as in [5], and the second 

integral is numerically approximated by Eqns. (19) and (20). 

The final term on the left hand side of Eqn. (24) was 

approximated as in [3], while the integral on the right hand 

side can be calculated by the numerical schemes using the 

integral formulations given in [5]. 

3.2. Method 2- BIEM with Linear Interpolation 

A second, way to integrate Eqn. (24), is to divide the time 

interval (0, t) into N time steps as before, but to assume that 

both φ  and 
n

φ∂
∂

 vary linearly with time through out each 

time step. Following the integration we obtain: 

/ / / / / /

/ ??

/ //

2

2

11
1 1 1 1

12
1

2

( ) ( ) ( ) ( ) ln
4

( ) ( ) ( )

[ ( ) ( )

NN
N N N N N N N

N

NN
N N N N

k K kN
k k k

k

r e
G p G p F p p ds p ds

n n n a t

G p G P p F ds
n n

G G p G p
n n n

γφ φ φφ φ φ

φ φ φ

φ φ φ

Γ +Γ Γ +Γ

−−
− − − −

Γ +Γ

−−
−

= Γ +Γ

  ∂ ∂ ∂+ + + + −   ∂ ∂ ∂ ∆   

 ∂ ∂= − + + ∂ ∂ 

 ∂ ∂ ∂− + + ∂ ∂ ∂ 

∫ ∫

∫

∑ ∫
1

1 1 1( ) ( ) ]

k

k k k k kp G p F F ds
n

φ φ κ
−

− − −∂+ + +
∂

                    (28) 

By applying this equation to each node successively and 

using a quadrature formula such as the trapezium rule, a set 

of simultaneous equations is obtained which can be solved 

according to the boundary conditions for φ  and 
n

φ∂
∂

at each 

node for r=0, 0r ≠ ,. 

The solution for φ  at any point (x, y) contained inside the 

region R, at time t = tN is given by 

/ / /

2
2

1 2

0

( , , ) ( )
4 4

t
u Q r

x y t a u dsd E
n n T a t

φφ φ τ
πΓ +Γ

 ∂ ∂= − −  ∂ ∂  
∫ ∫   

for x, y in R                                 (29) 

Once φ  and 
n

φ∂
∂

have been determined at all boundary 

nodes by the methods given in. above, φ  at any internal 

point can be calculated directly by numerically integrating 

the right hand side of Eqn. (29). The integration is greatly 

simplified because there are no singularities in the integrand. 

The assumption that φ and 
n

φ∂
∂

 vary linearly between 

successive time steps improve accuracy too much. 

4. Comparisons Between Method-1 and 

Method-2 

The results obtained in the above section will be compared 

with known analytical solutions. Results can be expressed 

most simply by introducing the following dimensionless 

variables; 

'

'

'

'

'

L

x
x

L

y
y

l

t
t

L

Q
Q

L

φφ =

=

=

=

=

                                   (30) 

In which L is a characteristic length in the problem. 

Although solutions can be obtained for a number of 

boundary contour shapes, one of the most commonly used 

will be the square because analytical solutions for flows in 

this region is readily calculated. As the boundary conditions 

on either side of a sharp corner may be different and because 

there is a discontinuity in geometry there, nodes are placed 

adjacent to, rather than exactly at the corners, as shown in the 

figure, that the distance between a sharp corner and the 

adjacent nodes should be approximately one quarter of the 

usual nodal spacing. The contribution that these corner nodes 

make to the numerical integrals are calculated by assuming 

that values of h and 
'

n

φ∂
∂

on the boundary contour between 

such a node and the sharp corner are constant and equal to 

the values at the node. 
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Fig. 1. Nodal Arrangement for Square Region. 

Suppose that three sides of the square region shown in fig. 

1 above are impermeable and that 'φ =0 everywhere within 

the region at t'=0, as given in [9] the exact solution is; 

2 '

0

( 1)
'( ', ') 1 2 cos '

n tn

n

n n

e
x t

α

φ α
α

−∞

=

−= − ∑              (31) 

And 

2 '

0

'
( ' 1.0, ') 2 n t

n

x t e
n

αφ ∞
−

=

∂ = =
∂ ∑                        (32) 

in which (2 1)
2

n n
πα = + . 

Numerically calculated values of 'φ , both on the boundary 

contour and at selected points within the flow region itself, 

are compared with the values obtained from the analytical 

solution of Eqn. (31). 

Because 
'

n

φ∂
∂

 at x' =l. 0 is infinite at t' =0 I (Eq. (32).), 

there are inherent problems in using Method 2 of section 3.2, 

in which h' and 
'

n

φ∂
∂

 are assumed to vary linearly with time 

over each time step. When calculating values of and 'φ , 

'

n

φ∂
∂

 at the end of the first time step, values of h' and 
'

n

φ∂
∂

at 

t'=0 are required, as described by Eqn. (24). 

Thus, increasing the number of steps, the computational 

cost rises rapidly. It should be noted that the computational 

time required by Method 1 is approximately eighty percent 

of that red by Method 2. when same time steps are used  for 

both sets of calculations. Consequently, the large instability 

in 
'

n

φ∂
∂

 at X' =0, and the minor instability in 'φ , that occur 

near x'=l.0, are to be expected initially. However an excellent 

feature of this method is that despite the initial instability, the 

numerical solution closely approximates the analytical 

solution after only a few time steps. Also, numerically 

calculated values of 'φ  within the flow region are in good 

agreement with Eqn. (31), even at the end of the first time 

step. The problem associated with the infinite value of 
'

n

φ∂
∂

 

at t'= 0 does not arise with Method 1 of section 3.1 because 

'

n

φ∂
∂

values of h' and an at t'=0 are not required for the 

solution at the end of the first time step, as stated in Eqn. 

(24). However, because Method 1 assumes that 'φ  and 
'

n

φ∂
∂

 

are constant throughout each time step, time steps must be 

closely spaced to ensure accurate results. Immediately 

following the instantaneous rise in h' time steps are closely 

spaced, but as time proceeds and the step length increases, 

there is a loss in accuracy. Although the results can be 

improved by decreasing the time step length, the 

computational cost becomes prohibitive. It should be noted 

that the computational time required by Method 1 is 

approximately eighty percent of that required by Method 2. 

The instability that occurs with Method 2 following 

instantaneous changes in hi is not really considered a 

problem for groundwater flows because changes in 'φ  are 

never instantaneous in real situations. If the instantaneous 

rise at x'=l.0 is replaced with; 

''( ' 1.0, ') 1

' 0

tx t e

t

φ −∈= = −
>

                      (33) 

In which E is a positive constant, very rapid changes can 

be modelled by choosing a sufficiently large value of E. 

More gradual changes in 'φ , are modelled by substituting a 

smaller value of E in the right side of Eqn. (33) The exact 

solution to this problem, calculated from Eqn. (31) using the 

Duhamel super position integral, [14] 

2 '' '

2
0

( 1) cos '
'( ', ') 1 2

( )
n

n
tt tn

n n n

x
x t e e e

ααφ
α α

∞
−−∈ −∈

=

−  = − − ∈ −
 − ∈∑   (34) 

2 ''

2
0

'
( ' 1.0, ') 2

t
nt

n n

e e
x t

n

αφ
α

−−∈∞

=

∂ −= = ∈
∂ − ∈∑                  (35) 

in which (2 1)
2

n n
πα = + . The right side of Eqn (35) is equal 

to zero at t' =0. for all values of ∈  except for 2

nα∈= . 

Consequently there is no discontinuity in 3h' and the 

problems experienced with Method 2 at t'=0 are eliminated. 

An instantaneous rise in 'φ , at x'=l.0 is closely approximated 

by substituting a values of∈  in the right side of Eqn. (33). 

The numerical and analytical values of 'φ on the boundary 
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contour, and the values at points within the flow region are 

compared with those from the analytical solution. The 

solutions for 
'

n

φ∂
∂

 at x'=l.0 are compared also with the 

analytical solution values. There is now excellent agreement 

between the analytical solutions and those obtained using 

Method 2 in section 3.2, and there is no evidence of any 

numerical instability. There is virtually no difference 

between the solutions obtained using Method 1 for an 

instantaneous rise in h' and for h' 500 '( ' 1.0) 1 tx e−= = − This is 

to be expected because the two analytical solutions are 

almost identical except for different values of 
'

n

φ∂
∂

 at x'=l.0 

at t'=0, which do not appear in the numerical calculations. 

The accuracy is limited by the length of the time step as 

outlined previously. More gradual changes in h' at x'=l.0 can 

be modeled by substituting a value of 1∈=  in the right side 

of Eqn. (33). because 'φ , varies more slowly than in the 

previous examples, larger time steps were chosen. Solutions 

for h' around the boundary contour and at selected points 

within the flow region are and solutions for 
'

n

φ∂
∂

 at x'=l.0 

were compared with the analytical solutions. The solutions 

obtained using Method 2 are in excellent agreement with the 

analytical solutions, while those obtained using Method 1 are 

somewhat less accurate due to the large time steps used. The 

three cases examined so far all have steady-state solutions 

which are approached as t', becomes infinite. However, if the 

boundary condition at x'=l.0 is a periodic function of time, 

flow within the square region is oscillatory. For example, 

when the boundary condition at X'= 1.0 is; 

'
'( ' 1.0, ') sin

2

t
x t

πφ = = , t' > 0 

the exact solution calculated from Eqn. (31) as in [9] is; 

2
'2

2
0 4

' '
(cos ) sin

' ( 1) 2 2 2'( ', ') sin cos '
2

4

n t
n n

n

n n
n

t t
e

t
x t x

απ π παπφ π α
α πα

∞

=

 
− + −= −  

 +
  

∑                                       (36) 

And 

2
\2

2
0 4

' ' '
(cos ) sin ) sin

' 2 2 2 2 2( ' 1.0, ')

4

n t

n

n

n

t t t
e

x t
n

απ π π π παφ π
πα

−
∞

=

− + +∂ = =
∂ +

∑                                               (37) 

in which (2 1)
2

n n
πα = + . Because of the relatively large 

time steps selected, numerical calculations have been 

attempted only with Method 2, the more accurate of the 

schemes presented in section 2. Also, since no discontinuity 

in 'φ  or 
'

n

φ∂
∂

 occurs at t' =0 (see Eqns. (37 and 38)), Method 

2 will be stable. Values of h' on the boundary contour and at 

selected points within the flow region, and values of 
'

n

φ∂
∂

 at 

x'=1, are compared with those from the analytical solution. 

Once again all the results are in excellent agreement. 

5. Conclusion 

The integral equation techniques presented here have been 

found to be satisfactory for solving unsteady, two 

dimensional unconfined aquifer flow problems. The use of 

time-dependent fundamental solutions has led to accurate 

integral equation formulations for solving the unsteady 

Dupuit equation in the homogeneous regions. Of the two 

formulations presented in this paper, that in which the 

piezometric head and its normal derivative are assumed to 

vary linearly with time over each time step has proved more 

accurate. Comparisons between Method 2 of section-3 and 

the analytical solutions have demonstrated the superior 

accuracy of the integral equation formulation. 
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