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Abstract: Different forms of discriminant functions and the essence of their appearances were considered in this study. 

Various forms of classification problems were also considered, and in each of the cases mentioned, classification from simple 

functions of the observational vector rather than complicated regions in the higher-dimensional space of the original vector 

were made. Ever since the emergence of the Linear Discriminant Function (LDF) by Fisher, several other classification 

statistics have emerged and violation of condition of equal variance covariance matrix for Linear Discriminant Function 

(LDF) results to Quadratic Discriminant Function (QDF). While the Best Linear Discriminant Function (BLDF) is referred 

to Best Sample Discriminant Function (BSDF) when the parameters are estimated from a sample and also optimal in the 

same sense as Quadratic Discriminant Function (QDF), Rao statistic is best for discriminating between options that are 

close each other. The relationships among the classification statistics examined were established: Among the methods of 

classification statistics considered, Anderson’s (W) and Rao’s (R) statistics are equivalent when the two sample sizes n1 and n2 

are equal, and when a constant is equal to 1, W, R and John-Kudo’s (Z) classification statistics are asymptotically comparable. 

A linear relationship is also established between W and Z classification. 

Keywords: Discriminant Functions, Classification Statistics, Classification Problems, Covariance Matrix,  

Probability of Misclassification 

 

1. Introduction 

Discriminant analysis is a statistical method used for 

classification of objects into mutually exclusive and 

exhaustive groups on the basis of a set of independent 

variables. The method handles two or multiple group 

problems. It also derives linear combinations of the 

independent variables that discriminate between the a priori 

defined groups, such that the error rates misclassification are 

minimized as much as possible [20]. Thus, discriminant 

analysis finds a mean of classifying objects into groups with 

accuracy and also determines the dimensions on which the 

group differ [10]. 

Suppose Y~N1 x N (µ, Σ), where Σ is positive definite. Then 

the probability density function (pdf) of Y expressed as  
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Given that the individual 's
kf are multivariate normal 

densities with different means but common covariance 

matrix, so that 1/ ~ ( , )i i xp mX Y m N µ= Σ . The probability 

density function of Y becomes  
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The factors that depend on m are ignored since individual interest is on the highest pdf of .mπ Thus, for a given X, m is 
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chosen to maximize 
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− −Σ − Σ  by taking its log to 

have the discriminant function:  
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Several reasons have been given for the emergence of 

different types of discriminant functions, and notably among 

them are: contraventions of assumptions employed for the 

cradle of Fishers Linear Discriminant Function (FLDF); 

efforts to reduce as much as possible, the derivatives of errors 

of misclassification; efforts to get permissible methods that 

minimize probabilities of misclassification and also as an 

underline issue, testing of hypothesis. 

This study therefore considers different forms of 

classification statistics, instances of classification problems 

and correlations existing among the discriminant functions. 

2. Examples of Classification Problems 

(i) A large international Air Carrier collects data on 

employees in three different job classification (customer 

service personnel, mechanic and dispatches). The Director of 

Human Resources may wish to know if these three job 

classifications appeal to different personality types.[5] 

(ii) A number of variables are measured at five weather 

stations. Based on these variables, we may wish to predict the 

ceiling at a particular airport in 2 hours. The ceiling 

categories are closed, low instrument, high instrument, low 

open and high open. 

(ii) In a brand-switching system, one may wish to detect 

fast and slow consumers of newly introduced product on the 

basis of consumers’ characteristics such as education, 

income, family size and amount of previous brand-switching. 

(iv) A nutritionist may desire to classify different classes 

of food into distinct category of food nutrients such as 

carbohydrates, fats and oil, vitamins, proteins, minerals, etc., 

on the basis of measurements of amount of different nutrients 

in the food. 

(v) Astronomers have been cataloguing distant objects in 

the sky using long exposure CCD images. The objects need 

to be labeled as star, galaxy, nebula, etc. The data is highly 

noisy, and the images are very faint. The cataloguing can 

take decades to complete. Can an automated cataloguing 

process be designed to improve its effectiveness and 

efficiency? 

(vi) In a hospital, a patient is admitted with a diagnosis of 

myocardial infarction, and systolic blood pressure, heart rate, 

stroke index and mean arterial pressure are obtained by the 

Doctor. Is it possible to predict whether the patient will 

survive? On the basis of these measurements, can we 

compute a probability of survival for the patient? [15, 7]. 

(vii) In an anthropological study, an Archeologist obtained 

a jawbone excavated from a burial ground as having 

belonged to a male or female. Can an assignment be made on 

the basis of measurements such as circumference and volume 

made on the jawbones from the two sets of people? [14] 

(viii) A Geologist obtained the mean, variance, skewness 

and kurtosis of the size of particles deposited in a beach. 

How can these statistics be used to determine if the beach is 

wave-laid or Aeolian in origin? Are there differences in 

particle size distribution? 

(ix) An emergency room in a hospital measures a number 

of variables such as blood pressure, age, etc of newly 

admitted patients. A decision has to be taken whether to put 

the patient in an Intensive Care Unit (ICU). Due to the high 

cost of ICU, those patients who may survive a month or more 

are given higher priority. The problem is to predict high risk 

patients and discriminate them from low-risk patient [5]. 

(x) A credit card company receives hundreds of thousands 

of applications for new cards. The application contains 

information regarding several different attributes, such as 

annual salary, any outstanding debts, age, etc. The problem is 

to categorize applications into those who have good credit, 

bad credit, or fall into a gray area [5]. 

(xi) African or “killer bees” cannot be distinguished 

visually from ordinary domestic honey bees. What kind of 

variables based on chromatograph peaks can be used to 

readily identify them? [1]. 

(xii) A meteorologist wants to predict cloud ceiling at time, 

1 ,t  on the basis of physical measurements acquired at time, 

0 1, ,t t  where 0 1t t< . In this case, it is assumed that historic 

data are readily available to assist in determining an 

assignment rule [20]. 

3. Methods of Classification Statistics 

Different types of discriminant functions and some of their 

properties are appraised in this study: 

3.1. Linear Discriminant Function (LDF) 

The Linear Discriminant Function (LDF) is a statistical 

procedure constructed as 

( ) ( )1 1

1 2 1 2
, ; , ;C X Xµ µ µ µ −Σ = − Σ                  (1) 

It assigns p-dimensional observation vector, ,X  into one 

of the two populations, iπ  (i = 1, 2), and it is employed as 

an assignment rule when the following assumptions are 

satisfied: 

The density functions of observations from populations 1π  

and 2π  are multivariate normal; ( , ), 1,2( )N ipi iπ µ Σ =∼ ; 

the variance-covariance matrix 1( )Σ  in population, 1π  is the 

same as 2( )Σ  in population 2π ; the prior probabilities of 

observations coming from populations 1π  and 2π  are 

known; the parameters of the density functions are also 

known. 

However, the unknown parameters are estimated from the 

samples as 
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( ) ( )1
1

1 21 2
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where 1 2, ,X X S  are estimates of 1 2
, ,µ µ Σ  respectively. 

Suppose the assumptions specified above are satisfied, 

then the Linear Discriminant Function (LDF) provides 

optimal assignment rule in that it cannot be improved upon 

and the errors of misclassification are minimized. However, 

when some or all the assumptions are violated, it would be of 

interest to researchers to determine the effects of the violation 

on the procedures using LDF. Based on [8, 19, 18] 

established that LDF optimal properties for two group 

classification of the populations are multivariate normally 

distributed. 

3.2. Quadratic Discriminant Function (QDF) 

When the assumptions of equal covariance matrices from 

two populations are violated, QDF arises and the derivation 

is established using likelihood ratio rule. If the parameters are 

known, the classification statistic is expressed as 
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                          (3) 

where X  is a vector of observations, ,
1 2

µ µ  are the mean vectors and 1,Σ 2Σ  are different covariance matrices from 

populations 1π and 2π  respectively. 

When the parameters are estimated from the samples, 
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The sturdiness of QDF was studied by [9] when 1Σ =  and mΣ =  (m is a constant) and also by [13] in respect of non 

normality. The statistic (QDF) is optimal when the population parameters are known and 1 2Σ = Σ . 

3.3. Anderson’s Statistic (W) 

The statistic arose from Anderson’s derivation in respect of two population parameters that are multivariate normally 

distributed with different means and constant covariance matrix [3, 2]. When the population parameters are known, the W is 

defined as 
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and when the parameters are estimated from the samples, 
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The statistic (W) is different from LDF by a constant, ( ) ( )1 1
11 2 2

1

2
µ µ µ µ−+ Σ −  and ( )1 2

1

2
µ µ+ ( )1

1 2
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parameters are estimated from the samples. 

3.4. Best Linear Classification Statistic (BLCS) 

The statistic was introduced by [6, 4] under the same condition with QDF. The statistic is expressed as: 
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where ( ) ( )1

1 1 2 2 1 2m n n µ µ−= Σ + Σ −  and 1n  and 2n  are scalars selected to reduce the probability of misclassification as much 

as possible. 

When the parameters are estimated from the samples, BLCS is defined as: 
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where ( ) ( )2 11 2 2 2m n S n S X X= + −  and 1n and 2n  minimize probability of misclassification. The BLCS is optimal when the 

conditions for QDF hold. 

3.5. John-Kudo’s Classification Statistic (Z) 

Let X  be a vector of observations whose distribution in two populations is multivariate normal, with the same covariance 

matrix and different estimated sample means. Then the statistic Z is defined as 
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1 221 1 1 2 2
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n n
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where 1n  and 2n  are the sample sizes, α is a constant and S is the estimated covariance matrix [11, 12]. 

3.6. Rao’s Classification Statistics (R) 

The Statistic (R) was derived by [16] under the condition that the distribution of a vector of observations X  from two 

populations 1π  and 2π  is multivariate normal. He also assumed that samples n1 and n2 are from populations 1π  and 2π  

respectively. The R statistic is expressed as 
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4. Correlations Linking the Classification         

Statistics 

The LDF results to QDF when the variance covariance 

matrices condition is violated. If the samples sizes n1 and n2 

are the same, then Rao’s (R) and Anderson’s (W) statistics 

are comparable. When 1,α =  the statistics W, R and Z are 

asymptotically comparable. Suppose that 1 2 , 1,n n n α= = =  

then there is a linear relationship between Z and W statistics 

expressed as 

2

1

W
n

Z
n
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                          (11) 

If the two sample sizes are the same, and the total sample 

size less by 2 are sufficiently large, then 

1

2

1

1

1

i

n

n

=

+∑  

approximates to 1 (Siotani, 1975). 

5. Conclusion 

The problem of classification of observations has been the 

focus of research since the introduction of Fisher’s Linear 

Discriminant Function (FLDF). Contraventions on the 

assumptions of LDF have resulted to appearances of QDF 

and other discriminant functions. Correlations existing 

among LDF, QDF and some other forms of classification 

statistics are well established in this study. For each of the 

classification problems considered, a classification from a 

simple function of observational vector has been made, rather 

than complicated regions in the higher-dimensional space of 

the original vector. 
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