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Abstract: In 2010, Chistyakov, V. V., defined the theory of modular metric spaces. After that, in 2011, Mongkolkeha, C. et. 
al. studied and proved the new existence theorems of a fixed point for contraction mapping in modular metric spaces for one 
single-valued map in modular metric space. Also, in 2012, Chaipunya, P. introduced some fixed point theorems for 
multivalued mapping under the setting of contraction type in modular metric space. In 2014, Abdou, A. A. N., Khamsi, M. A. 
studied the existence of fixed points for contractive-type multivalued maps in the setting of modular metric space. In 2016, 
Dilip Jain et. al. presented a multivalued F-contraction and F-contraction of Hardy-Rogers-type in the case of modular metric 
space with specific assumptions. In this work, we extended these results into the case of a pair of multivalued mappings on 
proximinal sets in a regular modular metric space. This was done by introducing the notions of best approximation, proximinal 
set in modular metric space, conjoint F-proximinal contraction, and conjoint F-proximinal contraction of Hardy-Rogers-type 
for two multivalued mappings. Furthermore, we give an example showing the conditions of the theory which found a common 
fixed point of a pair of multivalued mappings on proximinal sets in a regular modular metric space. Also, the applications of 
the obtained results can be used in multiple fields of science like Electrorheological fluids and FORTRAN computer 
programming as shown in this communication. 

Keywords: Common Fixed Point, Multivalued Mappings, Regular Modular Space, Proximinal Set, F-contraction,  
∆2-condition and ∆M-condition 

 

1. Introduction, Definitions and 

Preliminaries 

The concept of weak contraction was defined by Alber and 
Guerre-Delabriere in 1997 [1]. Rhoades exhibited that most 
results in ref. [1] of single valued maps are still true for any 
Banach space [2]. 

In 2010, the notion of modular metric space was 
introduced by Chistyakov [3]. 

In 2012, Wardowski characterized the idea of F-
contraction which generalized the Banach contraction 
principle in various manners, and he utilized the new concept 
of contraction to find the fixed point theorem [4]. 

Authors [5:8] have studied the fixed point property concept 
in modular metric space.  

Furthermore, in 2013, Sgroi et al. obtained a multivalued 
version of Wardowski’s result [9]. 
In 2014, Abdou et al. investigated the existence of fixed 
points for multivalued modular contractive mappings in 
modular metric spaces [10]. Also, their results generalized as 
well as improved fixed point results of Nadler [11] and 
Edelstein [12]. 

In 2016, Dilip Jain et al. presented a multivalued F-
contraction in the case of modular metric space with specific 
assumptions [13]. Their results were an extension of Nadler, 
Wardowski and Sgroi to the case of modular metric spaces 
[11, 4 and 9]. 

In 2018, a common fixed point theorem for a pair of 
multivalued F- Ψ -proximinal mappings satisfying Ćirić-
Wardowski type contraction in partial metric spaces was 
presented by S. U. Khan et al. [14]. 
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The problem here is to a construct the contraction 

connecting between two multivalued mappings in modular 

metric space with codomain over proximinal sets and finds a 

common fixed point between them. Also, we want to find an 

example and an application in this case.  

In this paper, the study of the modifications in the concept 

of F-contraction of Hardy-Rogers-type to the case of two 

multivalued F-proximinal mappings in modular metric spaces 

will be introduced. Also, we introduce the notions of modular 

proximinal sets and common fixed point theorems for a pair 

of multivalued F-proximinal mappings in modular metric 

spaces. 

Definition 1.1 [13]: 

Let X be a nonempty set. A function ω: �0, ∞� × X × X →[0, ∞] is said to be a metric modular on X if it satisfies, for all 

x, y, z ∈  X, the following conditions: (we will write ω��x, y� 

instead of ω�λ, x, y�) 

(i) ω��x, y� = 0 for all λ > 0 if and only if x = y, 

(ii) ω��x, y� = ω��y, x� for all λ > 0, 

(iii) ω� μ�x, y� ≤ ω��x, z� + ωμ�z, y� for all λ, μ > 0. 

If instead of (iii), we have the condition: 

(iii)'ω� μ�x, y� ≤ �� μ ω��x, z� + μ� μ ωμ�z, y� for all λ, μ > 0 and x, y, z ∈  X, then ω is called convex metric 

modular on X. 

Also, if instead of (i), we have the condition 

(i)' ω��x, x� = 0 for all λ > 0, then ω is said to be a metric 

pseudomodular on X. 

Definition 1.2 [10]: 

Let ω be a pseudomodular on X. Fix x% ∈ X, the two sets X&�x%� = 'x ∈ X: lim�→( ω��x, x%� = 0)  and X&∗ �x%� ='x ∈ X: ∃ λ = λ�x� > 0 such that ω��x, x%� < ∞) are said to 

be modular spaces generated by x%. 

The spaces X&�x%� and X&∗ �x%� are metric spaces with the metrics 45�6, 7� = inf 'λ > 0, ω��x, y� < λ) and 45∗ �6, 7� = inf 'λ > 0, ω��x, y� < 1) respectively. 
For each x, y ∈ X  and  λ > 0 , Abdou [10] defined ω�=�x, y� ≔ lim?→%= ω� ?�x, y� and  ω�@�x, y� ≔ lim?→%= ω�A?�x, y�. 

Remarks: 

1. A metric modular ω on X is nonincreasing with respect 

to λ > 0. In fact for any x, y ∈ X and 0 <  μ < λ, we 

have ω��x, y� ≤ ω�Aμ�x, x� + ωμ�x, y� = ωμ�x, y�. 

2. ω�=�x, y� ≤ ω��x, y� ≤ ω�@�x, y�. 
3. If a metric modular ω on X possesses a finite value for 

each x, y ∈ X and ω��x, y� = ωμ�x, y� for all λ, μ > 0, 

then d�x, y� = ω��x, y� is a metric on X. 

Example 1.3 [3]: 

For any metric space (X, d), one can define a modular 

metric ω��x, y�  by ω��x, y� = B�C,D�E���  for all x, y ∈ X ,  λ > 0 

where φ: �0, ∞� → �0, ∞� is any nondecreasing function. 

Definition 1.4 [13]: (Regular Metric modular) 

A modular metric ω on X  is said to be regular if the 

following condition satisfies: 

x = y if and only if ω��x, y� = 0 for some λ > 0. 

This condition plays a significant role to ensure the 

existence of fixed point in modular metric space. 

Definition 1.5 [10]: 

Let ω be a metric modular on X then 

(i) The sequence 'xG)G∈ℕ in X is said to be ω-convergent 

if and only if there exists x ∈ X such that  ωI�xG, x� → 0 as n → ∞. 

(ii) The sequence 'xG)G∈ℕ in X is said to be ω-Cauchy if ωI�xJ, xG� → 0 as m, n → ∞. 

(iii) A subset D of K is said to be ω-complete if any ω-

Cauchy sequence in D is a convergent sequence and 

its limit is in D. 

(iv) A subset D of X is said to be ω-closed if ω-limits of 

all ω-convergent sequences of D always belong to D. 

(v) A subset D of X is said to be ω-bounded if we have δ&�D� = sup'ωI�x, y�; x, y ∈ D) < +∞. 
(vi) A subset D of X is said to be ω-compact if for any 'xG)G∈ℕ in D there exists a subsequence 'xGO) and  

x ∈ D such that ωIPxGO , xQ → 0. 

(vii) ω is said to satisfy the Fatou property if and only if 

for any sequence 'xG)G∈ℕ in X ω-convergent to x, we 

have ωI�x, y� ≤ limG→(inf ωI�xG, y� for any y ∈ X. 

In general, if limG→( ω��xG, x� = 0 for some λ > 0, then 

we may not have limG→( ω��xG, x� = 0 for all λ > 0. 

Definition 1.6 [13]: (RS-condition) 

Let (X, ω) be a modular metric space and 'xG)G∈ℕ  be a 

sequence in X. The metric modular ω is said to satisfy the ΔS-

condition if limG→( ω��xG, x� = 0  for some λ > 0  then limG→( ω��xG, x� = 0 for all λ > 0. 

Definition 1.7 [13]: (RU-condition) 

Let ( X ,  ω ) be a modular metric space and 'xG)G∈ℕ  be 

sequence in X. The metric modular ω is said to satisfy the ΔV-condition if limG→( ωWPxG W, xGQ=0 for (n ∈ ℕ, p > 0) 

then limG→( ω�PxG W, xGQ =0 for some λ > 0. 

2. Multivalued F-contraction on Modular 

Metric Space 

Throughout this paper, let Xℬ�D�  denote the set of all 

nonempty closed and bounded subsets of D, X�D� denotes 

the set of all nonempty closed subsets of D, and PR�D� 

denotes the set of all closed proximinal subsets of D. 

Let A, B ∈ PR�D�, we define the Proximinal Hausdorff 

metric modular as follows: H&]�A, B� ≔ max ' sup`∈aωI�a, B�, supb∈cωI�b, A�)  

where ωI�a, B� ≔ infb∈cωI�a, b�. 

Definition 2.1 [13]: 

Let F: ℝ → ℝ  be a function satisfying the following 

conditions: 

(F1) F is strictly increasing on ℝ , 

(F2) For every sequence 'sG) in ℝ , we have limG→( sG = 0 if and only if limG→( F�sG� = −∞, 

(F3) There exists a number k ∈ (0, 1) such 

that limg→%= shF�s� = 0. 

The family of all functions F satisfying the conditions 

(F1)-(F3) is denoted by ℱ. 

Definition 2.2 [13]: (F-contraction) 

Let D be a non-empty ω-bounded subset of a modular 

metric space ( X ,  ω ). For a fixed F ∈ ℱ  a multivalued 
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mapping T: D →  Xℬ�D�  is called F-contraction on X  if ∃τ ∈ ℝ  such that for any x, y ∈ D with y ∈ Tx there exists 

z ∈ Ty such that ωI(y, z) > 0 and the following inequality 

holds: 

τ + FPωI�y, z�Q ≤ FPM�x, y�Q                   (1) 

where M�x, y� = max'ωI�x, y�, ωI�x, Tx�, ωI�y, Ty�, ωI�y, Tx�). 
Definition 2.3 [13]: (F-contraction of Hardy-Rogers-type) 

Let D be a non-empty ω-bounded subset of a modular 

metric space (X, ω). A multivalued mapping T: D → Xℬ�D� 

is called F-contraction of Hardy-Rogers-type if there exists F ∈ ℱ, and τ ∈ ℝ  such that 

2τ + FPH&�Tx, Ty�Q ≤ FPαωI�x, y� + βωI�x, Tx� +γωI�y, Ty� + LωI�y, Tx�Q            (2) 

Definition 2.4 [15]: (proximinal) 

Let X be a Banach space, and E ⊂ X be a closed bounded 

subset X. The set E is called proximinal in X if for all x ∈ X 

there is some e ∈ E such that 

s6 − ts = inf 's6 − 7s: 7 ∈ u). 

We will rewrite the following lemmas in the case of PR(X). 

Lemma 2.5 [10]: 

Let (X, ω) be a modular metric space and D be a nonempty 

subset of  K& . Let A, B  ∈ PR�D�  then for each v > 0  and a ∈ A there exists b ∈ B such that 

 ωI�a, b� ≤ H&]�A, B� + v. 

Moreover, if B is ω -compact and ω  satisfies the Fatou 

property, then for any a ∈ A there exists b ∈ B such that 

 ωI�a, b� ≤ H&]�A, B�. 

Lemma 2.6 [10]: 

Let D be a nonempty subset of a modular metric space 

(X, ω). Assume that ω satisfies ΔS-condition and let An be a 

sequence of sets in PR�D� such that  limG→( H&]�AG, A%� = 0 where A% ∈ PR�D�. If xG ∈ AG and limG→( xG = x% then x% ∈ A%. 

3. Main Results 

Definition 3.1: (Best approximation and proximinal set in 

modular metric space) 

Let K be a nonempty set of a modular metric space (X, ω). 

Let x ∈ X, an element y0 ∈ K is called a best approximation 

for x in K if ωI�x, y%� = inf' ωI�x, y�; 7 ∈ K)  (we will 

write ωI�x, K� instead of inf' ωI�x, y�; 7 ∈ K)�. If for each  

x ∈ X there exists at least one best approximation in K then K 

is called a modular proximinal set. 

Definition 3.2: (Conjoint F-proximinal contraction) 

Let D be a nonempty ω -bounded subset of a modular 

metric space ( X ,  ω ). For fixed F ∈ ℱ , we say that two 

multivalued mappings T, S: D → PR�D� form conjoint 

F-proximinal contraction on X if for 0 < q < 1 all x, y ∈ D 

such that H&]�Tx, Sy� > 0 the following inequality holds: 

0 < inf 'F yMz,{�x, y�| − F yH&]�Tx, Sy�|)            (3) 

and Mz,{�x, y� = q max'ωI�x, y�, ωI�y, Tx�, ωI�Tx, x�, ωI�Sy, y�). 

Theorem 3.3: Let D be a non-empty ω-bounded and ω-

complete subset of a modular metric space (X, ω). Assume 

that ω is a regular modular satisfying ΔV and ΔS-conditions. 

If T, S: D → PR�D� form a continuous conjoint F-proximinal 

contraction then they have a unique common fixed point. 

Proof 

We construct an iterative sequence {S T(xn)} generated by 

x1 as follows: 

Let x1 ∈ D be an arbitrary point of D and choose x2 ∈ Tx1 

one of the best approximation of Tx1 or  ωI�xI, xS� = ωI�xI, TxI�. Let x3 ∈ Sx2 one of the best approximation of 

Sx2 or  ωI�xS, x~� =  ωI�xS, SxS� . Let x4 ∈  Tx3 one of the 

best approximation of Tx3 or ωI�x~, x�� =  ωI�x~, Tx~� and 

so on. 

If M(xI , xS ) = 0, then clearly xI  = xS = x~  is a common 

fixed point of (S, T) and there is nothing to prove and our 

proof is complete. In ordered to find common fixed point of 

both T and S for the situation when Mz,{ (xI, xS) > 0 with xI ≠ xS, and τ ∈ ℝ such that 

τ + F yH&]�TxI, SxS�| ≤ F yMz,{�xI, xS�|            (4) 

where τ = inf �F yMz,{�xI, xS�| − F yH&]�TxI, SxS�|�. 
We can write equation (4), as 

τ + FPωI� xS, x~�Q ≤ F yMz,{�xI, xS�| and xI ≠ xS 

and let x4 ∈ Sx3 such that  ωI�x~, Sx~� =  ωI�x�, x~� 

τ + FPωI� x~, x��Q ≤ F yMz,{�xS, x~�| and xS ≠ x~ 

Repeating this process, we find that there exists a 

sequence 'xG) with initial point x1 such that x2n ∈ Tx2n-1,  

x2n+1 ∈ Sx2n and 

τ + FPωI� xG, xG I�Q ≤ F yMz,{�xGAI, xG�| for all n ∈ ℕ     (5) 

This implies 

FPωI� xG, xG I�Q < F yMz,{�xGAI, xG�| for all n ∈ ℕ 

Consequently, ωI� xG, xG I� < Mz,{�xGAI, xG�(Since F is strictly increasing) 

= q max'ωI�xGAI, xG�, ωI�xG, TxGAI�, ωI�xGAI, TxGAI�, ωI�xG, SxG�) 

= qmax'ωI�xGAI, xG�, ωI�xG, xG I�) 

< max'ωI�xGAI, xG�, ωI�xG, xG I�) 
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Obviously, if  max'ωI�xGAI, xG�, ωI�xG, xG I�) = ωI� xG, xG I�, then we get xG = xG I is a common fixed point of T and S. So, ωI� xG, xG I� < max'ωI�xGAI, xG�, ωI�xG, xG I�) = ωI�xGAI, xG�                                          (6) 

Consequently, By (F1) and equations (5), (6), we get 

τ + FPωI� xG, xG I�Q ≤ F y Mz,{�xGAI, xG�| < FPωI�xGAI, xG�Q for all n ∈ ℕ                                   (7) 

So, 

FPωI� xG, xG I�Q ≤ FPωI�xGAI, xG�Q − τ for all n ∈ ℕ 

Then, we have 

FPωI� xG, xG I�Q ≤ FPωI�xGAI, xG�Q − τ ≤ ⋯ ≤ FPωI�xS, xI�Q − nτ for all n∈ ℕ                              (8) 

hence limG→( FPωI� xG, xG I�Q = −∞. By (F2) we have that ωI� xG, xG I� → 0 as n → ∞. 

Now, let k ∈ (0, 1) and condition (F3), we get 

limG→(FPωI� xG, xG I�Q �ωI� xG, xG I��h = 0 

Multiply eq. (8) by �ωI� xG, xG I��h, we get 

�ωI� xG, xG I��h�FPωI� xG, xG I�Q − FPωI�xS, xI�Q� ≤ −nτ �ωI� xG, xG I��h ≤ 0 

then 

limG→(P−nτ �ωI� xG, xG I��hQ = 0 

or 

limG→(n �ωI� xG, xG I��h = 0 

then there exists nI ∈ ℕ such that 

n �ωI� xG, xG I��h ≤ 1 for all n ≥ nI 

that is 

 ωI� xG, xG I� ≤ I
G] O�  for all n ≥ nI. 

Now, for all n ≥ nIwith p > 0, we have 

 ωWP xG, xG WQ ≤  ωI� xG, xG I� +  ωI� xG I, xG S� + ⋯ +  ωIP xG WAI, xG WQ ≤ 1nI h� + 1�n + 1�I h� + ⋯ + 1�n + p − 1�I h� < � 1iI h�
(
��G  

since the series ∑ I
�] O�(��G  tends to zero, this implies 

limG→( ωWP xG, xG WQ = 0 for p > 0. 
Since ω  satisfies ΔV -condition. Then, we 

have limG→( ω�P xG, xG WQ = 0 for some λ > 0. 
Also, since ω  satisfies ΔS -condition. Then, limG→( ωIP xG, xG WQ = 0. 

This shows that 'xG) is a ω-Cauchy sequence and D is ω-

complete, then there exists v ∈ D such that xG → v as n → ∞. 

Now, we will prove that v is a fixed point of T and S. 

Let TxG  be a sequence in PR�D�. Since T is continuous 

then we have TxG → Tv or TxSG → Tv. Also, 

limG→(H&]�TxSG, Tv� = 0 

where Tv ∈ PR�D�. Then since x2n+1 ∈ Tx2n and limG→( x2n+1=v, then by Lemma 2.6, we get v ∈ Tv. Hence v is a fixed 

point of T. 

Similarly, we can deduce that v is also a fixed point of S. 

So, v is a common fixed point of T and S. 

Let v≠ u be two common fixed points of T and S. So, 

u ∈Tu, u∈Su, v ∈Tv and v ∈Sv. Also, since T, S are conjoint 

F-proximinal contraction then we have the following: 

τ + F yH&]�v, u�| ≤ F yMz,{�u, v�| 

or  
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τ + FPωI�v, u�Q ≤ F yMz,{�u, v�| 
implies 

ωI�v, u� < Mz,{�u, v� 

= � max'ωI�u, v�, ωI�u, Tu�, ωI�v, Sv�, ωI�v, Tu�) 

< max'ωI�u, v�, ωI�u, Tu�, ωI�v, Sv�, ωI�v, Tu�)  

≤ ωI�u, v�. 

This gives a contradiction. Then u and v must be equal or 

T and S have a unique common fixed point. 

In the following ensures example, we show how to get the 

common fixed point for two multivalued functions on a 

proximinal set. 

Example 3.4: Let K = ℝ be equipped with modular metric ω��x, y� = ]�|6 − 7| . Consider T, S: X  →  PR�X�  as ��6� =

��~ , �S� and ��6� = ��~ , S�~ �, then (T, S) is a pair of continuous 

mappings. Define F: ℝ  → ℝ by F6 = ln 6. So, for � = IS, 6 = 1, we have 7 = IS ∈ ��1� = �I~ , IS� such that ωI�x, y� =ωI�x, T�1�� and 

H&] yT�1�, S�IS�| = H&] ��13 , 12� , �16 , 13�� = max ��13 − 16� , �12 − 13�� = max �16 , 16� = 16 

and Mz,{ y1, IS| = IS max �ωI y1, IS| , ωIP1, T�1�Q, ωI �IS , S yIS|� , ωI �IS , T�1��� 

= IS max �IS , IS , I� , 0� = I�. 

Then, the L.H.S of equation (4) is 

L.H.S. = � +   yI�| = � + ln�I�� = � − 1.8, and R.H.S. = FyIS| = ln� IS) = -1.4. 

Then for � = 0.1 then 

−1.7 ≤ −1.4 

Hence all the hypotheses of Theorem 3.3 are satisfied. 

Therefore, T and S have a unique common fixed point which 

is zero. 

Definition 3.5: 

Let D be a nonempty bounded subset of a modular metric 

space (X, ω). Two multivalued mappings T, S: D → PR�D� 

are called conjoint F- proximinal contraction of Hardy-

Rogers-type on X if there exists F ∈ ℱ, and 

0 < inf �FPαωI�x, y� + βωI�x, Tx� + γωI�y, Sy� + LωI�y, Tx�Q − F yH&]�Tx, Sy�|�           (9) 

for all x, y ∈ D  with  H&]�Tx, Sy� > 0 ,where α, β, γ, L ≥0, α + β + γ = 1, γ < 1 and β + L < 1. 

Theorem 3.6: Let D be a nonempty ω-bounded and ω-

complete subset of a modular metric space (X, ω). Assume 

that ω is a regular modular satisfying ΔV and ΔS-conditions. 

Let T, S: D → PR�D� be continuous conjoint F-proximinal 

contraction of Hardy-Rogers-type on X  then T, S have a 

common fixed point. 

Proof 

We construct an iterative sequence {S T(xn)} generated by 

x1 as in Theorem 3.3. 

Since xS ∈ TxI, then 

ωI�xS, SxS� ≤ H&]�TxI, SxS� 

and F is strictly increasing, then we get 

FPωI�xS, x~�Q ≤ F yH&]�TxI, SxS�| and xI ≠ xS 

with x3 ∈ Sx2 and ωI�xS, x~� = ωI�xS, SxS�. 

And by the same way, we find x4 ∈ Tx3 with ωI�x~, x�� =ωI�x~, Tx~�such that 

ωI�x�, Sx�� ≤ H&]�Tx~, Sx�� 

FPωI�x�, x¤�Q ≤ F yH&]�Tx~, Sx��| and x~ ≠ x� 

with x5 ∈ Sx4 and ωI�x�, x¤� = ωI�x�, Sx��. 

Repeating this process, we find that there exists a 

sequence 'xG) with initial point x1 such that x2n ∈ Tx2n-1, x2n+1 ∈ Sx2n and 

FPωI� xG I, xG S�Q ≤ F yH&]�TxG, SxG I�| for all n ∈ ℕ  (10) 

And since T, S are continuous conjoint F-proximinal 

contraction of Hardy-Rogers-type on X, then we have 
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FPωI� xG I, xG S�Q ≤ F yH&]�TxG, SxG I�|  

< FPαωI�xG, x¥ I� + βωI�xG, TxG� + γωI�xG I, SxG I� + LωI�xG I, TxG�Q 

then 

ωI� xG I, xG S� < αωI�xG, xG I� + βωI�xG, TxG� + γωI�xG I, SxG I� + LωI�xG I, TxG� 

< αωI�xG, xG I� + βωI�xG, xG I� + γωI�xG I, xG S� 

or 

�1 − γ�ωI� xG I, xG S� < �α + β�ωI�xG, xG I� 

So, 

ωI� xG I, xG S� < ωI�xG, xG I�                                                                      (11) 

Also, from eq. (9), then 

F yH&]�TxG, SxG I�| 

≤ FPαωI�xG, xG I� + βωI�xG, TxG� + γωI�xG I, SxG I� + LωI�xG I, TxG�Q − τ 

≤ FP�α + β�ωI�xG, xG I� + γωI�xG I, xG S�Q − τ 

= FP�1 − γ�ωI�xG, xG I� + γωI�xG I, xG S�Q − τ 

= F�ωI�xG, xG I� − γ�ωI�xG, xG I� − ωI�xG I, xG S��� − τ 

And from equations (10) and (11), we get 

FPωI�xG I, xG S�Q ≤ F yH&]�TxG, SxG I�| < FPωI�xG, xG I�Q − τ 

So, 

FPωI� xG I, xG S�Q ≤ FPωI�xG, xG I�Q − τ ≤ ⋯ ≤ FPωI�xI, xS�Q − nτ 

for all n ∈ ℕ  and hence limG→( FPωI� xG, xG I�Q = −∞ . 

Similarly in Theorem 3.3, we get that 'xG) is a ω-Cauchy 

sequence and D is ω-complete, then there exists v ∈ D such 

that xG → v as n → ∞. 

Now, we will prove that v is a common fixed point of T 

and S. If there exists an increasing sequence nh ∈ ℕ such that xGO ∈ Tv and xGO ∈ Sv for all k ∈ ℕ, since Tv and Sv are ω –

closed and  xGO → v , we have v ∈ Tv  and v ∈ Sv  and the 

proof is completed. So, suppose contrarily that for any 

sequence nh ∈ ℕ it is true that Card {k; xGO ∈ Tv} is finite. 

In this case there exists  n% ∈ ℕ  such that xGO ∉ Tv  or xSG I ∉ Tv for all n ≥ n% . This implies that TxSG ≠ Tv for 

all n ≥ n% . Using equation (9),  xSG S ∈ SxSG I  with  x = v 

and y = xSG I, we obtain 

0 < inf �FPαωI�v, xSG I� + βωI�v, Tv� + γωI�xSG I, SxSG I� + LωI�xSG I, Tv�Q − F yH&]�Tv, SxSG I�|� 

Or 

τ + F�ωI�Tv, xSG S�� ≤ τ + F yH&]�Tv, SxSG I�| 

≤ F�αωI�v, xSG I� + βωI�v, Tv� + γωI�xSG I, SxSG I� + LωI�xSG I, Tv�� 

≤ F�αωI�v, xSG I� + βωI�v, Tv� + γωI�xSG I, xSG S� + LωI�xSG I, Tv�� 

Since F is strictly increasing, we have 

ωI�Tv, xSG S� < αωI�v, xSG I� + βωI�v, Tv� + γωI�xSG I, xSG S� + LωI�xSG I, Tv� 

Letting n → ∞ in the previous inequality as β + L < 1, we have 

ωI�Tv, v� < �β + L�ωI�v, Tv� < ωI�v, Tv� 
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which gives a contradiction. We obtain that v ∈ Tv, that is v is a fixed point for T. 

On the other hand, for any sequence nh ∈ ℕ it is true that Card {k; xGO ∈ Sv} is finite. In this case there exists n% ∈ ℕ such 

that xGO ∉ Sv or xSG S ∉ Sv for all n ≥ n%. This implies that SxSG I ≠ Sv. 

Now, using equation (9), xSG I ∈ TxSGwith x = xSG and y = v, we obtain 

0 < inf �FPαωI�xSG, v� + βωI�xSG, TxSG� + γωI�v, Sv� + LωI�v, TxSG�Q − F yH&]�TxSG, Sv�|� 

Or 

τ + F yH&]�TxSG, Sv�| 

≤ FPαωI�xSG, v� + βωI�xSG, TxSG� + γωI�v, Sv� + LωI�v, TxSG�Q 

where τ ∈ ℝ  

This implies that 

τ + F�ωI�xSG I, Sv�� ≤ τ + F yH&]�TxSG, Sv�| 

≤ F�αωI�xSG, v� + βωI�xSG, TxSG� + γωI�v, Sv� + LωI�v, TxSG�� 

≤ F�αωI�xSG, v� + βωI�xSG, xSG I� + γωI�v, Sv� + LωI�v, xSG I�� 

Since F is strictly increasing, we have 

ωI�xSG I, Sv� < αωI�xSG, v� + βωI�xSG, xSG I� + γωI�v, Sv� + LωI�v, xSG I� 

Letting n → ∞ in the previous inequality as γ < 1, we have ωI�v, Sv� < γωI�v, Sv� < ωI�v, Sv� which gives a contradiction. We obtain that v ∈ Sv, that is, v is a fixed point for S. Or v 

is a common fixed point for T and S. 

4. Applications 

4.1. Application in Integral Equations 

In this section, we give an application of Theorem 3.3 in Volterra type integral equations. Consider the following integrals: 

u�t� = § KI�t, s, u�s��%̈ ds + f�t�,                                                                   (12) 

v�t� = § KS�t, s, v�s��%̈ ds + g�t�                                                                   (13) 

for all ª ∈ [0, «]. Let C[0, a] be the set of all continuous functions defined on [0, a]. For u ∈ C[0, a] with the norm 

sus­ = max¨∈[%,`]|u�t�eA­¨|   
for arbitrary � > 0 and the metric 

ω��u, v� = 1λ su − vs­ = 1λ max¨∈[%,`]|�u�t� − v�t��eA­¨| 
for all u, v ∈ C[0, a]. With these setting �C[0, a], s. s­� becomes Banach space. 

Now we prove the following theorem to ensure the existence of the solution of the system of integral equations. 

Theorem 4.1: Consider KI, KS: [0, a]×[0, a]×ℝ → ℝ, f, g: [0, a] → ℝ are continuous and T, S: ®[0, a] → PR�®[0, a]� as 

Tu�t� = �y§ KI�t, s, u�s��%̈ ds + f�t�| tA¥¯�,                                                             (14) 

Sv�t� = �y§ KS�t, s, v�s��%̈ ds + g�t�| tA°±¯�,                                                             (15) 

for every n ∈ ℕ ∪ '0). 

If there exists τ > 1, such that 
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³´µ¥,¶∈ℕ∪'%) ·¸ ¹ºIPª, ³, ´�³�QtA¥¯ − ºSPª, ³, »�³�QtA¶S ¯¹¯
%

4³ + ¹¼�ª�tA¥¯ − ½�ª�tA¶S ¯¹¾ tA¿¯ ≤ τeA­ÀMz,{Pu�t�, v�t�QÀ 

for some ª ∈ [0, a], for every n, m ∈ ℕ ∪ '0) and u, v ∈ ®[0, a] then the system of integral equations (14) and (15) has a 

solution. 

Proof 

Choosing x∗ and y∗ to be among the best approximations of Sv�t� and Tu�t�, we have 

H�Tu�t�, Sv�t�� = max Á supC∈zÂ�¨�ωIPx, Sv�t�Q, supD∈{Ã�¨�ωIPy, Tu�t�QÄ 

= max Á supC∈zÂ�¨�ωI�x, x∗�, supD∈{Ã�¨�ωI�y, y∗�Ä 

≤ supC∈zÂ�¨�,D∈{Ã�¨�ωI�x, y� 

≤ supG,J∈ℕ∪'%) ·¸ ¹KIPt, s, u�s�QtA¥¯ − KSPt, s, v�s�QtA¶S ¯¹¨
%

ds + ¹f�t�tA¥¯ − g�t�tA¶S ¯¹¾ eA­¨ 

≤ τeA­ ¸ÀMz,{Pu�t�, v�t�QÀeA­ge­g4³¨
%

 

≤ ÅMz,{�u, v�Å­τeA­ ¸ e­gds¨
%

 

= ÅMz,{�u, v�Å­τeA­ t¿¯�  

= ÅMz,{�u, v�Å­eA­e­¨ 
for any t ∈ [0, a], for every n, m ∈ ℕ ∪ '0) and u, v ∈ ®[0, a]. Dividing by e­¨, we get 

H�Tu�t�, Sv�t��eA­¨ ≤ eA­ÅMz,{�u, v�Å­ 

So, 

sH�Tu, Sv�s­ ≤ eA­ÅMz,{�u, v�Å­ 

This implies that 

τ + lnsH�Tu, Sv�s­ ≤ lnÅMz,{�u, v�Å­ 

So, all the conditions of Theorem 3.3 are satisfied if F(Æ) = 

ln Æ. Hence there exists r ∈ C[0, a] such that r�t� ∈ Tr�t� ='r�t�eAG¨)  and r�t� ∈ Sr�t� = 'r�t�eAÇ±¨)  or there exists n%, nI ∈ ℕ ∪ '0)  such that r�t� = y§ º~�ª, ³, È�³��%̄ 4³ +
ℎ�ª�| tA¥Ê¯ andr�t� = y§ º~�ª, ³, È�³��%̄ 4³ + ℎ�ª�| tA°]± ¯

. 

So r�t� is a solution of the system of integral equations 

given in (14) and (15). 

4.2. Electrorheological Fluids (ERF) 

A lot of researchers take Electrorheological fluids (ERF) 

into their consideration, especially the applications in various 

branches of Science by proposed Nemours of modeling 

solutions [16, 17]. Where ERF are typically the liquids that 

fast solidify in the existence of an electric field [17]. 

Furthermore, it is considered as flexible materials that can be 

concentrated suspensions of polarizable particles in a non-

conducting dielectric liquid [16]. Also, These fluids were 

converted to be anisotropic, and the apparent viscosity (the 

resistance to flow) in the direction orthogonal to the direction 

of the electric field sharply increases, in contrast to the 

apparent viscosity in the direction of the electric field does 

not modify drastically. 

On the other hand, Sobolev et al. articulated that the spaces 

with a variable exponent. It has been proposed that modular 

metric spaces might be useful in modeling them [18, 8]. 
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Recently, various works show the results of the modular 

metric space fixed point which they fit improved to certain 

types of differential equations [3]. 

R. H. W. Hoppe and his colleagues [16] studied the 

general flow problems of an anisotropic fluid with special 

cases of ERF under nonhomogeneous mixed boundary 

conditions with certain values of the velocities as well as the 

surface forces on different parts of that boundary. They 

examined two cases where the viscosity function considered 

being continuous and also proposed to be singular for 

vanishing shear rate. For instance, the problem (the latter 

case) reduces to a variational inequality. Using methods of 

nonlinear analysis like fixed point theory, monotonicity, and 

compactness, they illustrate the achieved results for the 

problems under consideration. Also, they found specific 

efficient approaches, typically for the numerical solution of 

the problems are shown [16], and numerical results for the 

simulation of the fluid flow in (ERF) shock absorbers are 

assumed. 

Finally, we denote [19] for another comprehensive study 

of nonlinear superposition operators on modular metric 

spaces of functions. 

4.3. In computer Programming 

It is known that the procedure of the theory of generalized 

Fourier series as employed in the Best Approximation 

Method can be practical for the approximation of linear 

operator relations. In order to exhibit the computational 

results in using this method, numerous example problems 

where analytic solutions or quasi-analytic solutions exist are 

deliberated [20]. Applications include two-dimensional 

problems including the Laplace and Poisson equations, tests 

for discrepancies in results owing to inner product weighting 

factors, and applications to nonhomogeneous domain 

problems. 

Hromadka et al., emphases on the weighting factor 

selection and modeling sensitivity, effects of additional basis 

functions on computational accuracy, and the effects on 

modeling results due to adding a lot of collocation points. 

Around thirteen simple but detailed examples have been used 

to clarify the approximation results achieved by the method 

when applied to practical problems [20]. 

It should be mentioned that the FORTRAN computer 

program is based on the Best Approximation Method as 

articulated by the FORTRAN computer program, which 

calculates approximation boundary values and relative errors 

(between exact and approximation values) [20]. 

5. Conclusion 

In this research, we show a brief introduction on modular 

metric space and its properties. Furthermore, the concept of 

conjoint F-proximinal contraction on regular modular space 

for a pair of multivalued mappings has been modified and 

used to find a common fixed point result. In addition, we 

enhanced our results with an example. Meanwhile, the notion 

of conjoint F-proximinal contraction of Hardy-Rogers-type 

on regular modular space for a pair of multivalued mappings 

was presented. Also, a common fixed point, in this case, was 

proved. Finally, an application of our main result established 

the existence of the solution of an integral equation. The 

extra applications which could use the main concept of our 

results in other fields of science were illustrated in the final 

of the article. In the future work, it is recommended to 

generalize the obtained results for nemours spaces as well as 

different contractions. 
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