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Abstract: There are two algebras of compositions, Post and Jablonsky algebras. Definitions of these algebras was very simple. 

The article gives mathematically precise definition of these algebras by using Mal’cev’s definitions of the algebras. A. I. Mal’cev 

defined pre-iterative and iterative algebras of compositions. The significant extension of pre-iterative algebra is given in the 

article. Iterative algebra is incorrect. E. L. Post used implicitly pre-iterative algebra. S. V. Jablonsky used implicitly iterative 

algebra. The Jablonsky algebra has the operation of adding fictitious variables. But this operation is not primitive, since the 

addition of fictitious variables is possible at absence of this operation. If fictitious functions are deleted in the Jablonsky algebra 

then this algebra becomes correct. A natural classification of closed sets is given and fictitious closed sets are exposed. The 

number of fictitious closed sets is continual, the number of essential closed sets is countable. 
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1. Introduction 

One of outstanding achievements of 20th century in 

mathematics was construction of function closed sets in the 

algebra of logic by American mathematician E. L. Post ([1], 

1921). 

This Post achievement was not understood by 

contemporaries, since it was ahead of time by several decades. 

Twenty years later, Post gave a more complete description of 

his achievement [2]. The first response to Post’s results 

appeared in the following year. But it was only in middle of 

fiftieth that these results get well known. 

In the USSR the monograph of Post’s results was published 

in 1966 [3]. The Post results were presented in the monograph 

in a more accessible form, but from several other positions. 

This monograph was an impulse for numerous studies in the 

field of closed sets of functions. 

Further development of the Post results was given by the 

outstanding algebraist A. I. Mal’cev [4]. He constructed two 

algebras calling pre-iterative and iterative Post algebras The 

pre-iterative algebra gave a mathematically precise justification 

of the Post results, iterative algebra gave a mathematically 

rigorous justification of results of S. V. Jablonsky, G. P. 

Gavrilov, V. B. Kudryavtsev. Unfortunately, pre-iterative 

algebra (1976) did not receive due recognition and almost all 

subsequent researchers ([5], monograph) ignored it. 

This paper is devoted to the Post algebra and some of its 

modifications. It is proved that the Jablonsky algebra is incorrect. 

Further, a pre-iterative algebra is called a Post algebra, since 

E. L. Post implicitly used this algebra. The iterative algebra is 

called the Jablonsky algebra, since S. V. Jablonsky implicitly 

used iterative algebra in his writings. 

2. Signature and Main Sets of Algebras 

The structure of algebras contains the main set and the main 

operations above this set. Notations of main set and main 

operations are given by the signature of algebras. 

The members of the main set are function names, denoted 

by ����, and are relation names, denoted by ����. 

The dot above the ��� symbol means that this symbol is a 

functional constant. The absence of the dot means that this 

symbol is a functional variable, values of which are names of 

functions. It is generally accepted to call functional constants 

and functional variables simply functions and omit the point in 

the notation. The symbol � is an ordinal number of a function, 

� is arity of the function. The numeration of functions begins 

anew for each value of � and similarly for relations. 
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The signature of algebra variables is �	 , �
 , .... Each 

symbol ��� is associated with word ����	. . . ��, each word ��� 

is associated with word ����	, . . . �� . Usually brackets and 

commas are used: ���(�	, . . . , ��), and ���(�	, . . . , ��). 

The signature of algebras contains a sort character of values 

of variables and functions. This sort is denoted by one of 

characters � (prime numbers), ��  (first � characters of set 

of natural numbers), �  (positive integers), �  (integers), � 

(rational numbers), � (real numbers), � (complex numbers). 

Each function (relation) is specified by a table. Names of 

tables are names of functions (relations), the ordinal number 

of a function (relation) is the ordinal number of their tables. 

In the case of sort ��, the ordinal number of function is a 

number in �  number system, this number is contents of 

function column when it reads from top to bottom. In the case 

of the sort �, the ordinal number is in � number system. The 

set of these ordinal numbers is countable and can be numbered, 

but these numbers are very large and can be used in function 

names only theoretically. In the case of other sorts, the 

numbers may be ordinals. The names ����  are abstract, 

mnemonic names are used instead. 

The numbering of relations is also implemented by ordinal 

numbers by lexico-graphic ordering of rows of tables and by 

lexico-graphic ordering of tables. 

The definition of the signature can be represented by the 

four < �, �, �, � >, where � is the set of symbols ����, � is 

the set of symbols ���� , �  is the set of symbols �� , 

�	ͼ	{�, ��, �, �, �, �, �}. 

3. Post Algebra 

3.1. Definition of Algebra 

A. I. Mal’cev gave the following definition of Post algebra: 

Definition Post algebra �! is 

�! = (�!; $, %, ⊲,∗) 

where �! is the main set of algebra, � is the sort of members 

of the set, $, %, ⊲ and * are the main operations of algebras. 

It is generally accepted to denote the sort �� by � in this 

definition. 

The main operations realize the composition (superposition) 

of functions and relations. These operations used to construct 

closed sets of functions and relations. The operations $ and % 

permute variables. The operation ⊲ reduces the number of 

variables in a function and a relation by identifying two 

variables. The operation * creates new functions and relations 

by placing a function into a function and relation into relation. 

The formal definition of these operations is presented below. 

They are presented with significant additions to the definitions 

of A. I. Mal’cev. In particular, relations are added to main set, 

all sorts are used, and constants are added (constats are absent 

in the Mal’cev definitions). 

Main operations are primitives that allow to construct all 

operations of the algebra �!. In particular, these operations 

allow to construct an operation of adding a fictitious variable 

to a function by placing the projective (selective) function (

 

instead of the first variable of any function. The same 

operations allow to construct an operation of adding a 

fictitious variable to a relation by placing a two-ary relation 

with two fictitious variables instead of the first variable of any 

relation. The proof of these statements is given in section 5. 

All Mal’cev’s definitions exclude constants. Therefore, 

constants will be added to the definitions as zero-ary functios. 

Definitions without constants do not allow the Webb function 

to generate all functions of the ��. 

3.2. Cyclic Permutation Operation ) 

This operation is an member of the symmetric group. The 

first variable becomes the last and all variables are shifted left 

by one position. 

Definition One-ary cyclic permutation operation $ is 

$�	� = �
� ↔ ∀�	, … , �� �
�(�	, … , ��) = 

= �	�(�
, . . . , �� , �	) 

$�	� = �
� ↔ � ≥ 1 ∧ ∀�	, … , �� �
�(�	, … , ��) = 

= �	�(�
, . . . , �� , �	) 

In this definition, $�		 = �		 , $�		 = �		  for one-ary 

functions and relations. For zero-ary functions (constants) 

$�	1 = �	1 , zero-ary relations do not exist. As a result, the 

operation $ is performed for all members of the main set. 

In the symmetric group, the operation $  is 

21, . . . , � − 1, �
2, . . . , �, 1 5. 

The value of the functional variable �	� is the name of the 

function, which is also the name of the table of this function. 

The $ operation places the first column of the table after the 

last column and then shifts all the columns to the left. 

Similarly for relations. 

3.3. The Operation of the Long Permutation 6 

This is an another operation of the symmetric group. 

Definition Single long permutation operation % permutes 

the first and last variables in a function and relation: 

%�	� = �
� ↔ ∀�	, … , �� �
�(�	, … , ��) = 

= �	�(�� , �
, . . . , ��7	, �	) 

%�	� = �
� ↔ � > 0 ∧ ∀�	, … , �� �
�(�	, … , ��) = 

= �	�(�� , �
, . . . , ��7	, �	) 

 

In this definition, %�		 = �		 , %�		 = �		  for one-ary 

functions and relations. For zero-ary functions %�	1 = �	1 . 

Zero-ary relations do not exist. So the operation % is used for 

all members of main sets. 

In the symmetric group, the operation %  is 

21,2, . . . , � − 1, �
�, 2, . . . , � − 1,15. 

The operation %  permutes the first and last variable 

columns in the function and relation tables. 

Using the operations $  and % , all members of the 

symmetric group can be get. In this group, the member 
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9 1, . . . , �
�	, . . . , ��:  renumbers the variable �	  to ��; , the other 

variables are renumbered in the same way. 

3.4. Identification Operation ⊲ 

This operation belongs to the permutation semi-group with 

repetitions. 

Definition The single identification operation ⊲ deletes the 

first variable in the function and in the relation after the 

identification of the first and second variables: 

⊲ �	� = �
�7	 ↔ � ≥ 2 ∧ ∀�	, … , ��7	�
�7	(�	, … , ��7	) = 

= �	�(�	, �	, . . . , ��7	) 

⊲ �		 = �
	 ↔ <∃�	∃�
 �		(�	) ≠ �		(�
)@ ∧ 

∧ ∀�	 �
	(�	) = �		(�	) ((AA(�B�CD	�		) 

⊲ �		 = �
1 ↔ (∀�	∀�
 �		(�	) = 

= �		(�
)) ∧ �
1 = �		(0) (��EB�B�FGA	�		) 

⊲ �	1 = �	1 

⊲ �	� = �
�7	 ↔ � ≥ 2 ∧ 

∧ ∀�	, … , ��7	 �
�7	(�	, … , ��7	) = �	�(�	, �	, . . . , ��7	) 

⊲ �		 = �		 

This operation deletes rows with different values in the 

table in the first and second columns for variables. As a result, 

these columns become equal and the first column is deleted. 

The arity of function and relation is reduced by one. But this is 

not possible for zero-ary functions and one-ary relations , so 

they remain unchanged. This is not possible for a one-ary 

function too, if it is not fictitious. Indeed, after identification, a 

single function becomes a constant, and if the function is not 

fictitious, then it is unclear what value of which row from the 

function column should become a constant. But with a 

fictitious function, all the rows of a function column are the 

same, and the value of any row can become constant. 

As a result, the operation ⊲ is applicable to all members of 

main set. 

The next subsection will show that only the operation ⊲ 

allows generating zero-ary functions. In particular, the Webb 

function generates zero-ary functions only by this operation. 

In the semi-group with repetitions, the operation ⊲ �� is 

denoted 21,2,3, . . . , �1,1,3, . . . , �5, 1 is repeated here. 

3.5. Substitution Operation * for Functions 

This operation is fundamental in superpositions for 

functions and relations. 

Definition The two-ary substitution operation * replaces the 

first variable of the function �	�; with the function �
�I: 

�	�; ∗ �
�I = �J�;K�I7	 ↔ �	 ≥ 1 ∧ 

∧ ∀�	, . . . , ��;K�I7	 �J�;K�I7	(�	, . . . , ��;K�I7	) = 

= �	�;(�
�I(�	, . . . , ��I), ��IK	, . . . , ��;K�I7	)) 

�	1 ∗ �
�I = �J�I7	 ↔ �
 ≥ 1 ∧ 

∧ ∀�	, . . . , ��I7	 �J�I7	(�	, . . . , ��I7	) = �	1 

�	1 ∗ �
1 = �	1 

This operation, together with the operations $  and %  , 

performs any substitution. 

The operation definition consists of several formulas. In the 

first formula, there is no substitution in the zero-ary function. 

In the second formula, the substitution operation is given only 

to the zero-ary function, but the function �
�I should not be 

zero-ary. The result of the substitution is a function in which 

all variables are fictitious or absent (if the substitution of a 

one-ary function is used). The value of this function is the 

value of the zero-ary function. In both formulas, the resulting 

function has the four �	 + �
 − 1. But if �	 = �
 = 0, then 

the resulting function has arity 0. This is reflected in the last 

formula. 

As follows from these formulas, constants are generated 

only by constants. This means that the Webb function cannot 

generate constants with a substitution operation. Only the 

identification operation must be used to generate constants. 

3.6. The Substitution Operation * for Relations 

This operation is similar to the operation * for functions, but 

it has significant limitations. 

Definition The two-ary substitution operation * replaces the 

first variable of a relation �	�; with a relation �
�I: 

�	�; ∗ �
�I = �J�;K�I7	 ↔ �	 ≥ 1 ∧ 

∧ �
 ≥ 1 ∧ ∀�	, . . . , ��;K�I7	�J�;K�I7	(�	, . . . , ��;K�I7	) 

= �	�;(�
�I(�	, . . . , ��I), ��IK	, . . . , ��;K�I7	)) 

where  

�	�;<�
�I<�	, … , ��I@, ��IK	, … , ��;K�I7	@ ↔ 

↔ �
�I(�	, . . . , ��I) ∧ �	�;(��I , . . . , ��;K�I7	) 

The definition of functions is a special case of this 

definition. 

Indeed, an � -ary function can be represented by a (� + 1) 

-ary relation. In the expression 

�
�I(�	, . . . , ��I) ∧ �	�;(��I , . . . , ��;K�I7	)  with the value of 

the function �
�I7	
 is ��I , the value of the function �	�;7	

 is 

��;K�I7	. After substitution, the first variable in �	�; (and the 

first variable in �	�;7	
) is the value of the function �
�I7	

, that 

is, ��I . 

The operation *, in conjunction with the operations $ and 

%, performs any substitution. 

3.7. Closing Operation 

A. I. Mal’cev gave the definition of this operation in 
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addition to the definition of Post algebra. 

The definitions of main operations of Post algebra establish 

the rules for constructing new functions. These rules and the 

definition of the signature of algebras belong to logic; they 

apply to many theories. The definition of a closure operation 

does not belong to logic. 

Definition Let �	 be some set of functions (relations). The 

closure of �	 is the set [�	] containing 

- functions (relations) from �	, 

- the result of applying the operations of cyclic permutation, 

long permutation and identification to functions (relations) 

from �	, 

- is the result of substituting a function (relation) from [�	] 
into a function (relation) from [�	]: 

[�	] = �
 ↔ (∀�	 ∈ �			�	 ∈ �
) ∧ 

∧ (∀�	 ∈ �
		$�	 ∈ �
 ∧ %�	 ∈ �
 ∧⊲ �	 ∈ �
) ∧ 

∧ ∀�	, �
 ∈ �
		�	 ∗ �
 ∈ �
 

[�	] = �
 ↔ (∀�	 ∈ �	 �	 ∈ �
) ∧ 

∧ (∀�	 ∈ �
 $�	 ∈ �
 ∧ %�	 ∈ �
 ∧⊲ �	 ∈ �
) ∧ 

∧ ∀�	, �
 ∈ �
			�	 ∗ �
 ∈ �
 

This definition is iterative. The first step of the iteration �
 

gives all functions (relations) of �	. The second step adds the 

superpositions of functions (relations) from �
  to �
 . The 

next step adds the compositions of functions (relations) of �
 

to �
. And so on. 

4. Jablonsky Algebra 

A. I. Mal’cev gave the following definition of this algebra. 

Definition Jablonsky algebra P � is 

�! = (�!; $, %, ⊲, ⊳,∗) 

where �! is the main algebra set, $, %, ⊳, ⊲ and * are the 

main operations of the algebra. 

This algebra, unlike the previous one, has another main 

operation of adding a fictitious variable to a function and 

relation. 

Definition A variable �� is fictitious if 

∀�� , ��Q 	 �� ≠ ��R → ��(�	, … , �� , … , ��)= 

= ��(�	, . . . , ��7	, ��R, ��K	, . . . , ��) 

∀�� , ��Q �� ≠ ��R → ��(�	, … , �� , … , ��) = 

= ��(�	, . . . , ��7	, ��R, ��K	, . . . , ��) 

Functions and relations are called fictitious or essential, if 

they contain or do not contain fictitious variables. 

Definition The operation ⊳ of adding fictitious variable is 

⊳ �	� = �
�K	 ↔ ∀�	, … , ��K	�
�K	(�	, … , ��K	) 

= �	�(�
, . . . , ��K	) 

⊳ �	� = �
�K	 ↔ ∀�	, … , ��K	�
�K	(�	, … , ��K	) 

= �	�(�
, . . . , ��K	) 

A. I. Mal’cev designated this operation as T . This 

designation is overloaded. New designations are more 

mnemonic: ⊳ indicates an increase in the number of variables, 

⊲  indicates a decrease in the number of variables (A. I. 

Mal’cev used U instead of ⊳ to identify the variables). 

According to the operation ⊳ , each essential function 

(relation) in a closed set has added the infinite set of functions 

(relations) with fictitious arguments. This means that finite 

closed sets of any functions (relations) do not exist. But finite 

closed sets exist in Post algebra and there exist infinite closed 

sets, which contain only essential functions (relations). 

The Jablonsky algebra is a subalgebra of Post algebra, since 

all closed sets of the Jablonsky algebra are present in Post 

algebra. 

5. Jablonsky Algebra Is Correct 

An operation is primitive if it is not constructed by other 

operations. Operations of composition algebras must be 

primitive. Jablonsky algebra is incorrect since its operation of 

adding fictitious variables is not primitive. 

Theorem The ⊳ operation is not primitive. 

Proof. Only substitution by a two-ary function can increase 

arity of any function and relation by one, viz, can add a 

variable. 

A variable added to a function � will be first and fictitious 

if the first variable of � is substituted by a two-ary function, 

which have the first variable fictitious. This two-ary function 

is only the projective (selective) function (

(�	, �
) . The 

substitution of (

(�	, �
) in � adds a fictitious variable to �, 

since �((

(�	, �
), �J, . . . , ��K	) = �(�
, �J, . . . , ��K	) , viz, 

the result of the substitution does not depend on value of the 

first variable. 

The variable added to the relation �	�  will be first and 

fictitious if (1) the substituted two-ary relation �

 has both 

variables fictitious, (2) the sort of the first of these variables 

and the sort of variable that is supposed to be added in �	� are 

the same, (3) the sort of the second variable in �

 and the sort 

of the first variable in �	� are the same, (4) the relation �

 is 

placed instead of the first variable of �	�. 

The substitution �

  in �	� , viz, 

�	�(�

(�	, �
), �J, . . . , ��K	) , really adds the fictitious first 

variable in �	�, if the first variable is fictitious in �
� and the 

second variable contains only values coinciding with values of 

the first variable in �	�. 

Therefore, the operation of adding a fictitiousy variable is 

not primitive. 

The Jablonsky algebra is incorrect, but its results are 

correct, since this algebra is isomorphic to a new algebra 

whose basic set does not contain fictitious functions. 

The new algebra is correct, since there is no operation 

adding a fictitious variable. If fictitious functions in closed 

sets of the Jablonsky algebra are removed, then all closed sets 

in the new algebra are get. This is the great value of Jablonsky 

algebra. 
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Fictitious objects of any theory are needed only to construct 

a classification of all objects. In the future, all fictitious objects 

are removed from the theory. The new algebra does not 

contain fictitious functions and relations, but not all fictitious 

objects are removed from it. 

6. Fictitious Closed Sets 

Only Post algebra will be considered. The obtained results 

can be applicable to other algebras. They can be applicable to 

closed sets of relations, too, since the operations of function 

compositions are a special case of operations of relation 

compositions. The sort ��, can be considered but the main 

obtained results are valid for other sorts too. 

The main obtained results are next: the number of fictitious 

(useless) closed sets is continuous, and the number of essential 

closed sets is countable. This means that the algebras of 

compositions of many valued functions and relations do not 

contain anything essentially new to compare with algebras of 

two-valued functions and relations [6,7]. 

6.1. Bases of Closed Sets 

Almost every infinite closed set has a continual number of 

sets generating it. Therefore, it is common to use generating 

sets that are bases. 

Definition A set of functions that generates a closed set is a 

basis if any proper subset of these functions does not generate 

this closed set. 

But almost any infinite closed set of functions has countable 

set of bases. Therefore, the minimal basis must be chosen. 

Definition A basis is minimal if the number of functions in 

it is minimal. If the number of functions in bases is the same, 

then a basis with minimal lexico-graphical order must be 

chosen. In this case, the functions in each basis must be 

arranged in a sequence of their decreasing numbers. The basis 

is minimal if it has functions with minimal numbers. 

There are closed sets that have no bases [8], and there are 

closed sets that have only infinite bases (bases with an infinite 

number of functions). As a rule, such sets have a single infinite 

basis. 

6.2. Classification of Closed Sets 

The main problem of each theory is the classification of its 

objects by using properties obtained in theorems of the theory. 

And each object should belong to only one class. Such a 

classification is called natural. 

There are many papers devoted to the classification of 

closed sets, but only one of them [9] gives a natural 

classification of these sets. This classification uses the number 

of functions in a minimal basis. 

Definition The class V1  contains closed sets without a 

basis. The class VW contains closed sets, the minimal basis of 

which has X functions. The class VY  contains closed sets 

with an infinite basis. 

The class V1  is possibly finite. Each class VW  with 

1 ≤ X < � is countable, since the set of all functions of type 

�� is countable. The class VY is continual [8]. 

6.3. Fictitious Closed Sets 

As mentioned above, the main problem of any theory is the 

natural classification of objects of this theory. The next main 

problem is the identification and deliting of fictitious objects. 

As a rule, the number of fictitious objects is incomparably 

greater than the number of essential objects. 

Theorem A closed set is fictitious (useless) for classification 

if it belongs to the class VW with X ≠ 1. 

Proof. Each function generates the closed set. A set of 

functions, that generates a closed set, is called class. Then any 

function belongs to a unique class, and each class belongs to a 

unique closed set of V	. Consequently, a natural classification 

of all functions has obtained, viz, classification of all objects 

of the main set. This means that closed sets VW with X ≠ 1 

are useless to classify functions. 

Thus, the number of essential closed sets is countable, and 

the number of fictitious closed sets is continual. As a result, 

the second main problem of theories is completed and huge 

number of fictitious objects is deleted. 

An algebra with fictitious closed sets is fictive. Fictive 

algebras have the following property. 

Theorem A fictive algebra becomes empty after removing 

all essential algebras from it. 

Proof. By removing one essential algebra, one function in 

the minimal basis of this algebra is removed. By removing all 

essential algebras, the basis becomes empty. But empty basis 

has empty set. 

Any essential algebra is not empty after deleting the other 

essential algebras since it bases are not deleted. 

A fictitious algebra is the union of essential algebras. Any 

essential algebra is not a union of essential algebras. An 

essential algebra is not union of its algebras, since the union of 

these algebras is the new algebra. The new algebra contains 

the essential algebra. 

It is necessary to emphasize the distinction between 

fictitious functions and fictitious algebras. There are fictitious 

algebras of essential functions, and there are essential algebras 

of fictitious functions. 

The classification of algebras given above has only one 

level. Usually, the classification contains many levels, in 

particular, the Post classification [2] contains an infinite 

number of levels. The main result is that the multi-level 

classification should be built only for closed classes of V	. 

As an example, a multilevel classification of fictitious 

closed classes of Boolean functions was constructed in [10]. 

This example demonstrates useless of such classification. 

7. Conclusions 

Mathimically precise construction of algebras of 

compositions is given. The signature of the algebras contains 

all sorts of objects of the algebras. The sorts are changed from 

prime numbers to complex numbers. The objects of algebras 

are functions and relations. Functions and relations can be any 

valued. Mal’cev’s definitions of all algebras of composition 

are extended by the signature and are added by zero-ary 

functions (constants). So the algebras become complete. A. I. 
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Mal’cev defined two algebras of compositions, one of them 

was used implicitly by E. L. Post and the other was used 

implicitly by S. V. Jablonsky. It is shown that Jablonsky 

algebra is not correct, and the way to correct the algebra is 

pointed. 

The classification of close sets of functions in both algebras 

uses bases. Any class of the classification has close sets 

generated by bases contained the same number of functions. 

This number is changed from zero to infinity. The class of 

close sets generated by infinite basis has infinite set of 

subclasses. Any other class has countable set of subclasses. 

But all classes are fictitiouse (useless) for classification of 

functions. Exseption is the class of closed sets generated by 

unit bases. This class is essential. Then the number of 

fictitious closed sets is countinuous, the number of essential 

closed sets is contable. 
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