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Abstract: The memory and hereditary effects of fractional derivatives as well as integral terms are considered in a diffusion 
like problem. The Haar wavelet operational matrix technique is employed to solve fractional order diffusion equation with time 
dependent integral term and time dependent boundary condition. The fractional derivative is described in the Caputo sense. The 
effect of using inverse fractional operator which combines the memory behaviors of the fractional derivatives to all other terms in 
the equation is disscused. Different Haar bases functions are used (8, 16, 32, 64) and comparison of the wavelet operational 
matrix is considered. Error analysis is considered. A general numerical example with four subproblems is considered, graphical 
representation of the different solutions as well as their errors are given. 
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1. Introduction 

The problem of solving parabolic partial differential 
equation in its very simple case 

� ��� =  ���� ��                  (1) 

has been considered by many authors, it is the mathematical 
model of many physical, engineering, and finance problems. It 
is well known that the solution of this simple problem requires 
one initial condition and two boundary conditions. The 
method of solution of this simple problem depends on the 
nature of the boundary conditions as well as the initial 
condition. Moreover, appearance of any other terms in the 
equation makes the situation more complicated. In this work, 
we consider a problem of the form 

�	�(�,�)��	 = ���(�,�)��� + � �  �� �(�, �)�� + �(�, �)   (2) 

Where 0 < � ≤ 1 , 0 ≤ � ≤ �  denotes time, 0 ≤ � ≤ 1, 
and � = 0 or 1, with initial condition �(�, 0) = �(�) and 
boundary conditions �(0, �) = ��(�), �(1, �) = ��(�) . The 
motivation for such equations lies in different branches of 
physics, in rheology, and especially in the theory of heat 

conduction when inner heat sources are of special types [1]. 
Youssef and Shukur, [2] have used the modified variation 

iteration method to construct an approximate solution. 
Equation (2) has many advantages in modeling real 

problems than equation (1) appearance of fractional time 
derivatives, non-homogenous terms (in the form of integrals). 
Except of the fractional derivatives equation (2) is considered 
in [1] in the form 

� �(�,�)��  + A �(�, �) =  �  ��  !�, �, �(�, �)"�� + �(�, �)  (3) 

The number of publications about the fractional calculus 
has rapidly increased because of some physical processes as 
anomalous diffusion, complex viscoelasticity, behavior of 
mechatronic and biological systems, rheology etc. cannot be 
described adequately by the classical models [3]. The 
fractional derivatives is understood in the Caputo sense. 

Definition (1): The Caputo time fractional derivative of 
order � > 0 of the function �(�, �) is defined by [4, 5]: 

�	�(�,�)��	 = �$(%&') �  �� (� − �)%&'&� )*)+* �(�, �)��    (4) 

where � ∈ (- − 1, -) , - ∈ . . If � ∈ . , then this will 
coincide with the classical partial derivative. 
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It is generally accepted that differential equations consider 
the local effects in modeling physical phenomenon, integral 
equations consider the global behaviors [6], while the 
fractional derivatives consider the memory and hereditary 
behaviors [2, 7, 8]. Moreover, the fractional derivatives 
appears in equation (3) can be translated to the right hand side 
as ∂�(�, �)∂�  =  ∂�&'∂��&' 0∂1�(�, �)∂�1 2  

+ � �34	��34	 �  �� �(�, �)�� + �34	  ��34	 �(�, �)        (5) 

Thus, the memory and hereditary effects of the fractional 
derivatives have enforced to the terms on the right hand side 
and the effects of this well be clear during the numerical 
calculations. 

Due to the developments in computational systems 
(techniques and devices) and the difficulties in using 
analytical methods numerical techniques are considered as the 
master methods for such problems. Among numerical 
methods the finite differences [2, 4, 7, 8, 9], the weighted 
residual methods specially their finite element versions also 
spectral methods or combinations of them are heavily used in 
solving such problems. Recently, the wavelet methods are 
extensivelly used espcially the Haar wavelet because its 
simplecity. 

Haar wavelets are made up of pairs of piecewise constant 
functions and are mathematically the simplest among all the 
wavelet families. The Haar wavelet is the only real valued 
wavelet functions which are symmetrical, orthogonal and 
have a compact support [10]. A good feature of the Haar 
wavelets is its possibility for integration analytically arbitrary 
times. The Haar wavelets are very effective for treating 
singularities, since they can be interpreted as intermediate 
boundary conditions [11], but the disadvantage of the Haar 
wavelets is their discontinuity since the derivatives do not 
exist in the breaking end points. 

Chen and Hsiao [12, 13], who first proposed a Haar product 
matrix and a coeficient matrix, they derived a Haar operational 
matrix for the integrals of the Haar function vector and put the 
application for the Haar analysis into the dynamic systems. 
The technique is to approximate the highest derivative of the 
differential equation with finite Haar wavelet series. Then 
integrate this approximation to get the lower order derivatives 
in the equation. Recently, many authors use this technique to 
solve the differential or integral equations [14, 15, 16, 17, 18]. 

2. Haar Wavelets 

Haar wavelet appears in pairs of piecewise constant 
functions above and below the corresponding axeis in its 
standard form. Such functions were introduced by Alfred Haar 
in 1910, Haar showed that certain square wave function could 
be translated and scaled to create a basis set that span 51(0,1). 
Years later, it was seen that the system of Haar is a particular 
wavelet system, and they have been used for solving problems 

in differential equations only from 1997, [14]. The Haar 
wavelet family ℎ7(�): 0 ≤ � ≤ 1 is defined as: 

ℎ�(�) = 81, 0 < � ≤ 1,0, 9�ℎ:;<=�:               (6) 

the mother wavelet function ℎ�(x) as: 

ℎ�(�) = ?1, 0 ≤ � < �1 ,−1, �1 ≤ � < 1,0, 9�ℎ:;<=�:              (7) 

and For - ≥ 2 the n
th Haar wavelet functions are defined 

from ℎ�(�) by translation and dilation operations, i. e ℎ%(�) = ℎ�(2B� − C); - ≥ 1          (8) 

where - = 2B + C , D ≥ 0 , 0 ≤ C < 2B . Haar wavelet 
functions have orthogonal property in the form 

�  �� ℎE(�)ℎ%(�)�� = 2&BFE% = G2&B , H = - = 2&B + C,0, H ≠ -   (9) 

Accordingly, Haar wavelets are independent functions in 
the interval (0, 1). Wavelet analysis allows representing a 
function or signal in terms of a set of orthonormal basis 
functions called wavelets. Haar wavelets are basis for the 
space 51[0,1), when D  increase then the wavelet becomes 
more narrow, and so D is called the dilatation parameter. The 
other parameter C effect to wavelet location, for fixed D if k 
varying from 0  to 2B − 1  then ℎ%(�)  Location varying 
from [0, 2&K]  to [1 − 2&K, 1] . i.e the interval [0, 1] is 
subdivided into 2K = H subintervals each of length 2&K with 

center at 
1MN�1E , this is the reason for calling C the translation 

parameter. It is clear that the wavelet functions have finite 
support. 

3. Function Approximation 

Using the haar wavelet functions as bases for 51([0,1]) 
enables one to write any function O(�) ∈ 51[0,1) in the form O(�) = ∑  Q%R� S%ℎ%(�)             (10) 

where the coefficients S% are determined by 

S% = 2B �  �� O(�)ℎ%(�)��, - ≥ 0        (11) 

with - = 2B + C , D ≥ 0, and 0 ≤ C < 2B . Generalally, the 
series in (10) can be truncated to a finite number of terms. It is 
interesting to note that if O(�) is piecewise constant, or may 
be approximated as piecewise constant during each 
subinterval, then O(�) will be terminated at finite number of 
terms O(�) = ∑  E&�%R� S%ℎ%(�) = T(E)U V(E)(�)     (12) 

Where the coefficient vector T(E)U  and the Haar function 

vector V(E)(�) are define as T(E)U = [S�, S�, ⋯ , SE&�]          (13) 
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V(E)(�) = [ℎ�(�), 6�
��, 6E&�
��LU     (14) 

where � means transpose and H � 2B. 

The first four Haar function vectors which � � J�X , YX , ZX , [XL 
can be expressed the following [12] V
\�
1/8� � J1,1,1,0LU , V
\�
3/8� � J1,1, (1,0LU , V
\�
5/8� � J1, (1,0,1LU , V
\�
7/8� � J1, (1,0,1LU 

this can be written in matrix form as b
\� � JV
\�
1/8�, V
\�
3/8�, V
\�
5/8�, V
\�
7/8�L 
� c1 1 1 11 1 (1 (11 (1 0 00 0 1 (1d            (15) 

In general, we have 

b
E� � eV
E� f �1Eg , V
E� f Y1Eg , W , V
E� f1E&�1E gh  (16) 

where b
�� � J1L, b
1� � e1 11 (1h. The integration of the 

vector V
E�
�� is given by 

�  i� V
E�
���� � j
E�V
E�
��        (17) 

Where 0 � � � 1  and j
E�  is the H k H  operational 
matrix. Chen and Hsiao [12], who first proposed a Haar 
product matrix and a coefficient matrix, proved that 

j
E� � �1E l2Hj
E/1� (b
E/1�b
E/1�&� m n       (18) 

Where j
�� � e�1 h, j
1� � �\ e2 (11 0 h, 
j
\� � ��o c8 (4 (2 (24  0 (2  21  1  0  01 (1  0  0 d and so on. 

 

(1 a): Numerical Solutions 

 

(1 b): Maximum errors Mr 

Figure 1. Comparison between the exact solution and the approximate 

solutions of the partial differential equation for Case 1 equation (39). 

 

(2 a): Numerical Solutions 

 

(2 b): Maximum errors Mr 

Figure 2. Comparison between the exact solution and the approximate 

solutions of the partial differential equation for Case_2 equation (42). 
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4. Method of Solution 

The basic idea is to write the dominant derivative term 
appear in the problem as a finite series in the form �s tt
�, �� � ∑  E&�%R� S%
�+�6%
�� � T
E�U V
E�
��   (19) 

The dominant derivative term means the term which 
contains all the highest derivatives in only one term, the dot is 
used to denote derivatives with respect time and the primes 
means differentiation with respect to the space �. 

In application the time interval J0, �L  is divide into . 
parts of length ��  and the highest derivative �s tt
�, ��  is 
expanded in terms of the Haar wavelet as described in 
equation (19). Using �+ � � ��, � � 1,2, W , .. and assuming 
that the row vector T
E�U  is constant in the subinterval J�+, �+N��. Integrating formula (19) with respect to � from �+ 
to �  and twice with respect to �  from 0 to � , and using 
formula (17), the quantities �tt
�, ��, �t
�, ��, �
�, ��  and �s 
�, �� can be expressed as: 

�tt
�, �� � �tt
�, �+� 
 
� ( �+�T
E�U V
E�
��                               (20) 

�t
�, �� � �t
�, �+� 
 �t
0, �� ( �t
0, �+� 
 
� ( �+� T
E�U  j
E� V
E�
��               (21) 

�
�, �� � 
� ( �+�T
E�U j
E�1 V
E�
�� 
 �
�, �+� ( �
0, �+� 
 �
0, �� 
 �J�t
0, �� ( �t
0, �+�L           (22) 

�s 
�, �� � T
E�U j
E�1 V
E�
�� 
 �s 
0, �� 
 ��s t
0, ��                            (23) 

From the boundary conditions, we can get �
0, �+� � ��
�+�, �
1, �+� � ��
�+�, �s 
0, �� � ��. 
��, �s 
1, �� � ��. 
��, Putting � � 1 in formula (22) and (23) to get �t
0, �� � �t
0, �+� ( 
� ( �+�T
E�U j
E�1 V
E�
�� 
 ��
�� ( ��
�+� 
 ��
�+� ( ��
��                   (24) 

�s t
0, �� � (T
E�U j
E�1 v 
 ��. 
�� ( ��. 
��                                    (25) 

where the vector � is defined as � � J1,0, W ,0LU. Substituting formula (24) and (25) into equations (20) to (23) and rewrite the 
results by assuming � � �w , � � �+N� and �� � 
� ( �+� to obtain �tt
�w , �+N�� � �tt
�w , �+� 
 �� T
E�U V
E�
��                                 (26) 

�t
�w , �+N�� � �t
�w , �+� 
 �� T
E�U j
E�V
E�
�� ( �� T
E�U j
E�v 
 ��
�+N�� ( ��
�+� 
 ��
�+� ( ��
�+N��   (27) 

�
�w , �+N�� � �� T
E�U j
E�1 V
E�
�w� 
 �
�w , �+� ( ��
�+� 
 ��
�+N�� 
 �wJ(�� T
E�U j
E�v 
 ��
�+N�� (  ��
�+� 
 ��
�+� ( ��
�+N��L  (28) 

�s 
�w , �+N�� � T
E�U j
E�1 V
E�
�w� 
 �s 
0, �+N�� 
 �wJ(T
E�U j
E�1 v 
 ��. 
�+N�� ( ��. 
�+N��L         (29) 

And for the integral term 

�  �� �
�, ���� � 
�xy3�1 ( �+N��+�T
E�U j
E�1 V
E�
�w� 
 �+N��
�w , �+� ( �w
�xy3�1 ( �+N��+�T
E�U j
E�v 
 �+N�J�w
��
�+� ( ��
�+�� (��
�+�L 
 �  �� J��
�� 
 �w
��
�� ( ��
���L��                                                 (30) 

 

(3 a): Numerical Solutions 
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(3 b): Maximum errors Mr 

Figure 3. Comparison between the exact solution and the approximate solutions of the partial differential equation for Case 3 equation (44) with � � 0.9. 

The fractional derivative 
�	�
�,����	  is understood in the Caputo sense defined above. Accordinglly, the fractional derivative �	�
�,����	  can be rewritten as: 

�	�
�,����	 � �$
�&'� �  �� 
� ( ��&'JT
E�U j
E�1 V
E�
�� 
 ��t 
�+N�� 
 �wJ(T
E�U j
E�1 v 
 ��t 
�+N�� ( ��t 
�+N��LL��    (31) 

which can be rearranged as 

�	�
�,����	 � �$
�&'� �  �� 
� ( ��&'J�wJ��. 
�+N�� ( ��. 
�+N��L
��. 
�+N��L �� 
 �$
�&'� {T
E�U j
E�1 V
E�
��(�wT
E�U j
E�1 v| 
�34	�&' � (32) 

and 
�34	��34	 e���
�,����� h can be calculated as 

∂�&'∂��&' l∂1�
�, ��∂�1 n � ∂'&��
�, ��∂�'&� {�tt
�, �+� 
 
� ( �+�T
E�U V
E�
��|                                                                               
� 1Γ!1 ( 
1 ( ��" ~  �

� 
� ( ��&
�&'� ��� J�tt
�, �+�

� ( �+�T
E�U V
E�
��|�� 

� �$
'� �  �� 
� ( ��&
�&'�JT
E�U V
E�
��L�� � &�'$
'� T
E�U V
E�
��                            (33) 

then by equation (30) we can get 

�34	��34	 �  �� �
�, ���� � f $
Y�1$
1N'� �+N��N' ( $
1�$
�N'� �+N�' �+g T
E�U j
E�1 V
E�
�w� 
 $
1�$
�N'� �+N�' �
�w , �+� 
 $
1�$
�N'� �+N�' J�w
��
�+� (
�1
���� ( �0
���L 
 �34	��34	 �  �� J��
�� 
 �w
��
�� ( ��
���L�� ( �w
 $
Y�1$
1N'� �+N��N' ( $
1�$
�N'� �+N�' �+�T
E�U j
E�v  (34) 

Substitution equations (26), (29), (30), (32), (33) and (34) in equation (2) or (5), we find 

�	�
�,����	 � �tt
�w , �+N�� 
 � �  �� �
�, ���� 
 �
�w , �+N��                           (35) 

��
�,���� � �34	��34	 �tt
�w , �+N�� 
 � �34	��34	 �  �� �
�, ���� 
 �34	��34	 �
�w , �+N��                      (36) 

The Haar coefficients vector T
E� are calculated from the 
system of linear equations results from (35) or (36). The 

solution is found according to equation (28). 
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5. Error Estimates 

 

(4 a): Numerical Solutions 

 

(4 b): Maximum errors Mr 

Figure 4. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 3 equation (44) with � � 0.7. 

In order to estimate the accuracy of the obtained solution 
define the average error �r  as global error estimate and 
Maximum error �r as local error estimate as follows 

Δ
�� � ���
2� ( 12H , �� ( �
2� ( 12H , ��, � � 1,2,3, W , H 

�r � ���|Δ
��|               (37) 

�r � ∑  �����3 |r
w�|E                 (38) 

It is interesting to note that increasing the number of 
collocation points not always give better approximate solution, 
in some cases increasing the number of collocation points may 
turn the coefficient matrix of the resultant algebraic system to 
be nearly singular, [14]. 

6. Numerical Example 

Equation (2) descripes a general problem and its solution 

requires an initial condition �
�, 0� � �1 and two boundary 
conditions �
0, �� � 0  and �
1, �� � :&� . In order to 
recognize the effect of terms we divided the problem to four 
cases and the force term �
�, �� is used to adobt the exact 
solution to be �
�, �� � �1:&� . All results are given with Δ� � 0.00025, with ten time steps and � � 0.0025. 

 

(5 a): Numerical Solutions 

 

(5 b): Maximum errors Mr 

Figure 5. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 3 equation (47) with � � 0.9. 

6.1. Case 1 

The classical (integer) diffusion equation with non 
homogenous term and without integral term � � 0, � � 1, 
then equation (2) take the form 

��
�,���� � ���
�,����� ( 
�1 
 2�:&�       (39) 

Then equation (29) will be �s 
�w , �+� � T
E�U j
E�1 V
E�
�� ( �wJT
E�U j
E�1 v 
 :&�L (40) 

Substitute equations (40) and (26) in equation (39) we 
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obtain  T
E�U j
E�1 V
E�
�� ( �w{T
E�U j
E�1 v 
 :&�xy3| (�� T
E�U V
E�
�� ( �tt
�w , �+� 
 :&�xy3
�w1 
 2� � 0 (41) 

In this case equation (5) take the same form as equation (2) 

 

(6 a): Numerical Solutions 

 

(6 b): Maximum errors Mr 

Figure 6. Comparison between the exact solution and the approximate solutions of the partial differential equation for Case 3 equation (47) with � � 0.7. 

6.2. Case 2 

The classical (integer) diffusion equation with time 
dependent integral term and non homogenous term, � � 1, � � 1 then equation (1) take the form 

��
�,���� � ���
�,����� 
 �  �� �
�, ���� ( �1 ( 2:&�   (42) 

Calculate equation (30) and Substitute it with equations (40) 
and (26) in equation (42) to get �
E�U �
E�1 6
E�
�� ( �w{�
E�U �
E�1 � 
 :&�xy3| ( ���
E�U 6
E�
�� ( �tt
�w , �+� 
 �1 
 2:&�xy3 (f�xy3�1 ( �+N��+g �
E�U �
E�1 6
E�
�� ( �+N��
�w , �+� 
 �w
�xy3�1 ( �+N��+��
E�U �
E�� ( �+N��w:&�xy3 ( �w
1 ( :&�xy3� � 0  (43) 
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In this case equation (5) take the same form as equation (2) 

 

(7 a): Numerical Solutions 

 

(7 b): Maximum errors �r 

Figure 7. Comparison between the exact solution and the approximate solutions of the partial differential equation for Case 4 equation (49) with � � 0.9. 

6.3. Case 3 

The fractional time diffusion equation, when � � 0 , 0 � � � 1 then equation (2) take the form 

�	�
�,����	 � ���
�,����� 
 �1 �	��	 :&� ( 2:&�      (44) 

Then equation (32) will be 

�	�
�,����	 � �$
�&'� {T
E�U j
E�1 V
E�
�� (�wT
E�U j
E�1 v|
�34	�&' � 
 �w �	��	 :&� (45) 

Substitute equations (45) and (26) in equation (44) we gain 

�$
�&'� !T
E�U j
E�1 V
E�
�w� ( �wT
E�U j
E�1 v"
�xy334	�&' � 
 �w �	��	 :&�xy3 ( �� T
E�U V
E�
�w� ( �tt
�w , �+� ( �1 �	��	 :&�xy3 
 2:&�xy3 � 0 (46) 

and equation (5) take the form ��
�,���� � �34	��34	 f���
�,����� g ( �1:&� ( 2 �34	��34	 :&�   (47) 
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Substitute equations (40) and (33) in equation (47), we gain T
E�U j
E�1 V
E�
�w� ( �wJT
E�U j
E�1 v 
 :&�xy3L 
 �w1:&�xy3 
�'$
'� T
E�U V
E�
�w�  
 2 �34	��34	 :&�xy3 � 0      (48) 

 

(8 a): Numerical Solutions 

 

(8 b): Maximum errors Mr 

Figure 8. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 4 equation (49) with � � 0.7. 

6.4. Case 4 

The fractional diffusion equation with time dependent 
integral term and non homogenous term, � � 1, 0 � � � 1 
then equation (2) take the form 

�	�
�,����	 � ���
�,����� 
 �  �� �
�, ���� 
 �1 �	��	 :&� ( 2:&� (�1
1 ( :&��                        (49) 

Use equation (30) with equations (45), (26) and substitute 
them in equation (49) to get 

 

(9 a): Numerical Solutions 

 

(9 b): Maximum errors Mr 

Figure 9. Comparison between the exact solution and the approximate 

solutions of the partial differential equation for Case 4 equation (51) with � � 0.9. 

�$
�&'� !T
E�U j
E�1 V
E�
�w� ( �wT
E�U j
E�1 v" f�xy334	�&' g 
 �w �	��	 :&�xy3 ( ��T
E�U V
E�
�w� ( �w1 �	��	 :&�xy3 
 2:&�xy3 
�w1
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and equation (5) take the form 
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Use equation (40) with equations (33), (34) and substitute them in equation (51) to get 
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(10 a): Numerical Solutions 

 

(10 b): Maximum errors Mr 

Figure 10. Comparison between the exact solution and the approximate 
solutions of the partial differential equation for Case 4 equation (51) with � � 0.7. 

7. Conclusion 

It is well known that the technique of Haar wavelet is a 
computer oriented method and is an acceptable method for 
many kinds of problems. The use of operational matrix has 
facilitated the complicated integrals. We have used the Haar 
wavelet technique to fractional time diffusion equation with 
non-homogeneous term and time dependent integral term. 
Moreover, time dependent boundary condition are considered. 
In the numerical calculation section the complete problem is 
divided into four cases ranging from the classical integer case 
up to the fractional order with time dependent integral term. 

The use of inverse operator has improved the results 

significantly due to the memory effects of the fractional time 
derivatives which are extended to all other terms in the 
equation and this will be our interest with different methods in 
a subsequent work. 

The calculated results illustrate that the wavelet techniques 
can be applied to many other problems. Recently, many 
modification in using different bases functions is used to 
increase the accuracy as required and this will be our objective 
in a subsequent work. 

The small support of the considered bases functions in case 
of Haar wavelet demonstrates the sparsity of the resultant 
algebraic system. 

The numerical calculations illustrated the reliability of the 
wavelet technique in solving PDE as shown in the figures 
from 1 to 10. Also, the use of the inverse operator has moved 
the memory effects appears in fractional derivatives to all 
other terms in the considered equation. 
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