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Abstract: Recently, a definition of fractional which refers to classical calculus form called conformable fractional calculus has 

been introduced. The main idea of the concept of conformable fractional calculus is how to determine the derivative and integral 

with fractional order either rational numbers or real numbers. One of the most popular definitions of conformable fractional 

calculus is defined by Katugampola which is used in this study. This definition satisfies in some respects of classical calculus 

involved conformable fractional derivative and conformable fractional integral. In the branch of conformable fractional 

derivatives, some of the additional results such as analysis of fractional derivative in quotient property, product property and 

Rolle theorem are given. An application on classical calculus such as determining monotonicity of function is also given. Then, 

in the case of fractional integral, this definition showed that the fractional derivative and the fractional integral are inverses of 

each other. Some of the classical integral properties are also satisfied on conformable fractional integral. Additionally, this study 

also has shown that fractional integral acts as a limit of a sum. After that, comparison properties on fractional integral are 

provided. Finally, the mean value theorem and the second mean value theorem are also applicable for fractional integral. 
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1. Introduction 

Today various types of fractional calculus have been 

proposed by many researchers. The most popular definition 

is given by the Riemann-Liouville, Caputo, Grünwald 

Letnikov, Hadamard definition. The information about their 

definition can be found in [12, 14, 15]. Most of the types of 

fractional calculus definitions that have been introduced 

cannot be used for classical properties such as product rules, 

quotient rules, chain rules, Rolle theorems, and mean value 

theorems. Therefore, Khalil et al. [11] introduced a new 

modest idea. The definition called conformable fractional 

calculus is the definition of fractional derivative and 

integral with � ∈ (0,1) order and it satisfies classical 

properties mentioned above. Moreover, there are several 

researchers introduced their definition conformable 

fractional calculus in the other form [1-3, 10]. Recently, the 

concept of conformable fractional calculus has gained 

relevance, namely because they kept some of the properties 

of ordinary derivatives. Even more, this new subject has 

been important topics to discuss because there are several 

applications about this topic [5, 16]. Also, further results 

about this subject were developed by [6]. The aim of this 

paper is to provide additional results of conformable 

fractional calculus based on the definition introduced by 

Katugampola [10]. There are several properties of 

conformable fractional calculus that well functioned, like 

classical calculus involving fractional derivative and 

fractional integral, such as properties to determine fractional 

derivatives, definite fractional integral as the limit of a sum 

and comparison properties of fractional integrals are also 

developed. Aditionally, some applications are given. 

2. Conformable Fractional Derivative 

Katugampola [10] introduced natural definition of 

fractional derivative definition which satisfies classical 

derivative properties. 
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2.1. Definition of Conformable Fractional Derivative 

Let � ≥ 0 and � ∈ (0,1). Given a function 
:	[�, �] → ℝ. 
Then conformable fractional derivative of 
 is defined by 

��(
)(�) = lim�→�
���� !"#$%�(�)

� ,       (1) 

for �	 > 0.	If 
  be � −differentiable on (0, �), �	 > 0  and lim(→�) 
�(�) exists. Then, 
�(0) = lim�→�) 
(�). 
The following theorem is an important result to prove the 

next consequences. 

2.2. The Result Theorem of Conformable Fractional 

Derivative 

If �	 > 	�	 > 0  and 
:	[�, �] → ℝ  is differentiable 

function then 
 is � −differentiable function at � > �, then 


�(�) = �*%� +
+� 
(�).               (2) 

Proof. Using (1) and taking ℎ = -�*%�(1 + /(-) then,  

��(
)(�) = lim�→�

0�1��"#2 − 
(�)

- , 

= lim�→�

0� + -�*%� + /(-)2 − 
(�)

-  

= lim�→�

(� + ℎ) − 
(�)

ℎ��%*1 + /(-)
 

��(
)(�) = �*%� 3
3� 
(�), 

since by assumption, 
  is differentiable at � > 0 . This 

completes the proof of the theorem. 

2.3. Properties of Conformable Fractional Derivative 

Let � ∈ (0,1]  and 
, 4  be � −differentiable at a point � > 0. Then 

i. ��(5) = 0. 5 ∈ ℝ 

ii. ��(�
	 + 	�4)(�) 	= 	���(
)(�) 	+ 	���(4)(�). 
iii. ��(
4)(�) = 4(�)��(
)(�) 	+ 	
(�)��(4)(�). 
iv. �� ��6$ (�) = 6(�)7#(�)(�)%�(�)7#(6)(�)

[6(�)]8 . 
v. ��(
 ∘ 4)(�) =
:04(�)2��(4)(�) (Chain Rule). 

Proof. Using (2), all properties will be proven consecutively. 

Now, for fixed � ∈ (0,1], it is easily seen that �*%� +
+� (5) =�*%� ⋅ 0 = 0. This is prove of property (i). Secondly, for the 

property (ii), 

��(�
	 + 	�4)(�) = �*%�(�
 + �4):(�) 
= �*%�(�
 + �4):(�) 

= �*%�0�
:(�) + �4:(�)2 
= �*%��
:(�) + �*%��4:(�). 

Hence, the definition satisfies linearity property. Using 

similar arguments applied on property (ii), then property (iii) 

is proven by 

��(
4)(�) = �*%�(
4):(�) 
= �*%�(
:4 + 
4:)(�) 

= �*%�(
:4)(�) + �*%�(
4:)(�) 
= �*%�
:(�)4(�) + �*%�
(�)4:(�) 

��(
4)(�) = (��
(�))4(�) + (��4(�))
(�) 
Then, for (iv) 

�� <
4= (�) = �*%� <
4=
: (�) 

�� <
4= (�) = �*%� (4(�)
:(�) − 
(�)4:(�))
[4(�)]>  

= (4(�)
:(�)�*%� − 
(�)4:(�)�*%�)
[4(�)]>  

�� <
4= (�) = 	4(�)��(
)(�) − 
(�)��(4)(�)
[4(�)]>  

Finally, property (v) will be proven using (2) as the 

following 

��(
 ∘ 4)(�) = �*%�	(
 ∘ 4):(�) 
= �*%�
′(4(�)4′(�) 
= 
:04(�)2�*%�4:(�) 

��(
 ∘ 4)(�) = 
:04(�)2(��(4(�)) 
This completed the proof of the theorem. 

2.4. Corollary of Quotient Property 

Let � ∈ (0,1]  and 
, 4  be � −differentiable at a point �	 > 0. Then 

�� < 1

(�)= = − 
�(�)

[
(�)]>. 
Proof. Using (2) and the property (iv) of theorem 2.3, then 

�� < 1

(�)= = �*%� < 1


(�)=
:
 

= �*%� 0
(�)(0) − 
:(�)2
[
(�)]>  

= −
:(�)�*%�
[
(�)]>  

�� < 1

(�)= = 	− 
�(�)

[
(�)]>. 
2.5. Corollary of Product Property 

Let � ∈ (0,1] and 
, 4  be � − differentiable at a point 
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� > 0. Then 

��0
(�)2> = 2(
(�)
�(�)) 
Proof. Using (2) and the property (iii) of theorem 2.3, then 

��0
(�)2> = �*%�	0
:(�)2>	 
= �*%�0
(�)
:(�) + 
:(�)
(�)2	 

= (�*%�
(�)
:(�)) + (�*%�
′(�)
(�))	 
��0
(�)2> = 
(�)
�(�) + 
�(�)
(�)	 

��0
(�)2> = 20
(�)
�(�)2 
2.6. Rolle Theorem for Fractional Derivative 

Let � > 0 and 
: [�, �] → ℝ be a function satisfying the 

following 

i. 
 continuous on [�, �], 
ii. 
 is � −differentiable for some � ∈ (0,1), 
iii. 
(�) = 
(�), 
Then, there extists 5 ∈ (�, �) such that 
(�)(5) = 0. 

Proof. Since 
 is continuous on [�, �] and 
(�) = 
(�), 
there exists 5 ∈ (�, �)  at which the function has a local 

extrema. Then 

��0
(5)2 = lim�→�"

051�A"#2 − 
(5)

-  

��0
(5)2 = lim�→�)

051�A"#2 − 
(5)

-  

But, the two limits have opposite sign, so ��(
(5)) = 0. 

Consider the function 

B(�) = 
(�) − 
(�) − 
(�) − 
(�)
1� �� − 1� ��

<1� �� −
1
� ��=. 

Then, the function 4  satisfies the conditions of the 

fractional Rolle’s theorem. Hence there exists 5 ∈ (�, �), such 

that �� �*� ��$ = 1, the result follows. 

2.7. Monotonicity 

Let � > 0 and 
: [�, �] → ℝ be � −differentiable on an 

interval [�, �]. 
i. If 
�(�) ≥ 0  for all � ∈ [�, �] , then 
  is 

nondecreasing on [�, �]. 
ii. If 
�(�) > 0 for all � ∈ [�, �], then 
 is increasing on [�, �]. 
iii. If 
�(�) ≤ 0  for all � ∈ [�, �] , then 
  is 

nonincreasing on [�, �]. 
iv. If 
�(�) < 0 for all � ∈ [�, �], then 
	is decreasing on [�, �]. 
v. If 
�(�) = 0 for all � ∈ [�, �], then 
 is constant on [�, �]. 
Proof. For part (i), let �*, �> ∈ [�, �] with �* <	�>. Using 

theorem 2.7 there exists 5 ∈ (�*, �>) such that 


(�>) − 
(�*) = 
�(5) <1� �� −
1
� ��=. 

If 
�(5) ≥ 0  then 
(�>) ≥ 
(�*) . Therefore, if 
�(�) ≥ 0 for all � ∈ [�, �], then 
 is nondecreasing on [�, �]. For parts (ii), (iii), (iv) can be proved with similar 

arguments on part (i). Then part (v) follows immediately 

from (i) and (iii) such that 
�(�) 	= 	0  be a constant, 

neither decreasing or increasing. 

3. Conformable Fractional Integral 

The conformable fractional integral is discussed as follows.  

3.1. Definition of Conformable Fractional Integral 

Let � ≥ 0 , and � ∈ (0,1) . Also, let 
  be a continuous 

function such that E�
 exists. Then 

E�F0
(�)2 = G 
(H)
H*%�

�
F

3H 
If the Riemann improper integral exists. 

This following theorem explains that � − fractional 

derivative and � −fractional integral are inverse of each other 

as given in the next result. 

3.2. Inverse Property 

Let � ≥ 0  and � ∈ (0,1) . Also, let 
  be a continuous 

function such that E�(
(�))	exists. For all �	 > 	�, then 

��[E�
(�)] = 
(�). 
Proof. Since 
 is continuous, then E�(
) is certainly 

differentiable. Using theorem 2.2, then 

��[E�(
(�))] = �*%� 3
3� [E�	(
(�))],	 

= �*%� 3
3�G


(H)
H*%�

�
F

3H,	 

= �*%�	 
(�)�*%� ,	 
��[E�
(�)] = 
(�) 

3.3. Conformable Fractional Integral of Conformable 

Fractional Derivative 

Let 
:	(�, �) → I  be � −differentiable and 0 < 	� ≤ 1 . 

For all �	 > 	� then 

E�[��(
)(�)] = 
(�) − 
(�). 
Proof. From definition 3.1, it is easily seen that 

E�[��(
)(�)] = G ��0
(H)2�
� 3H 

= G H*%�H�%*0
(H)2�
F

3H	 
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= G 
(H)�
F

3H	 
E�[��(
)(�)] = 
(�) − 
(�) 

The following a definition of integration as a limit of a sum 

is provided. This definition has a number of benefits which are 

reviewed below. 

3.4. Conformable Fractional Integral as a Limit of a Sum 

If 
 is a function defined for � < � ≤ �, Then the definite 

fractional integral of 
 from � to be b is 

G 
(�)
�*%�

J
F

3� = limK→LM 
(�N)�N 	*%� Δ�
K

NP*
. 

Where Δ� = (� − �)/R and �N = � + SΔ�. 

3.5. Conformable Fractional Integral Properties 

If � ≥ 0, � ∈ (0,1) and 
, 4: [�, �] → ℝ be a continuous 

function. Then 

i. T U
�V"#

J
F 3� =
W <X0�%*⋅J(#"V))V2�%*Y* Z − X0�%*⋅F(#"V))V2�%*Y* Z= , W ∈ ℝ 

ii. T 0�(�)Y6(�)2
�V"#

J
F 3� = T �(�)

�V"#
J
F 3�+T 6(�)

�V"#
J
F 3� 

iii. T W �(�)
�V"#

J
F 3� = W T �(�)

�V"#
J
F 3�, W ∈ ℝ, 

iv. T �(�)
�V"#

J
F 3� = −T �(�)

�V"#
J
F 3� 

v. T �(�)
�V"#

J
F 3� = T �(�)

�V"#
A
F 3� + T �(�)

�V"#
J
A 3� 

vi. T �(�)
�V"#

F
F 3� = 0. 

Proof. It is easy to proof property (i). Since it is known that 

integral of constant functions is multiplication 5 with integral 

integral of power function. Property (ii) is proved using 

definition 3.4 as the following. 

G 
(�) + 4(�)
�*%�

J
F

3� = limK→LM[
(�N) + 4(�)
�N 	*%� \ Δ�

K

NP*
,	 

= limK→LM[
(�N)�N 	*%�\ Δ�
K

NP*
+ limK→LM[ 4(�)�N 	*%�\ Δ�

K

NP*
, 

G 
(�) + 4(�)
�*%�

J
F

3� = G 
(�)
�*%�

J
F

3� + G 4(�)
�*%�

J
F

3� 

Part (iii), (iv), (v), (vi) can be proven similarly with 

arguments on part (ii). 

3.6. Comparison Properties of Conformable Fractional 

Integral 

Let � ≥ 0 and � ∈ (0,1]. Also, let 
, 4:	[�, �] → ℝ be a 

continuous function. Then, 

i. If 
(�) ≥ 0 for all � ∈ [�, �], then T �(�)
�V"#

J
F 3� ≥ 0. 

ii. If 
(�) ≥ 4(�)  for all � ∈ [�, �] , then T �(�)
�V"#

J
F 3� ≥

T 6(�)
�V"#

J
F 3�. 

iii. ]T �(�)
�V"#

J
F 3�] ≤ T |�(�)|

�V"#
J
F 3�. 

If 
 is continuous and _ ≤ 
(�) ≤ ` for all � ∈ [�, �], 
then 

_G 4(�)
�*%�

J
F

3� ≤ G 
(�)4(�)
�*%�

J
F

3� ≤ `G 4(�)
�*%�

J
F

3�, 
for any continuous nonnegative 4. 

Proof. Firstly, property (i) is proven by definition 3.4 such 

that 

G 
(�)
�*%�

J
F

3� = limK→LM 
(�N)�N 	*%� Δ�
K

NP*
. 

Now, by assumption 
(�) ≥ 0 and Δ� ≥ 0. It is known 

that 

limK→LM 
(�N)�N 	*%� Δ�
K

NP*
≥ 0. 

Based on the basic properties of limits, it can be concluded 

that 

limK→LM 
(�N)�N 	*%� Δ�
K

NP*
≥ limK→L 0 = 0. 

As it is known, the left side is surely the definition of the 

conformable fractional integral. Therefore the following is 

true. 

G 
(�)
�*%�

J
F

3� ≥ 0. 
For property (ii), since 
(�) ≥ 4(�) , then that 
(�) −4(�) ≥ 0 on �	 < 	� ≤ �. So, using property (i) above and 

property (ii) on theorem 3.5 it is easily seen that, 

G 
(�)
�*%�

J
F

3� −G 4(�)
�*%�

J
F

3� ≥ 0. 
Thus, 

G 
(�)
�*%�

J
F

3� ≥ G 4(�)
�*%�

J
F

3�. 
The last property is (iii). It is equivalent with 

−G |
(�)|
�*%�

J
F

3� ≤ G 
(�)
�*%�

J
F

3� ≤ G |
(�)|
�*%�

J
F

3�. 
This follows immediately from property (i) and (ii) because 

−|
(�)| ≤ 
(�) ≤ 
(�). 
Finally, property (iv) can be proven by using property (ii) 

on theorem 3.6. 

3.7. Mean Value Theorem for Fractional Integral 

If 
:	[�, �] → ℝ is a continuous function on [�, �]. Then, 

there exists 5 in [�, �] such that, 
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(5) = <1� �� −
1
� ��=G


(�)
�*%�

J
F

3�. 
Proof. Define 

E�
(�) = G 
(H)
H*%�

�
F

3H 
Since 
(�) is continuous and recall that from theorem 3.2 E�
(�) is continuous on [�, �], � −differentiable on (�, �) 

and ��[E�
(�)] 	= 
(�). Now, from the theorem 2.7 it can 

be stated that there is a number 5 such that �	 < 	5	 < 	� and 

E�
(�) − E�
(�) = ��[E�
(�)] <1� �� −
1
� ��=. 

However, it is known that ��[E�
(5)] 	= 
(5) and 

E�
(�) = G 
(H)
H*%�

J
F

3H = G 
(�)
�*%�

J
F

3�, E�
(�) = G 
(�)
�*%�

F
F

3� = 0 

Thus 

G 
(�)
�*%�

J
F

3� = 
(5) <1� �� −
1
� ��=. 

3.8. Second Mean Value Theorem for Fractional Integral 

Let 
 and 4 be functions satisfying the following 

Continuous on [�, �], 
Bounded and integrable on [�, �], _ = infc
(�): � ∈ [�, �]d	and ` = supc
(�): � ∈ [�, �]. 
Then, there exists a number 5 ∈ (�, �) such that 

G 
(�)4(�)
�*%�

J
F

3� ≤ 5G 4(�)
�*%�

J
F

3�. 
Proof. If _ = inf 
 , ` = sup
  and 4(�) ≥ 0 in [�, �], 

then 

_4(�) < 
(�)4(�) < `4(�)          (3) 

Multiply (3) by �*%� and integrate (3) with respect to � 

over (�, �), resulting 

_G 4(�)
�*%�

J
F

3� ≤ G 
(�)4(�)
�*%�

J
F

3� ≤ `G 4(�)
�*%�

J
F

3�. 
Then there exists a number 5 in [_,`] such that 

G 
(�)4(�)
�*%�

J
F

3� ≤ 5G 4(�)
�*%�

J
F

3�. 

4. Conclusion 

In this note, further properties of conformable fractional 

calculus involving fractional derivative and integral are 

provided. This definition satisfies several properties and 

applications of classical calculus such as the rules to determine 

conformable fractional derivative and fractional integral, mean 

value theorem and comparison properties of conformable 

fractional integral. Some applications are also given. 
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