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Abstract: AIDS is one of the most threatening diseases for human being that is caused by a virus named HIV. Here the 

reduction of the death rate after infected by AIDS has been discussed. A mathematical model of HIV has been formulated. 

Then its positivity and boundedness has been investigated. It has been shown that it is possible to minimize the mortality rate 

by providing the treatment to the HIV infected people. Moreover, the control of the transfer rate from the infected class to the 

AIDS class reduces the disease rate. The increasing of the transfer rate from the infected class to the treated class also reduces 

the mortality rate. 
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1. Introduction 

In the last decades or so mathematical models in 

epidemiology are playing a very important role in analyzing 

the spread and control of the infectious disease that are 

causing a lot of human death every year. In the past, human 

being have been threatened by many infectious disease, most 

of them are caused by viruses [1]. Among them HIV is 

responsible for a lot of human death. Till now people are 

dying by this virus. 

Human Immunodeficiency Virus (HIV) is a member of 

Lent Virus sub member family of retrovirus that produces 

chronic infections in the host and gradually damages the 

host`s immune system [2]. There are two types of HIV 

viruses: HIV-1 and HIV-2. Among them, HIV-1 is more 

dangerous. It easily transmits among the people and causes a 

lot of HIV infections globally every year [3]. Immediately 

after HIV infection, people cannot determine his/her 

infection. In this time, HIV infection may not show up on an 

HIV test, but people who have it are highly infectious and 

can spread the infection to others. People with chronic HIV 

infection may not have any HIV-related symptoms or only 

mild ones [4]. 

After being infected, people who aren’t taking medicine to 

treat HIV, this period can last a decade or longer, but some 

may progress through this phase faster. People who are 

taking medicine to treat HIV the right way, every day may be 

in this stage for several decades because treatment helps keep 

the virus in check. 

HIV is treated using a combination of medicines to fight 

HIV infection. This is called antiretroviral therapy (ART). 

ART isn’t a cure, but it can control the virus so that one can 

live a longer, healthier life and reduce the risk of transmitting 

HIV to others. ART is recommended for all people with HIV, 

regardless of how long they’ve had the virus or how healthy 

they are. If left untreated, HIV will attack the immune system 

and eventually progress to AIDS.  

2. Formulation of the Model 

The total sexually-active population at time t, denoted by 

����,  is subdivided into mutually-exclusive compartments, 

namely susceptible ������ , exposed to HIV but show no 

clinical symptoms of the disease �	����,  HIV infected 

individuals with clinical symptoms of HIV �
����, infected 

individuals who are taking treatment ������ , individuals 

having AIDS ������, so that 

���� = ���� + 	��� + 
��� + ���� + ���� 

Let us suppose that the susceptible population is increasing 
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at a constant rate. Let the rate be Π. 
Susceptible individuals acquire HIV infection, following 

effective contact with people infected with HIV only (i.e. 

those in the E, I and T classes) at a rate λ, where 

� = ���������������� 

�
 [Force of infection for HIV.] 

Here β is the transmission rate for HIV and ��  �!  
�"  1  are known as the modification parameter. These 

modification parameters indicate that the infected individuals 

are more infectious than the treated class. Among these class, 

AIDS class is assumed to spread more infection than other 

two classes. In the HIV exposed class �	����, individuals 

entering into this class from susceptible class ������ at a rate 

λ. In the HIV exposed class �	���� individuals progress to 

infected class �
���� at a rate $. Individual also progresses to 

the treatment class �����) at a rate τ!. And Individual also 

progresses to the AIDS class�����) at a rate δ!. 

In the treatment class, individuals progress to AIDS class 

������at a rate %�. Also individuals progress to the AIDS and 

HIV treatment class ������  at a rate  %& . In this class, let 

�µ + ' � denotes the death rate due to the disease and ( be 

the natural mortality rate. 

Combining all the aforementioned assumption and 

definitions, the model becomes: 

'�
'�

= ) * �� * μ� 

'	
'�

= �� * $	 * μ	 

,�

,-
= $	 * %!
 * .!
 * μ
                      (1) 

 
'�
'�

= %!
 + %&� * %�� * μ� 

'�
'�

= .!
 * %&� + %�� * �μ + '�� 

Where, ��  �"  �!  1. 

Schematically this can be shown as follows:  

 

Figure 1. Diagram of the model. 

3. Analysis of the Model 

3.1. Boundedness Region 

Here we have used some parameters (explained in the 

table 2) to described the model (1). These variables are non-

negative. Also the state variables (described in table 1) are 

non-negative for all time �  0. 
The total population is denoted by ����. Total population 

can be written as: 

���� = ���� + 	��� + 
��� + ���� + ����. 

The equation written above, is changing at a rate  

,�

,-
= ,0

,-
+ ,�

,-
+ ,�

,-
+ ,�

,-
+ ,�

,-
= ) * (� * '�     (2) 

In absence of disease, i.e. for 	 = 
 = � = � = 0, we have  

,�

,-
1 ) * (�                                  (3) 

By the separation of variables we can write 

'�

) * (�
1 '� 

After integration we have  

) * (� 2 3456-                           (4) 

Here 3  is the integrating constant which is to be 

determined. Let at � 
 0, � 
 �7. From the Eq. (4) we have 

3 
 ) * (�7 

Putting the value of 3 in Eq. (4) we have  

) * (� 2 �) * (�7�456-                    (5) 

As  � 8 ∞, 0 1 ���� 1
:

6
  

Therefore, the region Ψ 
 <��, 	, 
, �, �� = >�
? : � 1

:

6
A 

contains the feasible solution of the model (1). 

3.2. Positivity of Solution 

Now we need to check the positivity of the solution of the 

model (1). Let the initial data be <��0�, 	�0�, 
�0�, ��0�, ��0� =
ΨA. Now we have to show that the solution set 

<����, 	���, 
���, ����, ����A of the system (1) is positive. 

Consider the 1
st
 equation of the model (1) 

'�

'�

 ) * �� * μ�  *�� � (�� B

'�

'�
 *�� � (�� 

After integration we can write 

����  ��0�4C 5�D�6�,-  0 provided �� � (� E ∞. 
Similarly from the 2

nd
, 3

rd
, 4

th
 and 5

th
 equations 

respectively we have 

	���  	�0�4C 5�F�6�,-  0 provided �$ � (� E ∞. 

���  
�0�4C 5�G��H��6�,-  0 provided �%! � .! � (� E ∞. 

����  ��0�4C 5�G��6�,-  0 provided �%� � (� E ∞. 
����  ��0�4C 5�GI�6�,�,-  0 provided �%& � ( � '� E ∞. 
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Thus the solution set <����, 	���, 
���, ����, ����}  is 

positive for �  0. 
4. Disease-Free Equilibrium Point 

Disease free equilibrium point is denoted by 	7. To obtain 

the disease-free equilibrium points on Ψ ∩ ℜ�? , we need to 

put 	 = 
 = � = � = 0 (since in the disease-free equilibrium 

there is no disease). The positive DFE for this model is � = :6. So we can conclude that the model has a disease-free 

equilibrium point and the disease-free equilibrium point of 

this model is   	7 = (:6 , 0,0,0,0). 

5. Local Stability of the Disease-Free 

Equilibrium 

The basic reproduction number which is denoted by K7 

plays a vital role in the stability of the model. The number of 

new infections generated by an infected individual is known 

as the basic reproduction number. The associated 

nonnegative matrix L  for the new infection terms and the 

non-singular M-matrix, N for the remaining transfer terms are 

given respectively by 

L = OP000 P�!000  P�"000  P��000 Q 

And N has the following expression 

N = O$ + µ000  0−$ + %! + .! + µ−%!.!
 00µ + %�−%�

 00−%&%& + (µ + ')Q 

The basic reproduction number K7 is the spectral radius of 

the matrix LN5!. The eigenvalues of the matrix LN5! are  

 K7 = [P ( �!$%&µ + �!$µ%�  +  �!$'µ + �!$'%�  + �"$%!µ + �"$%!' + �"$%&.! + �"$%&%! + ��$.!µ + ��$.!%� + ��$%�%!+ %!%&µ + %!µ%� + %!'µ + %!'%� + %&.!µ + %!µ +  .!µ" +  %&µ" +  µ"%� +  'µ" + .!µ%� + .!'µ + .!'%�  +  µ'%�  +  �!$µ"  +  µ�)/ (%!$%&µ + %!$µ%� + %!$'µ + .!$µ" + $µ� + %!µ� + .!µ� + µ�%& + µ�%�  +  µ�' + %!$µ"  +  $µ"%&  + $µ"%�  +  $µ"' + %!µ"%& + %!µ"%� + %!µ"' + .!µ"%& + .!µ"%� + .!µ"' + µ"'%�  + µ& + %!$'%�+ .!$%&µ + .!$µ%� + .!$'µ + .!$'%� + $µ'%� + %!µ'%� + .!µ'%�)] 
Lemma [5]. Local stability of the disease-free equilibrium 

depends on the basic reproduction number. If the basic 

reproduction number is bigger than one, then disease-free 

equilibrium point locally asymptotically unstable and if the 

basic reproduction number is less than one, then it is locally 

asymptotically unstable. 

6. Global Stability of the Disease-Free 

Equilibrium 

Here we have used a technique established by Castillo-

Chavez [6] to investigate the global stability of the disease-

free equilibrium point. We rewrite the model as: 'U'� = V(U, W) 

,X,- = Y(U, W), Y(U, 0) = 0               (6) 

Where  U = � and W = (	, 
, �, �, ).  Here the components 

of W ∈ ℝ�&  denotes the infected population. The disease free 

equilibrium is now denoted as: 

 	7 = (U∗, 0), U∗ = )µ 

The condition must be met to guarantee a local asymptotic 

stability: 'U'� = V(U, 0) 

Here, U∗ is globally asymptotically stable (GAS). Y(U, W) = \W − Y∗(U, W), Y∗(U, W), ≥ ]^ ]_ (U, W) ∈ `  (7) 

Where \ = aXY(U∗, 0), is an M -matrix (the off-diagonal 

elements of \ are non-negative) and Ω is the region where 

the model makes biological sense. If the system satisfies the 

conditions of then the theorem below holds: 

Theorem [5]. The fixed point 	7 = (U∗, 0)  is a globally 

asymptotically stable equilibrium of the system (6) provided 

that K7 < 1 and the assumptions in (4) are satisfied. \_]]^. Form the model system (1) and (6), we have V(U, 0) = () − (�)  Y(U, W) = \W − Y∗(U, W) 

Where 

Y∗(U, W)  =
bc
dP[	 + �!
 + �"� + ���] e1 − ��f000 gh

i = OY!∗(U, W)Y"∗(U, W)Y�∗(U, W)Y&∗(U, W)Q 

Here Y!∗ > 0 & (Y"∗, Y�∗, Y&∗) = 0 

So the conditions are fulfilled. So 	∗ is globally 

asymptotically stable when  K7 < 1. 

7. Endemic Equilibrium of the Model 

We have used a well-known technique known as the 

Central Manifold Theorem [6] to check the stability of the 
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endemic equilibrium point of the model. To apply this 

theorem we make the following change of variables. 

Let 

S 
 x!, E = x", I = x�, T = x&, A = x? 

� = p! + p" + p� + p& + p? 

The model (1) can be rewritten in the form: 

dS
dt

= f�x� 

Where X = �x!, x", x�, x&, x?�, and F = �f!,  f", f�, f&, f?, ) as 

!̂ = ) − �p! − µp! 

"̂ = �p! − $p" − µp" 

�̂ = $p" − %!p� − .!p� − µ� 

&̂ = %!p� + %&p? − %�p& − µp&                  (8) 

?̂ = .!p� − %&p? + %�p& − (µ + ')p? 

Where � = �(v����v����vI���vw)v��v��v��vI�vw  

The Jacobean of the system (8) is 

x =
yzz
z{−µ −P −P�! −P�" −P��0 −P − µ − $ P�! P�" P��0 $ −%! − .! − µ 0 00 0 %! −%� − µ %&0 0 .! %� −%& − µ − '|}}

}~
 

To analyze the dynamics of (8), we compute the 

eigenvalues of the Jacobian of (8) at the disease free 

equilibrium (DFE). It can be shown that this Jacobian has a 

right eigenvector given by: N = (N!, N", N�, N&, N?)� 

Where  

  N! = − P(N" + �!N� + �"N& + ��N?)(  

N" = (%! + .! + ()N�$  

N� = N� 

N& = %!N� + %&N?%� + (  

N? = .!N� + %�N& %& + ( + '  

And the left eigenvectors are given by W = (w!, w", w�, w&, w?)� �! = 0 

�" = $��( + $ − P 

�� = �� 

 �& = %��?(P − $ − () − P$�"��(%� + ()(P − $ − ()  

�? = P���" + %&�& %& + ( + '  

It can be shown after some manipulations involving the 

evaluation of the associated non-vanishing partial derivatives 

of ^ that 

�∗ = 2P� (�" + �� + �& + �?)(�" + �&�" + �?��+ ���!)(N! − N") 

And _∗ = −(�" + �&�" + �?�� + ���!)(N! − N") 

Since �! = − �(�����������I����w)�  which is less than zero 

and �" = (G��H���)��F  which is positive.  

So �! − �" < 0. 
Thus we have  

�∗ = 2P� (�" + �� + �& + �?)(�" + ��" + �?��+ ���!)(�! − �") < 0 

Again �!, �", ��, �&, �?  are all positive and all the 

parameters are positive. So _∗ = −(�" + �&�" + �?�� + ���!)(�! − �") > 0 

Thus we have established the following theorem: 

Theorem. Thus we have the following results: the 

endemic equilibrium point is locally stable when the basic 

reproduction number is bigger than one and unstable when 

basic reproduction number is less than one.  
8. Numerical Simulations and 

Discussions 

The description of the variable is shown in the Table 1. In 

the model we have used some parameters. The values of the 

parameters that are used in the model are shown in the table 2. 

Table 1. Description of variables of the model. 

Variables Descriptions �(�) Susceptible class 	(�) Individuals Exposed to AIDS but show no clinical symptoms. 
(�) Individuals infected with AIDS not yet displaying symptoms. �(�) HIV infected individuals are in Treatment Class �(�) HIV infected individuals and displaying symptoms of AIDS. 

Table 2. The values of the parameters of the model. 

Variables Description Values � Recruitment rate of humans 0.00384 [11] P Modification Parameter 0.0082 
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Variables Description Values 

�! Modification Parameter 1.2 

�" Modification Parameter 1.4 

�� Modification Parameter 1.5 

.! Transfer rate from 
��� to ���� 0.025[6] 

$ Transfer rate from 	��� to 
��� 0.03[8] 

%! Transfer rate from 
��� to ���� 0.04[4] 

%� Transfer rate from ���� to ���� 0.025[4] 

%& Transfer rate from ���� to ���� 0.02[5] 

μ Natural Death 0.0003[11] 

' Death rate after having AIDS 0.003[11] 

Figure 2 shows that the total infected population is 

increasing when the basic reproduction number K7  1 and 

figure 3 shows that the infected population is decreasing 

when K7 E 1.  Here the value of the basic reproduction 

number K7 depends on the transfer rate %! from the infected 

class 
���  to treated class ���� . The values of the 

reproduction number K7 decreases with the transfer rate %! . 

Thus we can minimize the mortality rate by increasing the 

number of the treated population. Figure 4 shows that, the 

prevalence is decreasing when the basic reproduction number 

K7 E 1 and figure 5 shows that it is increasing when K7  1. 

 

Figure 2. Total infection when K7  1. 

 

Figure 3. Total Infection when K7 E 1. 

 

Figure 4. Prevalence when K7 E 1. 

 

Figure 5. Prevalence when K7  1. 

9. Conclusions 

AIDS is one of the devastating diseases for human being. 

Mathematical models are used to estimate the dynamics of the 

diseases. Here we have formulated a model describing the HIV 

with treatment. The findings of the study are listed below: 

� We can minimize the mortality rate by providing the 

treatment to the HIV infected people. 

� The basic reproduction number highly depends on .!, 

which is the transfer rate from 
��� to ���� class. Thus 

the reduction in the transfer rate from the infected rate 


��� to the AIDS class ���� will reduce the mortality 

rate. 

� The increasing of the transfer rate %! from the infected 

class 
���  to the treated class ����  also reduces the 

disease burden. 
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