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Abstract: In this work, we studied the optimal investment problem of an investor who had exponential utility preference and 

traded two assets; (1) a risky asset which price dynamics was governed by the Constant Elasticity of variance (CEV) model and 

(2) a risk-free asset which price system followed the Ornstein-Uhlenbeck model. We employed the maximum principle of 

dynamic programming to obtain the Hamilton-Jacobi-Bellman (H-J-B) equation on which the first principle and the elimination 

of variable dependency were applied to get the closed-form of the investor’s optimal strategies. Two scenarios where the 

Brownian motions correlated and where they did not correlate were investigated. Also considered were the cases of when 

transaction cost was involved and when transaction cost was not involved. This lead to six cases that among the results obtained 

was that the investor has an optimal investment strategy that requires more amount of money for investment when the Brownian 

motions do not correlate and there is transaction cost than when the Brownian motions correlate and there is no transaction. 

Keywords: Investor, Optimal Strategy, Transaction Cost, Ornstein-Uhlenbeck Model,  

Constant of Elasticity of Variance (CEV) Model, Exponential Utility Maximization 

 

1. Introduction 

The problem of utility maximization is of great importance. 

This has lead to many researchers in financial mathematics to 

greatly focus on solving optimal investment problem of utility 

maximization. 

This paper intends to find the optimal investment strategy for 

an investor who participates in a financial market, in which the 

interest rate of the risk-free asset is stochastic and governed by 

the Ornstein-Uhlenbeck model and the risky asset assumed to 

follow the constant elasticity of variance (CEV) model and look 

into the variation that would occur when the Brownian motions 

correlate and when the Brownian motions do not correlate as 

well as find what happens when transaction cost is charged. 

To achieve this goal we reviewed some works scholars have 

done, especially recent ones. Merton is among the early 

researchers in this area and one of his works is [1] where he 

used the stochastic optimal control method in continuous 

finance to obtain a closed form solution to the problem of 

optimal portfolio under the specific assumptions about the 

assets returns and the investor preferences these days insurance 

company invest both money market and stocks market. Due to 

high rate involved in the stock market investment strategies and 

risk management are becoming more important. 

Gu et al. [2] worked to obtain optimal strategies and optimal 

value functions under constant elasticity of variance (CEV) 

model on the condition that the insurer purchased excess-of-loss 

reinsurance. 

The optimal reinsurance investment problem for an insurer 

with jump diffusion risk process under the constant elasticity 

of variance (CEV) model was worked on by [3]. 

Zhao and Rong [4] extended the efforts made by looking 

into portfolio selection problem with multiple risky assets 

under the constant elasticity of variance (CEV) model. 
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The work [2] is on the optimization of defined contribution 

(DC) pension fund scheme in which they obtained a 

closed-form solution for the optimal investment strategy 

under a constant elasticity of variance model and power and 

exponential utility preferences 

Liu et al. [3] worked on optimal investment problem under the 

constant elasticity of variance (CEV) model for utility 

maximization where taxes, dividends and transaction are involved. 

In the work of [2] optimal investment problem was studied 

and they obtained optimal strategies and value functions under 

a constant elasticity of variance model based on the fact that 

the insurer can purchase excess-of-loss reinsurance. 

Asset and liability management problem with stochastic 

interest rate in which the interest was assumed to be an affine 

interest rate model was the study that [5] carried out. 

Ihedioha et al. [6] studied the effect of correlation of 

Brownian motions on an investor’s optimal investment and 

consumption decision under Ornstein-Uhlenbeck Model. 

They applied the maximum principle to obtain the HJB 

equation for the value function. The HJB equation derived was 

transformed into an ordinary differential equation; specifically, 

the Bernoulli equation, using elimination of dependency on 

variables and tackled the problem. 

Further reviewed works were those on pensions that were 

related to the ones already given.  

Okonkwo et al. [7] examined the optimal investment strategy 

for a defined contribution (DC) pension scheme that was 

modeled such that the fund was invested partly in riskless assets 

and partly in risky assets and that the market has a constant 

interest rate, a stochastic volatility that follows the Heston model. 

The salary was assumed to be constant over the entire career of 

the Pension Plan Participant (PPP) and the contribution was a 

constant proportion of the salary. They used the CRRA utility 

function to obtain the Hamilton-Jacobi-Bellman (HJB) equation 

which was solved by the Prandtl Asymptotic Matching Method 

to get the required investment strategy.  

Osu et al. [8] in their study developed a pension fund 

management strategies in a DC scheme for the distribution 

phase. In this, the Pension plan member (PPM) was allowed to 

invest in a risk-free and a risky asset, under the constant 

elasticity of variance (CEV) model. The constrained 

optimization program that was developed was transformed 

into a nonlinear partial differential equation, using the 

associated Hamilton Jacobi Bellman equation from which the 

explicit solution of the constant relative risk aversion (CRRA) 

is obtained, using Legendre transform, dual theory, and 

change of variable methods. They established this with a 

proposition that the elastic parameter, β, say, must not 

necessarily be equal to one (β≠1). They also constructed and 

proved a theorem on the pension investor’s wealth investment 

strategy. They used sensitivity analysis to unveiled the 

dangers of CRRA utility options during the period after 

retirement 

Akpanibah et al. [9] studied the optimal investment strategies 

for a plan contributor in a defined pension scheme, with 

stochastic salary and extra contributions, under the affine 

interest rate model. They considered two cases where the extra 

contribution rates were stochastic and constant respectively. 

Three different assets namely risk free asset (cash), zero coupon 

bonds and the risky asset (stock) were considered. They 

obtained the optimal investment strategies for the three 

investments using Legendre transformation method and dual 

theory where exponential utility function for two of the cases 

was involved and found result that showed that the strategies for 

the respective investments when there was no extra contribution 

could be used when the extra contribution rate was constant but 

could not be used when it was stochastic. This clearly gave the 

member and the fund manager good insight on how to invest to 

obtain a maximum profit with minimal risk.  

Njoku et al. [10] studied the effect of extra contribution on 

stochastic optimal investment strategies in a DC pension with 

stochastic salary under affine interest rate model. 

Wang and Chen [11] investigated a defined contribution (DC) 

pension plan investment problem during the accumulation 

phase under the multi-period mean-variance criterion. 

Osu et al. [12] studied optimization problem with return of 

premium in a DC pension with multiple contributors. 

Osu et al. [13] studied optimal investment strategies in DC 

pension fund with multiple contributions using Legendre 

transformation method to obtain the explicit solution for 

CRRA and CARA. 

Osu et al. [14] investigated the effect of Inflation and the 

impact of hedging on the optimal investment strategies for a 

prospective investor in a DC pension scheme, using inflation 

indexed bond and inflation-linked stock. Their model permitted 

the plan member to make a defined contribution, as provided in 

the Nigerian Pension Reform Act of 2004. The pension plan 

member was allowed to invest in risk-free asset (cash), and two 

risky assets (i.e., the inflation-indexed bond and inflation-linked 

stock). A stochastic differential equation of the pension wealth 

that took into account certain agreed proportions of the plan 

member’s salary, paid as contribution towards the pension fund 

was constructed. The Hamilton-Jacobi-Bellman (H-J-B) 

equation, Legendre transformation, and dual theory were used 

to obtain the explicit solution of the optimal investment 

strategies for CRRA utility function. 

Njoku and Osu [15] worked on the optimal pension wealth 

investment strategy during the decumulation phase, in a defined 

contribution (DC) pension scheme where the pension plan 

member was allowed to invest in a risk free and a risky asset, 

under the constant elasticity of variance (CEV) model. The 

explicit solution of the constant relative risk aversion (CRRA) 

and constant absolute risk aversion (CARA) utility functions 

were obtained, using Legendre transform, dual theory, and 

change of variable methods. They established that the elastic 

parameter, β, say, must not necessarily be equal to one (β≠1). 

It can be easily seen that most of the works reviewed did not 

discuss transaction cost hence our choice of this topic.  

2. Methodology 

2.1. Brownian Motion 

Brownian motion is regard as a simple continuous 
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stochastic process that is widely used in finance and physics 

for modelling random behaviour that evolves over time. An 

example of such behaviour is the random movements of 

molecules of gas or fluctuation in an assets price. 

In mathematics, Brownian motion is described by Wiener 

process as a continuous-time stochastic process named in 

honour ofNorbert Wiener. 

The Wiener process �� is characterized by four facts, and 

these are; 

1. �� = 0 

2. ��  �	 
��	� 	����� ������	 

3. ��  ℎ
	 ����������� ���������	 

4. �� − �� ~ ��0, � − 	�, ��� 0 ≤ 	 ≤ �� 

Note: �� , !"�  denotes the normal distribution with 

expected value of   and variance �!2�. The condition that it 

has independent increment means that if 0 ≤ 	% ≤ �% ≤ 	" ≤�"  then ��1 − �	1 
�� ��2 − �	2  are independent 

random variables. 

2.2. Ornstein-Uhlenbeck Model 

The Ornstein-Uhlenbeck process is one of the several 

approaches used to model (with modifications) interest rate, 

and commodity price stochastically. An Ornstein-Uhlenbeck 

process '��� , satisfies the following stochastic differential 

equation: 

�'��� = () − '���*�� + !�,��� 

where ( > 0,   
�� ! > 0  are parameters and �,��� 

denotes the Wiener process. It is also mention a Vasicek 

model. 

2.3. Constant Elasticity of Variance (CEV) model 

In mathematical finance, the constant elasticity of variance 

(CEV) model is a stochastic volatility model which attempt to 

capture stochastic volatility and the leverage effect. Therefore, 

the model is widely used by practitioners for modelling 

equities and commodities in financial industry. It was 

developed by John Cox in 1975. The constant elasticity of 

variance (CEV) model describes a process which evolves 

according to the following stochastic differential equation: 

�.��� =  .����� + !.���/�,��� 

In which .���  is the spot price, t is time and   is a 

parameter characterizing the drift, ! 
�� 0  are other 

parameters and ,���  is a Brownian motion. The notation "�.���" represents a differential that is infinitesimally small 

change in parameter .. 

The constant parameters !, 0  satisfies the conditions ! ≥ 0, 0 ≥ 0. 

The parameter 0  controls the relationship between 

volatility and price, and is the central future of the model. 

When 0 < 1 we see the so-called leverage effect, commonly 

observed in equity markets where the volatility of a stock 

increases as its time falls. Conversely, in commodity markets, 

we often observed 0 > 1, the so-called inverse leverage effect 

where by the volatility of the price of a commodity tends to 

increase as its price increases. 

2.4. Dynamic Programming 

Dynamic programming or recursive optimization is a 

technique that is used for obtaining solutions for multistage 

decisions problems. There is no standard mathematical 

formulation of the dynamic programming for each problem 

depending on the variable given, and objective of the problem, 

one has to develop a particular equation to fit for solution. 

Nowadays, applications of dynamic programming are done in 

almost day to-day managerial problems, such as inventory 

problems, waiting line problems resource allocation and so on. 

Dynamic programming may be classified depending on the 

nature of data available as deterministic and stochastic or 

probabilistic models. In deterministic models, the outcome at 

any decision stage is uniquely determined and known. This 

technique was developed by Richard Bellman in the early 

(1950) principle of optimality: this principle implies that a 

wrong decision taken at a stage does not prevent from taking 

optimal decision for the remaining stages. That principle is the 

firm base for dynamic programming technique. 

2.5. Maximum Principle 

Maximum principle is used in optimal control theory to find 

the base possible control for taking a dynamical system from 

one state to another, especially in the presence of constraints for 

the state or input controls. It was formulated in (1956) by the 

Russian mathematician Lev Pontryagin and his students. It has 

as a special case the Euler-Lagrange equation of the calculus 

variations. The principle states, informally, that the control 

Hamiltonian must take an extreme value over control in the set 

of all admissible controls. Whether the extreme value is 

maximum or minimum depends both on the problem and on the 

sign convention used to defining the Hamiltonian. The normal 

convention, which is the one used in Hamiltonian leads to a 

maximum hence maximum principle but the sign convention 

used in this article makes the extreme value a minimum. 

If � is the set of values of permissible control, then the 

principle states that the optimal control �∗ must satisfy: 

5�'∗���, �∗���, 6∗���, ��  ≤ 5�'∗���, �, 6∗���, ��, ∀ � ∈ 9, �∈ :�;, �<= 
where '∗ ∈ �1:�, ��=  is the optimal state trajectory (a special 

type of optimization problem where the decision variables are 

functions rather than real numbers) and 6∗ ∈ > ∨ :�, ��= is the optimal costate trajectory. 

2.6. Hamilton-Jacobi-Bellman (HJB) Equation 

It is a partial differential equation which is central to 

optimal control theory. The solution of the HJB equation is the 

value function which gives the minimum cost for a given 

dynamical system with an associated cost function. 

When solved locally, the Hamilton-Jacobi-Bellman is a 
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necessary condition, but when solved over the whole of state 

space, the HJB equation is a necessary and sufficient condition 

for an optimum. The solution is open loop, but it also permits 

the solution of the closed loop problem. The 

Hamilton-Jacobi-Bellman equation can be generalized to 

stochastic system as well. The equation is a result of the theory 

of dynamic programming which was pioneered in the year 

(1950’s) by Richard Bellman and co-workers. 

2.7. The Model Formation and the Model 

Assuming an investor trades two assets in a financial 

market: a risky asset (stock) and a risk free asset (bond) that 

has a rate that is a function of time. The dynamics of the price 

of the risk free asset denoted by>��� is given by; 

�>��� = ����>�����              (1) 

and 

�>���
>��� = ������                   (2) 

The risky asset is governed by the constant elasticity of 

variance (CEV) model, stated as follows; 

�.��� = .���@ �� + A./����,%���B, (3) 

from which we have 

�.���
.��� = @ �� + A.0����,1���B      (4) 

where .���  denotes the risky asset price at time � ,  , A 
��areconstants.  is the appreciation rate of the risky 

asset C,���: � > 0E  is a standard Brownian motion in a 

complete probability space �F, G, �G��H�, I� . �G��H� is the 

augmented filtration generated by the Brownian motion ,���. A./���is the instantaneous volatility and the elasticity 0, a 

parameter which satisfies the general condition 0 ≤ 0. If the 

elastic parameter 0 = 0 , then equation �4�  the constant 

elasticity of variance CEV model reduces to a geometric 

Brownian motion. 

The Ornstein-Uhlebeck process is one of several 

approaches used to model (with modifications) interest rates, 

currency, exchange rates and commodity prices stochastically, 

it is given as; 

����� = (� − ������� + !�,"���. (5) 

Let K��� be the amount of money the investor puts in the 

risky asset at time �,  then @L��� − K���B  is the money 

amount he invested in the risk free asset, where L��� is the 

total money investment in both assets. 

Corresponding to the trading strategy K���, the dynamics 

stochastic differential equation (SDE) 

�L��� = K MN���N��� + @L��� − K���B MO���O��� . (6) 

The substitution of (2) and (4) into equation (6) gives 

�L��� = K@ �� + A./����,%���B + 

@L��� − K���B������,          (7) 

which simplifies to 

�L��� = P) − ����*K��� + ����L���Q�� + 

A./���K����,%���.           (8) 

Let transaction cost be charged at the rate ����  on 

transactions involving only the risky asset, the equation (7) 

modifies to 

�L��� = K@ �� + A./����,%���B + )1 − ����* 

@L��� − K���B������,        (9) 

and equation (8) becomes 

�L��� = R) + ����� − 1�����*K��� +)1 − ����*����L��� S �� 

+ A./���K����,%���.        (10) 

The quadratic variations of equations (8) and (10) is, 

@�L���B2 = A2.20���K�����,  (11) 

Where 

��. �� = ��. �,1��� = 0�,1���. �,1��� = �� T.      (12) 

The investor’s problem is to find the optimal strategy for 

U�L, �; W� = X
'Y���Z@9�L�B, (13) 

subject to (8) when there is no transaction cost and (10) when 

there is transaction cost. 

3. The Optimization 

We assume the investor has exponential utility preference, 

that is, 

9�L� = 
 − [< �\<]         (14) 

with absolute risk aversion, 

− ^__�`�^_�`� = �,               (15) 

where L is the investor’s wealth. 

3.1. A: When the Brownian Motions Do Not Correlate (That 

Is a�bcd. bce = f�) and There Is Transaction Cost 

We get the Bellman equation using the fact that, 

U�L, �; W� = X
'Y���Z@U�Lg, �; W�B (16) 

where L′ is the wealth process at time � + ∆�. 

We get from equation (14) that 
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X
'K���Z@U�L′, �; W� − U�L, �; W�B = 0. (17) 

The division of equation (15) by ∆� and taking limit as ∆� 

tends to zero gives the Bellman equation as 

X
'K���Z j�U
��k = 0.           (18) 

The maximum principle states that; 

�U = lml� �� + lml� �. + lmln �� + lml] �L + loml�ln ��.��� + loml�l] ��.�L� + lomlnl] ����L� + %" jloml�o ��.�" + lomlno ����" + loml]o ��L�"k (19) 

Now  

  

�L��� = P) + ����� − 1�����*K��� + )1 − ����*����L���Q��+ A./���K����,%���,����� = () − ����*�� + !�,"���,�.��� = .���@ �� + A./����,%B,��.����" = A"."�/p%���,�������" = !"��,��L����" = A"."/���q"�����,��.����L���� = A"."/p%���q�����,����L� = 0,��.��� =  0, rs
ss
st
ss
ss
u

,                       (20) 

where 

 ��. �� = ��. �,1 = ��. �,2 = 0�,1. �,1 = �,2. �,2 = ���,1. �,2 = 0 v.                                (21) 

Substituting for �.���, �����, �L���, ��.����", �������", 
�� ��L����" into (19), we obtain 

�U = lml� �� + lml� C.���@ �� + A./����,%BE + lmln Pw)x − ����*�� + !�,"Q + lml` :P) + ����� − 1�����*K��� + )1 − ����*����L���Q� +
 A./���K����,%���=  + %" jloml�o PA"."�/p%������Q + lomlno C!"��E + loml`o CA"."/���q"�����Ek + loml�l] CA"."/p���q�����E. (22) 

Substituting equation (22) in equation (19) and taking the expectation, we get 

U� + U� . + Un@w�x − ��B + U�]:A".�"/p%�q= Unn@!"B2 + + U��:A"."�/p%�=2  + U]]@A"."/q"B2  

+U]:P) + ����� − 1�����*K��� + )1 − ����*����L���Q= = 0,                       (23) 

where 

Z@�y%B = Z@�y"B = 0.                                      (24) 

Differentiating (22) with respect to q��� gives 

U]) + ����� − 1�����* + U�])A".�"/p%�* +  U]]�A"."/q���� = 0,                      (25) 

from which solving for q���  in equation (25), gives the 

optimal strategy 

q∗��� = − jUz) +�����−1�����*�A2.20�Uzz + .U	zUzz k.        (26) 

Let 

U��, �, 	, z� = ℎ��, 	, �� j
 − [< �\<]k         (27) 

be a solution to equation (23), such that at the terminal time W 

ℎ�W, 	, �� = 1,             (28) 

then we have from (27) that 

 U� = ℎ� j
 − [< �\<]k , U� = ℎ� j
 − [< �\<]k
, Un = ℎn j
 − [< �\<]k ,

 U] = ℎ:A�\<]=, U�] = ℎ:A�\<]=, Un] = ℎn:A�\<]=,
U�� = ℎ�� j
 − [< �\<]k ,

Unn = ℎnn j
 − [< �\<] , k U]] = ℎ:−�A�\<]= rs
st
ss
u

.    (29) 

Using (29) in (26) substituting for Uz, U	z, and Uzz and 

simplifying we obtain the investor’s optimal strategy a 

q{|&� ∗��� = j)~p�|���\%�n���*p[oN�o����
<[oNo� k.          (30) 
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Clearly when there is no transaction cost (that is when ���� = 0) the optimal strategy becomes 

q{|&{�∗��� = j)~\n���*p[oN�o����
<[oNo� k.          (31) 

3.2. B: When the Brownian Motions Correlate (That Is a@bcd. bceB = �b�) and There Is Transaction Cost 

In this case equation (18) becomes 

�L��� = P) + ����� − 1�����*K��� + )1 − ����*����L���Q��+ A./���K����,%���,����� = () − ����*�� + !�,"���,�.��� = .���@ �� + A./����,%B,��.����" = A"."�/p%���,�������" = !"��,��L����" = A"."/���q"�����,��.����L���� = A"."/p%���q�����,�������L���� = �!A./���q�����,��.��������� =  �!A.�/p%������, rs
ss
st
ss
ss
u

  (32) 

Using equation (32) into equation (22), we get 

�U = �U�� �� + �U�	 C.���@ �� + A./����,%BE + �U�� + �"U�	�z CA"."/p���q�����E  + �"U�	�� P�!A.�/p%������Q 

+ �"U���z C�!A./���q�����E  + �U�L :P) + ����� − 1�����*K��� + )1 − ����*����L���Q�� +  A./���K����,%���=  
+ %" jloml�o PA"."�/p%������Q +  lomlno C!"��E + loml`o CA"."/���q"�����Ek,                      (33) 

with which we obtain the new Hamilton-Jacobi-Bellman (HJB) equation from (23) to be 

U� + U� . + U]:P) + ����� − 1�����*K��� + )1 − ����*����L���Q=  + Un@w�x − ��B + U�]:A".�"/p%�q= 
+ m��:[oNo�����=" + m��:�o=" + m��:[oNo��o=" + U�z@�!A.0qB + U�z:�!A.�0+1�= = 0,                   (34) 

where 

Z@�y%B = Z@�y"B = 0.                                       (35) 

Making use of the first principle, differentiating (34) with respect to q��� gives 

U]) + ����� − 1�����* + U�])A".�"/p%�* +  Un]��!A./� + U]]�A"."/q� = 0.            (36) 

Solving for q��� in equation (36), we ge 

q∗��� = − �m�)~p�|���\%�n���*pm��)[oN�o����*p����m���[oNo��m�� �.   (37) 

Now, using equation (27)-(29) in equation (37) and 

simplifying, we obtain 

q∗��� = − j) +�����−1�����*
�A2.20 + .

� + �!ℎ��A2.20ℎk.       (38) 

To eliminate the dependency on � in (38), we let 

ℎ��, 	, �� = ���, 	� j− [< �\<nk            (39) 

such that at the terminal time W 

��W, 	� = \< ���
[ .                (40) 

From (39), we obtain 

ℎ� = ���, 	�@−A�−��B,             (41) 

which is applied in (38) and with simplification we obtain the 

investor’s optimal strategy as 

q|&�∗��� = j)~p�|���\%�n���*p[oN�o����p<��<[oNo� k.      (42) 

Here also, when there is no transaction cost the optimal 

investment strategy is 

q�&��∗��� = j) −����*+A2.�20+1�+��!
�A2.20 k.         (43) 

3.3. The Effects Transaction Cost and the Correlation of 

Brownian motions 

To investigate the effects transaction cost and the 

correlation of Brownian motions, based on the following four 

results obtained: (a) When the Brownian motions do not 

correlate and there is transaction cost, (b) When the Brownian 

motions do not correlate and there is no transaction cost, (c) 

When the Brownian motions correlate and there is transaction 

cost, and (d) When the Brownian motions correlate and there 

is no transaction cost, we consider the cases: 

(1) When the Brownian motions do not correlate and there 

is transaction cost and when the Brownian motions do not 

correlate and there is no transaction cost. 

(2) When the Brownian motions do not correlate and there 

is transaction cost and when the Brownian motions correlate 
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and there is transaction cost. 

(3) When the Brownian motions do not correlate and there 

is transaction cost and when the Brownian motions correlate 

and there is no transaction cost. 

(4) When the Brownian motions do not correlate and there 

is no transaction cost and when the Brownian motions 

correlate and there is transaction cost. 

(5) When the Brownian motions do not correlate and there 

is no transaction cost and when the Brownian motions 

correlate and there is no transaction cost. 

(6) When the Brownian motions correlate and there is 

transaction cost and when the Brownian motions correlate and 

there is no transaction cost. 

3.3.1. CASE 1: When the Brownian Motions do Not 

Correlate and There Is Transaction Cost and When 

the Brownian Motions do Not Correlate and There Is 

No Transaction Cost 

The optimal investment strategy when the Brownian 

motions do not correlate a and there is transaction cost is 

given by equation (30) 

q��&�∗ ��� = j) +�����−1�����*+A2.�20+1�
�A2.20 k. 

and by equation (31) 

 q��&��∗ ��� = j) −����*+A2.�20+1�
�A2.20 k. 

when the Brownian motions do not correlate and there is no 

transaction cost. 

From the above we have 

 q{|&�∗ ��� = R� − ����� + �������� + A".�"/p%�
�A"."/ S 

from which 

q��&�∗ ��� = q��&��∗ ��� + ��������
�A2.20 . (44) 

This shows that the investor has an optimal investment 

strategy that requires more amount of money valuing 
��������
�A2.20  

for investment when the Brownian motions do not correlate 

and there is transaction cost than when the Brownian motions 

do not correlate and there is no transaction. 

3.3.2. CASE 2: When the Brownian Motions do Not 

Correlate and There Is Transaction Cost and When 

the Brownian Motions Correlate and There Is 

Transaction Cost 

For this case we have from equation (30) 

q��&�∗ ��� = �) + ����� − 1�����* + A2.�20+1�
�A2.20 � 

and from equation (42) 

q�&�∗��� = j) +�����−1�����*+A2.�20+1�+��!
�A2.20 k. 

It can be seen that 

q�&�∗��� = q��&�∗ ��� + �!
A2.20.    (45) 

So the investor has an optimal investment strategy that 

requires more amount of money valuing 
�!

A2.20 for investment 

when the Brownian motions do correlate and there is 

transaction cost than when the Brownian motions do not 

correlate and there is transaction. 

3.3.3. CASE 3: When the Brownian Motions do Not 

Correlate and There Is Transaction Cost and When 

the Brownian Motions Correlate and There Is no 

Transaction Cost 

Here we have equation (30) 

q��&�∗��� = �) + ����� − 1�����* + A2.�20+1�
�A2.20 � 

and equation (43) 

q�&��∗��� = j) −����*+A2.�20+1�+��!
�A2.20 k. 

We now have 

q{|&�∗��� = �) + ����� − 1�����* + A".�"/p%�
�A"."/ � 

= q|&{� ∗��� + @|���n���\<��B<[oNo� .           (46) 

This implies that the investor has an optimal investment 

strategy that requires more amount of money valuing @��������−��!B
�A2.20  for investment when the Brownian motions do 

not correlate and there is transaction cost than when the 

Brownian motions correlate and there is no transaction. 

3.3.4. CASE 4: When the Brownian Motions Do Not 

Correlate and There Is no Transaction Cost and 

When the Brownian Motions Correlate and There Is 

Transaction Cost 

Equation (31) gives 

q��&��∗��� = j) −����*+A2.�20+1�
�A2.20 k, 

for when the Brownian motions do not correlate and there is 

no transaction cost. Equation (42) gives, for when the 

Brownian motions correlate and there is transaction cost, 

q�&�∗��� = j) +�����−1�����*+A2.�20+1�+��!
�A2.20 k. 

From above we have 
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q|&�∗��� = �) + ����� − 1�����* + A".�"/p%� + ��!�A"."/ � 

= q{|&{�∗��� + |���n���p<��<[oNo� .              (47) 

Clearly equation (47) shows that the investor requires more 

money to be in business when the Brownian motions correlate 

and there is transaction cost than when the Brownian motions 

do not correlate and there is no transaction cost with the 

value 
��������+��!

�A2.20 . 

3.3.5. CASE 5: When the Brownian Motions Do Not 

Correlate and There Is no Transaction 

cost and when the Brownian motions correlate and there is no 

transaction 

cost. 

This case will be investigated using equation (31), when 

the Brownian motions do not correlate and there is no 

transaction cost 

q��&��∗��� = j) −����*+A2.�20+1�
�A2.20 k, 

and equation (43) 

q|&{�∗��� = j)~\n���*p[oN�o����p<��<[oNo� k. 

for when the Brownian motions correlate and there is no 

transaction cost. 

We now have 

q|&{�∗��� = �) − ����* + A".�"/p%� + ��!�A"."/ � 

=  q{|&{�∗��� + ��[oNo�.              (48) 

Here we find that the investor needs more money for 

investment when the Brownian motions correlate and there is 

no transaction cost than when the Brownian motions do not 

correlate and there is no transaction cost. This difference is �!
A2.20. 

3.3.6. CASE 6: When the Brownian Motions Correlate and 

There Is Transaction Cost and When the Brownian 

Motions Correlate and There Is No Transaction Cost 

We have from equation (42) when the Brownian motions 

correlate and there is transaction cost that 

q�&�∗��� = j) +�����−1�����*+A2.�20+1�+��!
�A2.20 k, 

and from equation (43) when the Brownian motions correlate 

there is no transaction cost that the optimal investment 

strategy is 

q�&��∗��� = j) −����*+A2.�20+1�+��!
�A2.20 k. 

Now considering these equations we get 

q|&� ∗��� = �) + ����� − 1�����* + A".�"/p%� + ��!�A"."/ � 
= q|&{� ∗��� + |���n���<[oNo� .                 (49) 

Equation (49) shows that the money the investor requires 

for investment when the Brownian motions correlate and 

there is transaction cost is more than the money he requires 

when the Brownian motions correlate and there is no 

transaction cost by 
��������
�A2.20 . 

It can be observed that cases (1) and (6) have a pattern that 

resemble. Also cases (2) and (5). 

Cases (3) and (4) are reverse of each other. 

4. Conclusion 

This study considered the investment strategy problem of 

an investor who has exponential utility preference and traded 

two assets (risky and risk-free assets). The price mechanism of 

the risky asset is governed by the constant elasticity of 

variance model while that of the risk-free asset follow the 

Ornstein-Uhlenbeck model. 

The optimal strategies for the cases investigated are 

obtained starting with the Bellman equation from which the 

second order partial differential equations, the 

Hamilton-Jacobi-Bellman (H-J-B) equations, are derived. The 

methods of first principle and elimination of dependency on 

variables are employed to the get strategies that are optimal for 

the cases considered where the Brownian motions correlate 

and where they do not correlate. Also, the cases of charging 

and not charging transaction cost are looked into. 

Among the results obtained in respect of the impacts of the 

correlation and none correlation of Brownian motions and 

paying and not paying transaction cost is that the investor 

needs more money for investment when the Brownian 

motions correlate and there is no transaction cost than when 

the Brownian motions do not correlate and there is no 

transaction cost with the difference 
�!

A2.20. 
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