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Abstract: This paper focuses on the problem of constructing of some standard Hilbert style proof systems for any version of 

many valued propositional logic. The generalization of Kalmar’s proof of deducibility for two valued tautologies inside 

classical propositional logic gives us a possibility to suggest some method for defining of two types axiomatic systems for any 

version of 3-valued logic, completeness of which is easy proved direct, without of loading into two valued logic. This method 

i) can be base for direct proving of completeness for all well-known axiomatic systems of k-valued (k≥3) logics and may be for 

fuzzy logic also, ii) can be base for constructing of new Hilbert-style axiomatic systems for all mentioned logics. 

Keywords: Many-Valued Logics, Hilbert-Style Axiomatic Systems, Completeness of Formal System 

 

1. Introduction 

Many-valued logic (MVL) as a separate subject was 

created and developed first by Łukasiewicz [4]. His intention 

was to use a third, additional truth value for “possible” (or 

“unknown”). The outcomes of these investigations are, 

however, the Łukasiewicz’s systems, and a series of 

theoretical results concerning these systems. Essentially 

parallel to the Łukasiewicz approach, Post [5] introduced the 

basic idea of additional truth degrees, and applied it to 

problems of there presentation of functions. Later on, Gödel 

[6], Jaskowski [7], Kleene [8], Bochvar [9], Belnap [10] and 

many others continued investigation in this area. In the 

earlier years of development, this caused some doubts about 

the use fullness of MVL. In the mean time, however, many 

interesting applications were found in such fields as logic, 

mathematics, hardware design, artificial intelligence and 

some other area sofinformation technologies, therefore the 

investigations in area of MVL are very actual. Main 

theoretical results concern to formal systems, which can 

present different versions of MVL and questions on logical 

completeness of such systems. 

In this paper we focus on the problem of constructing of 

some standard Hilbert style proof systems for any version of 

many valued propositional logic. Generalization of Kalmar’s 

proof of deducibility for two valued tautologies inside 

classical propositional logic [1] gives us a possibility to 

suggest some method for defining of two types axiomatic 

systems for any version of 3-valued logic, completeness of 

which is easy proved direct, without of usually loading into 

two valued logic [11]. This method i) can be base for direct 

proving of completeness for all well-known axiomatic 

systems of k-valued (k≥3) logics and maybe for fuzzy logic 

also, ii) can be base for constructing of new Hilbert-style 

axiomatic systems for all mentioned logics. 

First of constructed system based on the logic with one 

designated value and conjunction, disjunction, implication, 

defined by Gödel, and negation, defined by permuting the truth 

values cyclically. Axioms of this system_are generalizations of 

formulas, using in Kalmar’s proof of deducibility for two valued 

tautologies. Second system is obtained from first one by some 

restrictions, based on the notions of determinative conjunct and 

determinative disjunctive normal form (dDNF), introduced by 

first coauthor for two-valued Boolean functions in [2] and 

generalized in [3] for 3-valued logic. 
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2. Preminilaries 

2.1. k-Valued Logic 

Let Ek be the set�0, ���� , … , ������ , 1
. We use the well-known 

notions of propositional formula, which defined as usual 

from k-valued propositional variables p, q, pi (i≥1) with 

values from Ek, parentheses (,), and logical connectives & ,

∨ , ⊃ , ¬ , defined as follow: 

� ∨ 
 = �����, ��,�&� = �����, ��, p⊃ 
 = �1, ���� ≤ ��, ���� > � 

and negation, defined by permuting the truth values 

cyclically ¬� = ���! − 1�� + 1���$!�/�! − 1� 
For propositional variable p and &	= (��� (0≤i≤k-1) we 

define p&		as p with (k-1)–I negations. In	 considered	 logic	 we	 fix	 1	 as	 designated value, so a 

formula φ	 with variables p1, p2,…pn is called k-tautology if 

for every 89 = �8�, 8�, … , 8:� ∈ <=:  assigning 8 j (1≤j≤n) to 

each pj gives the value 1 of φ. 

Our investigations will be focus on the 3-valued logic, but 

can be generalize for k-valued (k≥3) logics in the future. 

2.2. Determinative Disjunctive Normal Form for 2-Valued 

Logic 

Here we will use the current concepts of the unit Boolean 

cube ( <: ) for E= >0,1? , a propositional formula and a 

classical tautology. The particular choice of a language for 

presented propositional formulas is immaterial in this 

consideration. However, because of some technical reasons 

we assume that the language contains the propositional 2-

valued variables �(�� ≥ 1� and (or)�(A�� ≥ 1; C ≥ 1�, logical 

connectives ¬,&, ˅, ⊃  and parentheses (,). Following the 

usual terminology we call the variables and negated variables 

literals for 2-valued logic. The conjunct K(term) can be 

represented simply as a set of literals (no conjunct contains a 

variable and its negation simultaneously). 

In [2] the following notions were introduced. 

We call a replacement-rule each of the following trivial 

identities for a propositional formulaψ : 

Here must be deleted repetition of previous sentence 

0 & = 0, & 0 = 0, 1& = , &1 = ,

0 = , 0 = , 1 = 1, 1 = 1,

0 = 1, 0 = , 1 = , 1 = 1,

0 = 1, 1 = 0, = .

ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ
ψ ψ ψ ψ ψ ψ

ψ ψ

∨ ∨ ∨ ∨

⊃ ⊃ ⊃ ⊃

 

Application of a replacement-rule to some word consists in 

replacing some its subwords, having the form of the left-hand 

side of one of the above identities, by the corresponding 

right-hand side. 

Let φ  be a propositional formula, 1 2= { , , , }nP p p p…  be 

the set of all variables of φ , and 
1 2

= { , , , }i i i
m

P p p p′
…

(1 m n≤ ≤ ) be some subset of P . 

Definition 2.1. Given 1= { , , } m

m Eσ σ σ ⊂… , the conjunct

{ }1 2

1 2
= , , , m

i i i
m

K p p p
σσ σσ

…

1 is called 1φ − -determinative 

( 0φ − -determinative) if assigning jσ ( 1 j m≤ ≤ ) to each 

i
j

p  and successively using replacement-rules we obtain the 

value of φ (1 or 0) independently of the values of the 

remaining variables. 

1φ −  -determinative conjunct and 0φ − -determinative 

conjunct are called also φ -determinative or determinative for

φ . 

2.3. Determinative Disjunctive Normal Form for3-Valued 

Logic 

Here we recall the notion of determinative disjunctive 

normal form for 3-valued logic, given in [3] as follow. 

Above mentioned replacement-rules are valid for & and ∨, 

but for ⊃are valid only 0 ⊃ E = 1, 1 ⊃ E = E	��$	E ⊃ 1 =1.  For negation the replacement rules are ¬0=½, ¬½=1, ¬1=0 and ¬¬¬E=E. 

For the other cases we have introduced the following 

auxiliary relations for replacement ½&E = E&½ ≤ ½,½ ∨ E = E ∨½ ≥ ½, E ⊃ 0 = ¬HIE, ½⊃ E = HIE, E ⊃ ½ ≥ ½, 
Where by ¬HIE is denote a function, which is equal to 0, 

if value of E is more than 0 and 1, in the opposite case, and 

by	HIE is denote the function, which is equal to 1, if value of E is more than 0, and 0, in the opposite case. 

For every propositional variable р in 3-valued logic р,¬р 

and ¬¬р are the literals. 

Let φ  be a propositional formula of 3-valued logic,

1 2= { , , , }nP p p p…  be the set of all variables of φ , and

1 2
= { , , , }i i i

m
P p p p′

… (1 m n≤ ≤ ) be some subset of P . 

Definition 3.1. Given JK = �J�, J�, … , JL� ∈ <ML , the 

conjunct { }1 2

1 2
= , , , m

i i i
m

K p p p
σσ σσ

…

2
is called 1φ − -

determinative ( 0φ − -determinative, φ-1/2-determinative), if 

assigning 
jσ (1 j m≤ ≤ ) to each i

j
p  and successively using 

replacement-rules and, if it is neccesary, the auxiliary 

relations for replacement also, we obtain the value of φ (1,0 

or 1/2) independently of the values of the remaining 

variables. 

For example the conjuncts р1, ¬ р1 и ¬¬ р1, are 1-

determinative for the formula р1⊃ �р2⊃ �р3⊃р1)). For two 

                                                             

1
 As usual, given a propositional variable p  and 1Eσ ∈ , by pσ  we denote the 

function 
, = 1,

=
, = 0.

p if
p

p if

σ σ
σ





 

2
for pσ  we use here the definition of   the point 2.1. 
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first we use only replacement-rules, but for the last one we 

must use the auxiliary relations for replacement also. 
Definition of dDNF for3-valued logic gives by analogy. It 

is easy proved that 1) if for some tautology φ  the minimal 

number of literals, containing in φ -determinative conjunct, is 

m ,then φ -determinative DNF has at least 3
m 

conjuncts; 2) if 

for some tautology φ there is such m that every conjunct with 

m literals is φ -determinative, then there is φ -determinative 

DNF with no more than 3
m 

conjuncts. 

By analogy can be define determinative conjuncts and 

dDNF for k-valued logic with the mentioned properties also. 

For k-valued logic we must introduce the corresponding 

replacement-rules and auxiliary relations for replacement. 

3. Definitions and Properties of Main 

Systems 

Here the two main proof systems for above version of 3-

valued logic are described. The completeness every of them 

will be proved also. 

3.1. The System CN3 (Cyclically Negation3-Valued) 

For every formula A, B, C of 3-valued logic and each J�, J�  from the set {0,1/2,1} the following formulas are 

axioms schemes of CN3 

1.N ⊃ �O ⊃ N� 
2.�N ⊃ O� ⊃ �PN ⊃ �O ⊃ Q�R ⊃ �N ⊃ Q�� 
3.NST ⊃ �OSU ⊃ �N ⊃ O�V⊃�W,X,ST,SU�� 
4.NST ⊃ �OSU ⊃ �N ∨ O�V∨�Y,Z,[T,[U�� 
5.NST ⊃ �OSU ⊃ �N&O�V&�Y,Z,[T,[U�� 
6.NS ⊃ �¬N�S\  

7.�N ⊃ O� ⊃ ��N̅ ⊃ O� ⊃ ^PN̿ ⊃ OR ⊃ O`�, where 

a⊃�N, O, J�, J�� = �J� ⊃ J��&�¬�N⋁N̅�⋁�Oc ⊃O��⋁�¬PN⋁N̿R&¬�O⋁Oc��, a∨�N, O, J�, J�� =�J�⋁J��⋁��N ⊃ N̅�&¬�Od⋁Oc��⋁�¬PN̅⋁N̿R&�O ⊃ Od��, a&�N, O, J�, J��= �J�&J��⋁��N&N̿�⋁�O&Od��⋁��N&N̅�⋁�O&Oc� 
Inference rule is modus ponens /m.p./ 

W,W⊃XX . 
Note that every of schemes 3.-5. Presents at 9 schemes in 

its turn, and the scheme 6. presents3schemes. 

It is important to note that for N = J� and O = J� the 

following equations a⊃(N, O, J�, J�) = (J� ⊃ J�) , 

a∨(N, O, J�, J�) = (J�⋁J�)  and a&(N, O, J�, J�) = (J�&J�) 

are valid. 

It is not difficult to show that all formulas, given by 

axioms schemes 1.-7. are 3-tautologies. Note, that the 

functions a∗(N�, N�, J�, J�) play the main role for the axioms 

schemes 3.-5..  

The notions of derivation and derivation from premises are 

defined as usually. 

It is easy to prove the following statement for CN3. 

Deduction theorem. Let Γ be a set of some formulas and N 

and O be some formulas. If the formula B is derived in the 

system CN3 from the premises Γ and N(Γ, N ⊢ghM O ) then 

the formula N ⊃ O  is derived in the system CN3 from the 

premises Γ (Γ ⊢ghM N ⊃ O). 

Really, for proving this theorem it must be use the axioms 

1. and 2. , and also the formula N ⊃ N, which in his turn can 

be derived using the formulas 1. and 2. 

Further we will omit the abbreviation CN3 from the notion 

⊢ghM sometimes. 

Main Lemma Let 1 2= { , , , }nP p p p…  be the set of all 

variables of any formula A, then for every 

89 = (8�, 8�, … , 8:) ∈ <M
: 

��
iT , ��

iU , … , �:
ij ⊢ NW(iT,iU,…,ij). 

This statement is generalization of corresponding Lemma 

for 2-valued logic (see for example [1]). 

Proof is given by induction on number n of variables in the 

formula A. For n=1 we have by 8 = 0 �̿ ⊢ �̿ , by 8 =
1

2l  �̅ ⊢ �̅  and by 8 = 1 � ⊢ � . Suppose that statement is 

valid for number of variables ≤n. If the number of variables 

is n+1, then formula A can be in the one of following forms: 

1. N = N� ∗ N�,where∗∈ {&,∨, ⊃}, 

     2. N = ¬N� 

For the case 1. N�P89R = J�, N�P89R = J� => NP89R = J� ∗
J� 

By induction hypothesis 

��
iT , ��

iU , … , �:
ij ⊢ N�

ST  

��
iT , ��

iU , … , �:
ij ⊢ N�

SU  

Use one of the axiom schemes 3.–5. we have 

��
iT , ��

iU , … , �:
ij ⊢ N�

ST ⊃ (N�
SU ⊃ (N� ∗ N�)V∗(WT,WU,ST,SU)) 

And for N� = J�, N� = J� 

��
iT , ��

iU , … , �:
ij ⊢ N�

ST ⊃ PN�
SU ⊃ (N� ∗ N�)ST∗SUR 

And after two modus ponens derives(N� ∗ N�)ST∗SU . 

For the case2. N�P89R = J => NP89R = Jd and we must use 

the axiom scheme_ 6.　 

Corollary. If A is 3-valued tautology, then for every 

89 = (8�, 8�, … , 8:) ∈ <M
: 

��
iT , ��

iU , … , �:
ij ⊢ N. 

Theorem. Any formula is derived in CN3 iff it is 3-valued 

tautology. 

Proof. It is obvious that every formula, which is derived in 

CN3, is 3-valued tautology. 

Let 1 2= { , , , }nP p p p… (n≥1) be the set of all variables of 

any tautology A. For every89 = (8�, 8�, … , 8:) ∈ <M
: by above 

corollary we have ��
iT , ��

iU , … , �:
ij ⊢ N. 

For every 8�, 8�, … , 8:�� we take into consideration the 

following 3 truth values 
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m 8�, 8�, … , 8:��, 08�, 8�, … , 8:��, 1 2l8�, 8�, … , 8:��, 1 , for which we have 

n��iT , ��iU , … , �:��ijoT , �̿: ⊢ N��iT , ��iU , … , �:��ijoT , �̅: ⊢ N��iT , ��iU , … , �:��ijoT , �: ⊢ N. 

By deduction theorem we have 

��iT , ��iU , … , �:��ijoT ⊢ �̿: ⊃ N ��iT , ��iU , … , �:��ijoT ⊢ �̅: ⊃ N ��iT , ��iU , … , �:��ijoT ⊢ �: ⊃ N. 
Then adding 

				��iT , ��iU , … , �:��ijoT ⊢ ��: ⊃ N� ⊃ ���̅: ⊃ N� ⊃ ���̿: ⊃ N� ⊃ N��/axiom7./ 

��iT , ��iU , … , �:��ijoT ⊢ ��̅: ⊃ N� ⊃ ���̿: ⊃ N� ⊃ N�/m.p./ 

��iT , ��iU , … , �:��ijoT ⊢ ��̿: ⊃ N� ⊃ N/m.p./ 

��iT , ��iU , … , �:��ijoT ⊢ N/m.p./ 

So, the number of premises is now n-1. Repeating above 

steps, we obtain finally the derivation of tautology A in 

CN3.⧠	
Note, that this proof is the full analogy to proof of 

corresponding theorem for the2-valued logic. It is obvious, 

that after proving the corresponding Main Lemma for any k-

valued logic for k≥4, the proof of the theorem, corresponding 

above, will be the same. Some hardness for generalization of 

above results is contained in definition of the functions a∗�N, O, J�, J��  for ∗∈ >&,∨, ⊃? to describing the 

corresponding axioms schemas 3.-5. for the systems CNk. 

3.2. The System CN3-Cut-Free
 

This system is defined by analogy to the cut-free Frege 

system F − , which is described and investigated in [2]. The 

schematic axioms of the system CN3-cut-free are the 

following 

1. 1 2 1& ( & &( & ) )m m iα α α α α− ⊃… … , 1m ≥ ,1 i m≤ ≤ , 

2.a)�q ⊃ rST� ⊃ ��q ⊃ sSU� ⊃Pq ⊃ �r ⊃ s�V⊃�t,u,ST,SU�R� 
b)�q ⊃ rST� ⊃ ��q ⊃ sSU� ⊃ Pq ⊃ �r ∨ s�V∨�t,u,ST,SU�R� 
c)�q ⊃ rST� ⊃ ��q ⊃ sSU� ⊃ Pq ⊃ �r&s�V&�t,u,ST,SU�R�, 
(for functions a⊃�r, s, J�, J��, a∨�r, s, J�, J��,a&�r, s, J�, J�� are defined as above) 

d)�q ⊃ rS� ⊃ �q ⊃ ¬r�S\� 
3.(a) �8&q ⊃ a� ⊃ �P8̅&q ⊃ aR ⊃ ^P8̿&q ⊃ aR ⊃�q ⊃ a�`� 
(b)�v ⊃ a� ⊃ ��v̅ ⊃ a� ⊃ ��v̿ ⊃ a� ⊃ a��, 

where 

1. a
 
is provable formula, 

2. iα (1 )i m≤ ≤ and γ are literals, α , β , δ are arbitrary 

formulas, 

3. 1 2 1= &( & &( & ) )l lK β β β β−… … ( 1)l ≥ for arbitrary 

literals iβ (1 )i l≤ ≤ , 

4. for every s�&�s�&…�sw��&sw�… � ⊃ E  style 

subformula from some axiom of second group conjunct

1{ , , }lβ β…  is E-determinable, 

5. if
1 2= { , , , }set

nK β β β… for some subformula

1 2= & & & kK β β β… from first axiom of third group, then

setKδ ∉ and { } setKδ ∪ is subset of some φ -determinative 

conjunct, but setK is notφ -determinative. 

Rule of inference is modus ponens 
A A B

B

⊃
. 

Note that in spite of rule modus ponens, the restrictions1.-

5.“insist on repeats" steps of Main Lemma for derivation of 

any 3-tautolgy in the system CN3-cut-free. It is obvious that 

this system is complet. 

Note also that on the base of the systems CNk for k≥4 can 

be constructed the corresponding systems CNk-cut-free. 

4. Conclusion 

Two types of complete propositional proofs systems for 

some version of many valued propositional logic are 

introduced here. In [2] were proved that for 2-tautologies the 

systems F − , resolution and cut-free sequent are polynomially 

equivalent by proof sizes and by proof steps (polynomial 

equivalence means, that transformation of any proof in one 

system into a proof in the other system can be done with no 

more than polynomial increase of proof complexity). We 

hope that analogous results can be proved for k≥3 between 

the systems CNk-cut-free and Ek, which are constructed in 

[3]. It is posible to describe for above version of k-valued 

logic the corresponding cut-free sequent with the same 

properties. We hope that the systems, correspondings to all 

systems, which are described here and in [3], can be 

introduced for other versions of k-valued logic. 
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