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Abstract: This study proposes a game-theoretic approach to solve a multiobjective decision-making problem. The essence 

of the method is that a normalized decision matrix can be considered as a payoff matrix for some zero-sum matrix game, in 

which the first player chooses an alternative and the second player chooses a criterion. Herein, the solution in mixed strategies 

of this game is used to construct a weighted sum of the primary criteria that leads to a solution of the primary multiobjective 

decision-making problem. The proposed method leads to a notionally objective weighting method for multiobjective decision-

making and provides “true weights” even in the absence of preliminary subjective evaluations. The proposed new method has a 

simple application. It can be applied to decision-making problems with any number of alternatives/criteria, and its practical 

realization is limited only by the capabilities of the solver of the linear programming problem formulated to solve the 

corresponding zero-sum game. Moreover, as observed from the solutions of the illustrative examples, the results obtained with 

the proposed method are quite appropriate and competitive. 
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1. Introduction 

A particular type of multiobjective decision-making 

(MODM) problem, namely the simplest case with a finite 

number of decision alternatives and criteria, is considered 

herein. This study aims to propose a mathematical model that 

is useful when the decision criteria are conflicting and there 

is no decision-making authority or no evaluation of the 

importance of the criteria. 

In general, a multiobjective formulation is the typical 

starting point for theoretical and practical analyses of 

decision-making problems. Thus, various versions of Pareto 

optimality and a vast arsenal of different methods can be 

used for Pareto optimization. However, unlike single-

objective optimization, a characteristic feature of Pareto 

optimality is that the set of Pareto-optimal alternatives is 

large and all Pareto-optimal alternatives must be considered 

mathematically equal. 

Because the decision made must be usually unique, 

additional factors are considered for selecting specific or 

more appropriate (in some sense) alternatives from the set of 

Pareto-optimal alternatives. Herein, a special game-theoretic 

approach is proposed for selecting such appropriate 

alternatives. The essence of the method is that solving a 

special two-person zero-sum game leads to a notionally 

objective weighting method for the MODM problem. This 

game is constructed as follows. Let A and C denote (finite) 

sets of alternatives and criteria, respectively. The initial data 

for decision-making is assumed as a decision matrix whose 

elements exhibit the performance of different alternatives 

with respect to various criteria. A normalized decision matrix 

can be considered a payoff matrix for some zero-sum matrix 

game in which the A-player chooses one of the alternatives 

from set A and the C-player chooses one of the criteria from 

set C. In this paper, the solution in mixed strategies of this 

game is used to construct a weighted sum of the primary 

criteria that leads to a solution of the MODM problem. 

The rest of this paper is organized as follows. Section 2 

describes the proposed approach. Section 3 presents two 

illustrative examples. Finally, Section 4 concludes the study. 

2. Proposed Methods 

Herein, n
R  is an n-dimensional space. The following 
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2.1. Preliminaries 

The necessary notation and definitions are first considered. 

The initial data for decision-making are assumed as a 

decision matrix X whose elements exhibit the performance of 

different alternatives with respect to various criteria: 
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where ijx  is the performance measure of alternative i  on 

criterion j and ,m n  are the numbers of alternatives and 

criteria, respectively. Furthermore, each criterion is assumed 

to be classified as either beneficial (for which higher values 

are desirable) or nonbeneficial (for which lower values are 

desirable). Moreover, criteria with indexes 

1,..., (1 )B Bn n n≤ ≤ are assumed to be beneficial and, 

correspondingly, that the other criteria are nonbeneficial. 

Clearly, the decision matrix must be normalized to ensure 

that its elements are comparable. Because normalization can 

be defined variously, the so-called upper–lower-bound 

approach will be used (for details regarding the problems 

associated with normalization see [1]). 

Normalization procedure: 

(i) Finding bounds: 

 

(ii) Setting zeroes, directions, and scales: 

max

max min

min

max min

, 1, , ;

( ) , 1, , .

, 1, , .

…

…

…

j ij

B

j j

ij j

B

j j

ij ij

x
i n

u u X j n
x

i n n

x

x x

x

x x

 −
 =

−≡ = =
−

= + −

 

The above normalization procedure yields the matrix 

.( ) [ ( )]ijU X u X= The elements of ( )U X  are dimensionless 

numbers on the interval [0,1] and represent the normalized 

performance of alternative i on criterion .j  Note also that, by 

construction, in the matrix ( )U X it is predetermined that a 

lower value is preferable for each criterion (column); in other 

words, all criteria are nonbeneficial. Therefore, after 

normalization, the goal of the decision-making procedure is 

to minimize all criteria (in the sense of matrix ( )U X ) 

simultaneously; in other words, a typical multiobjective 

optimization problem is obtained. 

Next, the basic concepts of multiobjective optimization 

theory are recalled. To this end, the following notation is 

introduced. Alternatives are denoted by { }1, , ,… mA a a= and 

criteria by : , 1, , ,…jc A j n→ =R so that

{ } { }1, , , 1, , .,( ) … …j i i m j niju c a ∈ ∈=  Furthermore, set A 

is known as the set of alternatives, map

1( , , ) :
	

… n
nc c c A= → R the criteria map (correspondingly 

, 1, , ,…jc j n= is objective and set ( )
	 nc A ⊂R  the set of 

admissible values of criteria). The following concepts are 

also associated with the criteria map and the set of 

alternatives. Alternative a A∈ is the minimizer of criterion

j if ( ) min ( ).j j
a A

c a c a
∈

=  ( )min

	jA c  denotes the set of all 

minimizers of objective { }, 1, , .…j j nc ∈  Correspondingly, 

point ( ) ( ),
	 	

j c a c Aξ = ∈ where ( )min
,
	ja A c∈ an anchor 

point and point 1( ) ,…I I I n
nξ ξ ξ= ∈R  where

{ }min ( ), 1, , ,…I
j ja A

c a j nξ
∈

= ∈  an ideal point. An ideal 

point is attainable if alternative 
Ia A∈ exists such that

  

Alternative *a A∈  is weakly Pareto optimal (i.e., weakly 

efficient) if there is no a A∈  with *( ) ( )j jc a c a< for all 

1, , .…j n=  Point *a A∈  is Pareto optimal (i.e., efficient) if 

there is no a A∈ with *( ) ( )j jc a c a≤ for all 1, ,…j n=  

and index { }0 1, ,…j n∈  exists such that 
0 0 *( ) ( ).j jc a c a<

The set of all (weakly) efficient alternatives is denoted by

( )we eA A  and called the (weakly) Pareto set. 

Correspondingly, ( )( ) ( )we ef A f A� �  is called the (weakly) 

efficient front. 

Pareto optimality is an appropriate concept for MODM. 

However, it must be stressed that, unlike single-objective 

optimization, a characteristic of Pareto optimality is that the 

set ( )we eA A  of (weakly) Pareto-optimal alternatives is 

generally large and all alternatives from ( )we eA A  must be 

considered mathematically equal (i.e., equally “good”). 

Because the decision that is made usually must be unique, 

{ } { }min max

1 1min , , , max , , , 1, , .
j jmj mjj jx x x x j nx x= = =… … …

( ).I Ic aξ = 	
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additional factors are considered for selecting specific or 

more appropriate (in some sense) alternatives from the set 

( )we eA A . In the following subsection, one possible 

approach in that direction is considered. 

2.2. Proposed Approach 

The considerations based on game theory, [2], and, 

correspondingly, the game-theoretic approach to solving 

MODM problems are presented herein. The proposed method 

considers the matrix ( ) [ ( )]ijU X u X=  as a payoff matrix for 

some zero-sum matrix game. This game can be interpreted as 

follows. The row player (A-player) chooses one of the 

alternatives    ,a A∈    and the column player (C-player) 

chooses one of the criteria { }1, , .… nc C c c∈ = The quantity 

( )j iiju c a=  represents the sum paid to the A-player by the 

C-player when the former chooses alternatives ia A∈ and 

the latter chooses criteria .jc C∈  A mixed strategy for the A-

player is vector mξ ∈ ∆  and a mixed strategy for the C-player 

is vector .nζ ∈ ∆ Correspondingly, component 

, 1, , , ( , 1, , )… …k kk m k nξ ζ= =  represents the probabilities 

of the A-player (C-player) choosing alternative/criterion k. 

Therefore, for mixed strategies  the 

expected payoff for the A-player is 

1 1 1 1 1 1

1 1
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Clearly, ( )P aζ can be interpreted as the expected payoff of 

alternative a A∈  when choosing the C-player’s mixed 

strategy ,nζ ∈∆ and ( )Q cξ can be interpreted as the 

expected payoff of criterion c C∈  when choosing the A-

player’s mixed strategy .mξ ∈ ∆  Recall also that the pair of 

mixed strategies 
* *,m nξ ζ∈∆ ∈∆  is a Nash equilibrium 

solution of the considered zero-sum matrix game if and only 

if  

Let 
* *( , ) m nξ ζ ∈ ∆ × ∆ be a solution of the considered 

zero-sum matrix game. 
*

nζ ∈ ∆  is interpreted as a “properly 

chosen” weight, and *
*

1

( ) ( )
	 n
c

j j

j

P a c aζ ζ
=

=∑  is considered as a 

“true” aggregation of the performance criteria. Moreover, it 

is well known that any solution of the minimization problem 

* ( ) min
	
cP a

a A

ζ
→ 


∈ 

 

is always Pareto optimal, [3]. Therefore, the proposed 

approach allows selecting some Pareto-optimal alternative 

that can be considered as “appropriate.” 

Clearly, a relevant interpretation of the aforementioned 

procedure is required to determine in what sense this obtained 

Pareto-optimal alternative is appropriate. The A-player and the 

C-player are represented by populations named the A-population 

and the C-population, respectively. It is assumed that each 

alternative (criterion) corresponds to the subpopulation of 

individuals that dispose of this and only this alternative 

(criterion) in the A-population (C-population) and that such 

subpopulations cover all A-populations (C-populations). 

Furthermore, component ( ), 1, , , 1, ,… …i ii m i nξ ζ= =  of 

mixed strategy  is interpreted as a share 

of the corresponding subpopulation in the A-population (C-

population). 

3. Examples 

This section focuses on three illustrative examples of using 

the proposed method, which is applied by solving the 

corresponding zero-sum game. To this end, the standard 

approach of reducing a game-theoretic problem to a linear 

programming problem is used. All the necessary calculations 

are performed using MATLAB. Note that the obtained results 

are quite appropriate and competitive and are found with no 

prior estimates of criterion importance. 

3.1. Material Selection 

Consider an example that involves selecting material for the 

mast of a sailing boat. The component in question is a hollow 

cylinder that is subjected to axial compression (the parameters 

are a length of 1,000 mm, outer diameter ≤ 100 mm, inner 

diameter ≥ 84 mm, mass ≤ 3 kg, and a total compressive axial 

force of 153 kN; see [4]). This problem has been faced by 

several researchers using various methods such as weighted-

properties method (WPM), VIKOR (multicriteria optimization 

through the concept of a compromise solution), CVIKOR 

(comprehensive VIKOR), fuzzy-logic approach (FLA), 

multiobjective optimization based on ratio analysis (MOORA), 

MULTIMOORA (a multiplicative form of MOORA), and the 

reference-point approach (RPA) etc., [4-8]. Note also that the 

material selection problem is an important application of 

MODM until today, [9, 10]. 

The following criteria are defined for the problem in hand: 

specific strength (SS), specific modulus (SM), corrosion 

resistance (CR), and cost category (CC), [4]. The choice must 

be made from 15 alternative materials. The corresponding 

decision-making data are given in Table 1, the considered 

sample materials ranked in descending order as obtained by 

different methods are given in Table 2 and the normalization 

results are given in Table 3. 

, ,m nξ ζ∈∆ ∈∆

* * .max min ( , ) min max ( , ) ( , )
n nm mζ ζξ ξ

ξ ζ ξ ζ ξ ζ
∈∆ ∈∆∈∆ ∈∆
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The solution (equilibrium) to the corresponding zero-sum 

game with mixed strategies is 

*

*

,

, , ,

0.4293 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0051, 0, 0.4008, 0.1648

0.1375 0.0528 0.3850 0.4247

( )
.

( )

ξ
ζ

= 


= 

 

Therefore, in accordance with the proposed approach, the 

“proper” performance of the alternatives can be obtained, 

aggregating their (normalized) performances with weights 
*ζ . 

Table 1. Decision matrix for selecting material for a sailing boat mast. 

 # 
Specific strength (MPa) Specific modulus (GPa) Corrosion resistance Cost category 

SS SM CR CC 

  1 2 3 4 

1 AISI 1020 35.9 26.9 1 5 

2 AISI 1040 51.3 26.9 1 5 

3 ASTM A242 type 1 42.3 27.2 1 5 

4 AISI 4130 194.9 27.2 4 3 

5 AISI 316 25.6 25.1 4 3 

6 AISI 416 heat treated 57.1 28.1 4 3 

7 AISI 431 heat treated 71.4 28.1 4 3 

8 AA 6061 T6 101.9 25.8 3 4 

9 AA 2024 T6 141.9 26.1 3 4 

10 AA 2014 T6 148.2 25.8 3 4 

11 AA 7075 T6 180.4 25.9 3 4 

12 Ti–6Al–4V 208.7 27.6 5 1 

13 Epoxy–70% glass fabric 604.8 28.0 4 2 

14 Epoxy–63% carbon fabric 416.2 66.5 4 1 

15 Epoxy–62% aramid fabric 637.7 27.5 4 1 

Notes: CR scale: 1 = poor; 2 = fair; 3 = good; 4 = very good; 5 = excellent; CC scale: 1 = very high; 2 = high; 3 = moderate; 4 = low; 5 = very low. Source: [8] 

The results of the corresponding calculations are presented 

in Table 4. Figure 1 shows the solution obtained using the 

proposed method (dark gray line) in comparison with those 

obtained using other methods (see Table 3). Note that for the 

proposed method with the considered decision matrix and the 

method for its normalization, the following materials have 

special status: AISI 1020, epoxy–70% glass fabric, epoxy–

63% carbon fabric, and epoxy–62% aramid fabric. 

 

Vertical axis: rank; horizontal axis: material (see the main text for an explanation) 

Figure 1. Comparison of rankings obtained by different methods for the material selection problem. 

Table 2. Materials ranked by different methods. 

Material MOORA* MULTIMOORA* RPA* FLA* Wpm** CVIKOR *** VIKOR *** 

1 14 14 14 14 14 12 14 

2 15 15 13 13 13 6 11 

3 13 13 12 15 15 9 13 

4 12 12 15 4 11 4 4 

5 4 4 4 11 10 15 15 

6 7 11 11 9 9 14 10 

7 6 10 10 10 8 11 5 

8 11 9 9 8 7 13 12 

9 10 7 8 12 2 8 7 

10 9 6 7 7 4 10 9 
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Material MOORA* MULTIMOORA* RPA* FLA* Wpm** CVIKOR *** VIKOR *** 

11 5 8 6 6 6 5 6 

12 8 5 2 5 3 7 8 

13 2 2 3 3 12 2 2 

14 3 3 1 2 1 1 1 

15 1 1 5 1 5 3 3 

Sources: *[8]; **[4]; ***[7]. 

Table 3. Normalized decision matrix for the material selection problem. 

 

Criteria 

1 2 3 4 

Materials 

1 0.9832 0.9565 1.0000 0.0000 

2 0.9580 0.9565 1.0000 0.0000 

3 0.9727 0.9493 1.0000 0.0000 

4 0.7234 0.9493 0.2500 0.5000 

5 1.0000 1.0000 0.2500 0.5000 

6 0.9485 0.9275 0.2500 0.5000 

7 0.9252 0.9275 0.2500 0.5000 

8 0.8753 0.9831 0.5000 0.2500 

9 0.8100 0.9758 0.5000 0.2500 

10 0.7997 0.9831 0.5000 0.2500 

11 0.7471 0.9807 0.5000 0.2500 

12 0.7009 0.9396 0.0000 1.0000 

13 0.0537 0.9300 0.2500 0.7500 

14 0.3619 0.0000 0.2500 1.0000 

15 0.0000 0.9420 0.2500 1.0000 

Table 4. Materials ranked by the proposed method. 

Material Aggregated performance Rank 

1 0.5707 14 

2 0.5672 10 

3 0.5689 11 
4 0.4582 2 

5 0.4989 9 

6 0.4880 8 
7 0.4848 7 

8 0.4709 5 

9 0.4616 4 
10 0.4605 3 

11 0.4532 1 

Material Aggregated performance Rank 

12 0.5707 12 

13 0.4713 6 

14 0.5707 15 
15 0.5707 13 

3.2. Intercompany Comparison 

Next, the problem of comparing companies as an MODM 

problem is considered. In a previous study, seven companies 

{ }1 7, ,…A a a=  were compared using four criteria 

{ }1 4 :, ,…cC c=  profitability 1,c  productivity 2 ,c  market 

position 3 ,c and reversal debt ratio 4c  (note that taking the 

reversal value of debt ratio as the criterion instead of the debt 

ratio itself makes all criteria beneficial), [11]. Moreover, the 

TOPSIS (Technique for Order Preference by Similarity to 

Ideal Solution) method was considered and different 

techniques were used for criteria weighting, namely EM 

(Entropy Measure), CRITIC (CRiteria Importance Through 

Intercriteria Correlation), SD (Standard Deviation), and MW 

(Mean Weight), [11]. Note also that the MODM methods are 

frequently used to develop relevant “composite indicators” 

for various applications, [12]. 

The decision matrix for this case study is presented in 

Table 5. Table 6 lists the companies ranked in descending 

order obtained using different methods, and Table 7 presents 

the normalization results. 

Table 5. Decision matrix for the company-comparison problem. 

# Company 
Profitability Productivity Market position Reversal debt ratio 

PRF PRD MAP RDR 

  1 2 3 4 

1 Company 1 0.12 49469 0.15 1.21 

2 Company 2 0.08 34251 0.14 1.23 

3 Company 3 0.04 32739 0.09 1.12 

4 Company 4 0.16 44631 0.11 1.56 

5 Company 5 0.09 33151 0.13 1.09 

6 Company 6 0.15 31408 0.07 1.39 

7 Company 7 0.13 30654 0.17 1.16 

Source: [11] 

Table 6. Companies ranked by different methods. 

Company EM CRITIC SD MW 

1 3 1 2 2 

2 6 5 6 5 

3 7 7 7 7 

4 1 3 1 1 

5 5 6 5 6 

6 4 4 4 4 

7 2 3 3 3 

Source: [11] 

The solution (equilibrium) to the corresponding zero-sum 

game with mixed strategies is 

*

*
,

0, 0, 0.8242, 0, 0, 0.1758, 0

0, 0, 0.7418

( )
.

0 )82( .25

ξ

ζ

= 


= 
 

Therefore, in accordance with the proposed approach, the 

“proper” performance of the alternatives can be obtained, 

aggregating their (normalized) performances with weights 
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*.ζ  The results of the corresponding calculations are 

presented in Table 8. 

Table 7. Normalized decision matrix for the company-comparison problem. 

 

Criteria 

1 2 3 4 

Company 

1 0.3333 0.0000 0.2000 0.7447 

2 0.6667 0.8088 0.3000     0.7021 

3 1.0000 0.8892 0.8000 0.9362 

4 0.0000 0.2571 0.6000 0.0000 

5 0.5833 0.8673 0.4000 1.0000 

6 0.0833 0.9599 1.0000 0.3617 

7 0.2500 1.0000 0.0000 0.8511 

 

 

Table 8. Companies ranked by the proposed method. 

Company Aggregated performance Rank 

1 0.340642 2 

2 0.403822 3 

3 0.835167 6 

4 0.445080 4 

5 0.554920 5 

6 0.835191 7 

7 0.219754 1 

Figure 2 shows the solution obtained using the proposed 

method (dark gray line) in comparison with those obtained 

using other methods (see Table 6). Note that for the proposed 

method, with the considered decision matrix and the method 

for its normalization, the priorities shift in the directions of 

the market position and reversal debt ratio. In addition, 

companies 3 and 6 appear to have special status. 

 
Vertical axis: rank; horizontal axis: company (see the main text for an explanation) 

Figure 2. Comparison of rankings obtained by different methods for the intercompany comparison problem. 

3.3. Employee Selection 

Finally, the problem of selecting employees is considered, 

as investigated in a previous study [13] (note also that 

application of MODM methods for employee selection 

problem was also considered recently, e.g. [14]). The 

alternatives { }1 17, ,= …A a a  represent 17 people seeking a 

position in a company. The criteria { }1 13, ,= …C c c  

represent the results of five different tests: language 

knowledge, professional knowledge, safety knowledge, 

professional skills, and computer skills as well as eight 

interviews with four managers, which include four face-to-

face interviews and four panel interviews; all criteria are 

beneficial. A total of 16 modifications of TOPSIS are 

considered, and the corresponding rankings of the 17 persons 

under consideration are presented. The decision matrix for 

this case study is presented in Table 9. The applicants ranked 

in descending order determined using different methods are 

presented in Table 10; the decision matrix normalization 

results are presented in Table 11. 

Table 9. Decision matrix for the employee selection problem. 

# Persons 
LT PT ST PS CS PI1 II1 PI2 II2 PI3 II3 PI4 II4 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 P01 80 70 87 77 76 80 75 85 80 75 70 90 85 

2 P02 85 65 76 80 75 65 75 60 70 70 77 60 70 

3 P03 78 90 72 80 85 90 85 80 85 80 90 90 95 

4 P04 75 84 69 85 65 65 70 55 60 68 72 62 72 

5 P05 84 67 60 75 85 75 80 75 80 50 55 70 75 

6 P06 85 78 82 81 79 80 80 75 85 77 82 75 75 

7 P07 77 83 74 70 71 65 70 70 60 65 72 67 75 

8 P08 78 82 72 80 78 70 60 75 65 75 67 82 85 

9 P09 85 90 80 88 90 80 85 95 85 90 85 90 92 

10 P10 89 75 79 67 77 70 75 75 80 68 78 65 70 

11 P11 65 55 68 62 70 50 60 62 65 60 65 65 70 
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# Persons 
LT PT ST PS CS PI1 II1 PI2 II2 PI3 II3 PI4 II4 

1 2 3 4 5 6 7 8 9 10 11 12 13 

12 P12 70 64 65 65 60 60 65 65 75 50 60 45 50 

13 P13 95 80 70 75 70 75 75 80 80 65 75 70 75 

14 P14 70 80 79 80 85 80 70 75 72 80 70 75 75 

15 P15 60 78 87 70 66 70 65 75 70 65 70 60 65 

16 P16 92 85 88 90 85 90 95 92 90 85 80 88 90 

17 P17 86 87 80 70 72 80 85 70 75 75 80 70 75 

Source: [13] 

Table 10. Applicants ranked by different methods. 

Person 
Methods 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 

1 5 5 5 5 5 5 5 5 5 1 5 1 6 

2 14 12 11 14 14 12 11 14 14 14 12 14 12 

3 3 3 3 3 3 3 3 3 3 3 3 4 3 

4 12 13 13 13 12 13 13 12 12 13 13 13 12 

5 11 11 12 11 11 11 12 11 11 11 11 11 11 

6 4 4 4 4 4 4 4 4 4 3 4 4 4 

7 13 14 14 12 13 14 14 13 13 12 14 11 14 

8 8 8 8 8 8 9 9 9 9 9 8 8 8 

9 2 2 2 2 2 2 2 2 2 2 1 2 1 

10 10 10 10 10 10 10 10 10 10 10 10 10 10 

11 16 16 16 16 16 16 16 16 16 17 16 16 16 

12 17 17 17 17 17 17 17 17 17 16 16 16 16 

13 9 9 9 9 9 8 8 8 8 7 9 7 9 

14 6 6 6 6 6 6 6 7 7 8 5 8 5 

15 15 15 15 15 15 15 15 15 15 15 15 15 15 

16 1 1 1 1 1 1 1 1 1 3 2 3 2 

17 7 7 7 7 7 7 7 6 6 3 7 4 6 

Source: [13] 

The solution (equilibrium) to the corresponding zero-sum 

game with mixed strategies is 

*

*
, , , , , , , , , ,

( )0, 0, 0, 0.1989, 0, 0, 0, 0, 0, 0, 0,3899, 0,4111, 0, 0, 0, 0, 0

0, 0.0782, 0 0 0 0 0 0 0.5009 0 0 0 0.4209
.

( )

ξ

ζ

= 


= 

 

Therefore, in accordance with the proposed approach, the 

“proper” performance of the alternatives can be obtained, 

aggregating their (normalized) performances with weights 
*.ζ  The results of the corresponding calculations are 

presented in Table 12. Figure 3 shows the solution obtained 

using the proposed method (dark gray line) in comparison 

with those obtained using other methods (see Table 10). In 

this example; only three criteria play decisive roles, namely 

the test of professional knowledge and the face-to-face 

interviews with managers 2 and 4. Moreover, the 

aforementioned interviews have roughly the same 

significance and are greater than that of the test of 

professional knowledge. In addition, only applicants P04, 

P11, and P12 appear to have privileged positions.  

Table 11. Normalized decision matrix for the employee selection problem. 

 

Criteria 

1 2 3 4 5 6 7 8 9 10 11 12 13 

Alternatives 

1 0.43 0.57 0.04 0.46 0.47 0.25 0.57 0.25 0.33 0.38 0.57 0.00 0.22 

2 0.29 0.71 0.43 0.36 0.50 0.63 0.57 0.88 0.67 0.50 0.37 0.67 0.56 

3 0.49 0.00 0.57 0.36 0.17 0.00 0.29 0.38 0.17 0.25 0.00 0.00 0.00 

4 0.57 0.17 0.68 0.18 0.83 0.63 0.71 1.00 1.00 0.55 0.51 0.62 0.51 

5 0.31 0.66 1.00 0.54 0.17 0.38 0.43 0.50 0.33 1.00 1.00 0.44 0.44 

6 0.29 0.34 0.21 0.32 0.37 0.25 0.43 0.50 0.17 0.33 0.23 0.33 0.44 

7 0.51 0.20 0.50 0.71 0.63 0.63 0.71 0.63 1.00 0.63 0.51 0.51 0.44 

8 0.49 0.23 0.57 0.36 0.40 0.50 1.00 0.50 0.83 0.38 0.66 0.18 0.22 

9 0.29 0.00 0.29 0.07 0.00 0.25 0.29 0.00 0.17 0.00 0.14 0.00 0.07 

10 0.17 0.43 0.32 0.82 0.43 0.50 0.57 0.50 0.33 0.55 0.34 0.56 0.56 

11 0.86 1.00 0.71 1.00 0.67 1.00 1.00 0.83 0.83 0.75 0.71 0.56 0.56 

12 0.71 0.74 0.82 0.89 1.00 0.75 0.86 0.75 0.50 1.00 0.86 1.00 1.00 

13 0.00 0.29 0.64 0.54 0.67 0.38 0.57 0.38 0.33 0.63 0.43 0.44 0.44 

14 0.71 0.29 0.32 0.36 0.17 0.25 0.71 0.50 0.60 0.25 0.57 0.33 0.44 

15 1.00 0.34 0.04 0.71 0.80 0.50 0.86 0.50 0.67 0.63 0.57 0.67 0.67 

16 0.09 0.14 0.00 0.00 0.17 0.00 0.00 0.08 0.00 0.13 0.29 0.04 0.11 

17 0.26 0.09 0.29 0.71 0.60 0.25 0.29 0.63 0.50 0.38 0.29 0.44 0.44 
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Vertical axis: rank; horizontal axis: applicants (see the main text for an explanation) 

Figure 3. Comparison of rankings obtained by different methods for the employee selection problem. 

Table 12. Applicants ranked by the proposed method. 

Person Aggregated performance Rank 

1 0.305179 5 

2 0.623621 12 

3 0.083485 2 

4 0.729443 16 

5 0.405417 7 

6 0.297361 4 

7 0.703616 14 

8 0.528829 11 

9 0.111545 3 

10 0.434315 8 

11 0.729443 15 

12 0.729443 17 

13 0.376379 6 

14 0.509954 10 

15 0.641351 13 

16 0.057937 1 

17 0.444227 9 

4. Conclusion 

As is well known, reaching an agreement about the relative 

importance of criteria in MODM problems is difficult. 

Herein, a special game-theoretic approach is proposed to 

solve this problem. The proposed method leads to a 

notionally objective weighting method for MODM problems 

by solving a special two-person zero-sum game. Moreover, 

the proposed method provides notionally true weights even in 

the absence of preliminary subjective evaluations. 

Further, the proposed method can be applied to decision-

making problems with any number of alternatives/criteria 

and its practical realization is limited only by the capabilities 

of the solver of the linear programming problem formulated 

to solve the corresponding zero-sum game. As observed from 

the solutions of the illustrative examples indicate, the results 

obtained with the proposed method are quite appropriate and 

competitive. 
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