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Abstract: In this paper, qualitative properties such as existence-uniqueness of solutions of finite system of differential
equations involving R-L sequential fractional derivative with initial conditions have been studied. Lower and upper solutions are
defined for the problem under investigation. Comparison results are used to develop monotone technique for finite system of
differential equations involving R-L sequential fractional derivative with initial conditions when the functions on the right hand
side are mixed quasi-monotone. Two convergent monotone sequences are obtained by introducing monotone operator. Lipschitz
condition is the key part of the study. Minimal and maximal solutions are obtained by using developed technique. Existence and
uniqueness of solutions of finite system of differential equations involving R-L sequential fractional derivative is also proved as
an application of the technique.
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1. Introduction

Fractional differential equations occur more frequently in
physics, chemistry, control of dynamical systems etc [2, 3,
6, 7, 19, 21]. During the last two decades many researchers
attracted towards existence-uniqueness results for initial value
problems (IVPs) [4, 12, 25], boundary value problems
(BVPs)[1], periodic boundary value problems (PBVPs) [13,
20] and integral boundary value problems (IBVPS) [22].
Recent results on the theory of differential equations of
fractional order due to Lakshmikantham et. al. appeared in
[8-11].

Wei et. al. [23, 24] developed monotone iterative scheme for
fractional differential equations involving Riemann- Liouville
sequential derivative. They have successfully applied the
technique to study existence-uniqueness of solution for
initial value problems and periodic boundary value problems.
Nanware and Dhaigude in 2017 constructed monotone scheme
for system of Caputo fractional differential equations with
periodic boundary conditions [5, 17], Riemann-Liouville

fractional differential equations with integral boundary
conditions [15], Riemann-Liouville fractional differential
equations with IBCs when the function is quasimonotone non-
decreasing [16], Nonlinear System of initial value problems
involving sequential Riemann-Liouville fractional derivative
[18].

Motivated by above literature, we shall study the following
finite system of differential equations involving sequential
derivative with initial conditions when the function on the right
is mixed quasi-monotone:

(D2α
0+ui)(p) = fi(p, u1, ..., uN ,D

α
0+u1, ...,D

α
0+uN ),

p ∈ (0, T ] = J∗

p1−αui(p) = ui0,

p1−α(Dαui)(p)|p=0 = ui1, i = 1, 2, ..., N.

(1)

where fi ∈ C(J × R × R × R × R × ... × R), J = [0, T ]
Monotone technique is developed for the finite system of
sequential fractional differential equations (1). Qualitative
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properties of solutions such as existence-uniqueness are
obtained for the problem (1) via monotone technique.

The paper is arranged in the following way:
In the second section definitions and basic results are
explored. In third section monotone technique is constructed
for finite system of sequential fractional differential equations
and technique developed is successfully applied to obtain
existence-uniqueness of solution of the finite system of
sequential fractional differential equations (1). At the end
conclusion is given.

2. Definitions and Basic Results
Definition 2.1. [19] The Riemann-Liouville (R-L) fractional

integral of u(p) denoted by Iαa+u(p) is

(Iαa+u)(p) =
1

Γ(α)

∫ p

a

(p− s)α−1u(s)ds 0 < α ≤ 1

and Riemann-Liouville fractional derivative of u(p) denoted
by Dα

a+u(p) is

(Dαa+u)(p) =
1

Γ(1 − α)

d

dp

∫ p

a
(p− s)−αu(s)ds(=

d

dp
(I1−αa+ u)(p)).

Definition 2.2. [14] Riemann-Liouville sequential fractional
derivative of u(p) denoted by Dα

a+u(p) is

Dα
a+u(p) = Dα

a+u(p)

Dnα
a+u(p) = Dα

a+D
(n−1)α
a+ u(p), (n = 2, 3, ...).

Relation between Riemann-Liouville sequential fractional
derivatives and Riemann-Liouville fractional derivatives

In case k = 2, 0 < α < 1
2 and R-L derivatives, the

relationship between Dkα
a+u(p) and Dkα

a+u(p) is(
D2α
a+u

)
(p) =

(
D2α
a+

[
u(t) −

(
I1−αa+ u

)
(a+)

t− aα−1

Γ(α)

])
(p)

Definition 2.3. A function ui(p) is called a classical solution
of finite system of IVP (1) if

1. ui(p) is continuous on J∗; p1−αui(p), p1−α(Dαui)(p)
are continuous on J , and its fractional integrals
(I1−αui)(p), (I1−αDαui)(p) are continuously
differentiable for J∗;

2. ui(p) satisfies finite system of IVP (1).

Define the following:

C([0, T ]) =

{
ui : ui(p) is continuous on J, ||ui(p)||C = max

p∈J∗
|ui(p)|

}
C1−α([0, T ]) =

{
ui ∈ C(J) : p1−αui(p) ∈ C([0, T ]), ||ui(p)||C1−α = ||p1−αui(p)||C

}
Cα1−α([0, T ]) =

{
ui ∈ C1−α(J) : p1−α(Dα

0+ui)(p) ∈ C(J)

}
Definition 2.4. A function v(p) = (v1, v2, ..., vN ) ∈ Cα1−α([0, T ]) is said to be lower solution of finite system of IVP (1) if

(D2α
0+vi)(p) ≤ fi(p, v1, v2, ..., vN ,Dα

0+v1, ...,D
α
0+vN ), p ∈ J∗

p1−αvi(p) ≤ vi0, p1−α
(

Dαvi

)
(p)|p=0 ≤ vi1.

A function w(p) = (w1, w2, ..., wN ) ∈ Cα1−α([0, T ]) is said to be upper solution of finite system of IVP (1) if(
D2α

0+w

)
(p) ≥ fi(p, w1, w2, ..., wN ,D

α
0+w1,D

α
0+w2, ...,D

α
0+wN ), p ∈ J∗

p1−αwi(p)|p=0 ≥ wi0, p1−α
(

Dαwi

)
(p)|p=0 ≥ wi0.

Definition 2.5. A function fi ∈ C([0, T ] × RN , RN )
is said to satisfy mixed quasimonotone property if for each
i, fi(t, ui, [u]ri , [u]si) is monotone nondecreasing in [u]ri and
monotone nonincreasing in [u]si .

When either ri or si is equal to zero, mixed quasimonotone
property is defined:

Definition 2.6. A function fi ∈ C([0, T ] × RN , RN ) is
called quasimonotone nondecreasing (nonincreasing) if for
each i, ui ≤ vi and uj = vj , i 6= j, then

fi(t, u1, u2, ..., uN ) ≤ fi(t, v1, v2, ..., vN )

(
fi(t, u1, ..., uN ) ≥ fi(t, v1, ..., vN )

)
.

Definition 2.7. Let fi(t, u1, u2, ..., uN ) be real valued
continuous function defined on domain G ⊂ RN .We say that
fi(t, u1, u2, ..., uN ) satisfies Lipschitz condition if there exists
L > 0 such that

|fi(t, u1, u2, ..., uN )− fi(t, u1, u2, ..., uN )| ≤ L(|ui − ui|)

for all (t, u1, u2, ..., uN ), (t, u1, u2, ..., uN ) ∈ G.
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Define the sector

Ω =

{
(t, u1, u2, ..., uN ) ∈ [0, T ]×RN : vi(p) ≤ ui(p) ≤ wi(p), 0 ≤ p ≤ T

}
.

Assume that

vi(p) ≤ wi(p), p ∈ (0, T ] : p1−αvi(p)|p=0 ≤ p1−αwi(p)|p=0,

p1−α(Dα
0+vi)(p)|p=0 ≤ p1−α(Dα

0+wi)(p)|p=0.

Define the sector in space Cα1−α([0, T ]):

[v, w] =

{
ui ∈ Cα1−α([0, T ])|vi ≤ ui ≤ wi, p ∈ (0, T ] : p1−αvi|p=0 ≤ p1−αui|p=0

≤ p1−αwi|p=0, t
1−α(Dα

0+vi)|p=0 ≤ p1−α(Dα
0+ui)|p=0 ≤ p1−α(Dα

0+wi)|p=0

}
Following Lemma gives existence of solution for linear initial value problem (LIVP) involving Riemann-Liouville fractional

derivative.
Lemma 2.8. Suppose that u(p) ∈ C1−α([0, T ]), then the linear initial value problem

Dα
0+u(p) +Mu(p) = σ(p), p ∈ J∗, p1−αu(p)|p=0 = u0, (2)

where M ∈ R is constant and σ(p) ∈ C1−α([0, T ]), has following integral representation of solution

u(p) = Γ(α)u0eα(−M,p) +

[
eα(−M, t) ∗ σ(t)

]
(p), (3)

where

(g ∗ f)(p) =

∫ p

0

g(p− t)f(t)dt, eα(λ, z) = zα−1Eα,α(λzα) = zα−1
∞∑
l=0

λl
zαl

Γ[(l + 1)α]
,

where

Eα,α(p) =

∞∑
l=0

pk

Γ[(l + 1)α]

is Mittag-Leffler function of two parameter.
Lemma 2.9. [18, 23] Suppose that u(p) ∈ Cα1−α([0, T ]), then linear initial value problem

(D2α
0+u)(p) +NDα

0+u(p) +Mu(p) = σ(p), p ∈ (0, T ],

x1−αu(x)|x=0 = u0, x1−α(Dα
0+u)(x)|x=0 = u1

where N,M ∈ R, N2 ≥ 4M are constants and σ(p) ∈ C1−α[0, T ], has following representation of solution

u(p) = Γ(α)u0eα(λ2, p) + Γ(α)(u1 − λ2u0)

[
eα(λ2, t) ∗ eα(λ1, t)

]
(p) +

[
eα(λ2, t) ∗ eα(λ1, t) ∗ σ(t)

]
(p),

where

λ1 =
−N +

√
N2 − 4M

2
, λ2 =

−N −
√
N2 − 4M

2
≤ 0.
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Lemma 2.10. [18, 23][
eα(λ2, t) ∗ eα(λ1, t)

]
(p) =

[
eα(λ1, t) ∗ eα(λ2, t)

]
(p) =

1

λ1 − λ2

[
eα(λ1, t)− eα(λ2, t)

]
(p), p ∈ R.

Lemma 2.11. [18, 23] For 0 ≤ α ≤ 1, there exist constants b0n > 0, b1n > 0, b2n > 0, ..., bnn > 0, such that

ωn(kα) =

n∑
i=0

binC
i+1
k+i.

Hence, we have

(k − 1)ωn(kα) =

n∑
l=0

(l + 2)blnC
l+2
k+l.

(1 + kα)(1 +
kα

2
)...(1 +

kα

n
) =

1

α

n∑
l=0

1

l + 1
blnC

l
k+l.

Lemma 2.12. [18, 23] If 0 < α ≤ 1, then F (p) > 0, g(p) > 0, h(p) > 0,∀ x ∈ R = (−∞,+∞), where

F (p) = Eα,α(p) =

∞∑
l=0

xl

Γ((l + 1)α)
, g(p) =

∞∑
l=1

lpl−1

Γ((l + 1)α)
, h(p) = Eα(p) =

∞∑
l=1

lpl−1

Γ(lα+ 1)
.

Following comparison results play a vital role in the later sections.
Lemma 2.13. [18, 23] If w ∈ C1−α([0, T ]) and

Dαw(p) +Mw(p) ≥ 0, p ∈ J∗

p1−αw(p)|p=0 ≥ 0,

where M ∈ R is constant. Then w(p) ≥ 0, t ∈ J∗.
Lemma 2.14. [18, 23] If w(p) ∈ Cα1−α([0, T ]) and

D2α
0+w(p) +NDα

0+w(p) +Mw(p) = σ(p) ≥ 0, p ∈ J∗

p1−αw(p)|p=0 = w0 ≥ 0, p1−α(Dα
0+w)(p)|p=0 = w1 ≥ 0

where N,M ∈ R, N2 ≥ 4M are constants such that

λ1 =
−N +

√
N2 − 4M

2
≥ 0 > λ2 =

−N −
√
N2 − 4M

2
.

Then w(p) ≥ 0, p ∈ J∗.
Suppose that f satisfies the following:
(1) H1: there exist constants N,M ∈ R, N2 > 4M such that

f(t, w,Dα
0+w)− f(t, v,Dα

0+v) ≥ −N(Dα
0+w −Dα

0+v)−M(w − v),

v, w ∈ Cα1−α([0, T ]) are lower-upper solutions of the finite system of initial value problem (1)
(2) H2: there exist constants N,M ∈ R, N2 > 4M such that (H1) holds and for p ∈ (0, T ], v(p) ≤ y2 ≤ y1 ≤

w(p), D1(p) ≤ zi ≤ D2(p), i = 1, 2 such that

f(p, y1, z1)− f(p, y2, z2) ≥ −N(z1 − z2)−M(y1 − y2), (4)

where

D1(p) = (Dα
0+v)(p) + λ2(w(p)− v(p)),

D2(p) = (Dα
0+w)(p)− λ2(w(p)− v(p)), p ∈ (0, T ],
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λ1 =
−N +

√
N2 − 4M

2
≥ 0 > λ2 =

−N −
√
N2 − 4M

2
. (5)

(3) H3: there exist constants N,M ∈ R, N2 > 4M such that (H2) holds and for p ∈ (0, T ], v(p) ≤ y2 ≤ y1 ≤
w(p), D1(p) ≤ zi ≤ D2(p), i = 1, 2 such that

f(p, y1, z1)− f(p, y2, z2) ≤ N(z1 − z2) +M(y1 − y2),

In view of (4),
f(t, u, v) +Mu+Nv

is monotone non-decreasing in u, v for u, v ∈ C1−α([0, T ]).
Lemma 2.15. [18, 23] If (H1) holds then

Dα
0+(w − v)(p)− λ2(w − v)(p) ≥ 0, p ∈ J∗.

Hence,

Dα
0+(w)(p)− λ2(w(p)− v(p)) ≥ Dα

0+v)(p) ≥ Dα
0+v)(p) + λ2(w(p)− v(p)), p ∈ J∗,

where λ2 < 0 is given by (5).
Lemma 2.16. [18, 23] If (H1) holds then

Ω = {η ∈ [v, w] : D1(p) ≤ (Dα
0+η)(p) ≤ D2(p), p ∈ J∗}

is a convex closed set.

3. Monotone Technique

Monotone technique is developed in the section for finite system of sequential fractional differential equations with Riemann-
Liouville fractional derivative and developed method is successfully implemented to study existence-uniqueness of solutions of
finite system of sequential fractional differential equations (1).

Theorem 3.1. Assume that
(1) vi0, w

i
0 ∈ Cα1−α([0, T ]) are ordered lower-upper solutions finite system of sequential fractional differential equations (IVP)

(1) and fi ∈ C([0, T ]× RN),
(2) fi satisfies Lipschitz condition ( one-sided)

fi(p, w1, ..., wN ,D
α
0+w1, ...,D

α
0+wn)− fi(p, v1, ..., vN ,Dα

0+v1, ...,D
α
0+vN ) ≥ −Ni(Dα

0+wi −Dα
0+vi)−Mi(wi − vi),

where Ni,Mi ∈ R, N2
i > 4Mi.

(3) There exist constants Ni,Mi ∈ R, N2
i > 4Mi such that (ii) holds and for p ∈ (0, T ], vi ≤ βi ≤ αi ≤ wi, Di

1 ≤ zij ≤
Di

2, j = 1, 2, such that

fi(p, α1, α2, ..., αN , z
1
1 , z

1
2)− fi(p, β1, β2, ..., βN , z21 , z22) ≤ Ni(z1i − z2i ) +Mi(αi − βi)

where
Di

1 = Dα
0+vi(p) + λi2(wi(t)− vi(p)), Di

2 = Dα
0+wi(p)− λi2(wi(p)− vi(p))

λi1 =
−Ni +

√
N2
i − 4Mi

2
≥ 0 > λi2 =

−Ni −
√
N2
i − 4Mi

2

Then there exist sequences {vin(p)}, {win(p)} ⊂ Cα1−α([0, T ]) with vi0 = vi, w
i
0 = wi such that for p ∈ (0, T ]

lim
n→∞

vin(p) = ρi(p), lim
n→∞

win(p) = γi(p)

and ρi, γi are minimal and maximal solutions on [v, w] for system of IVP respectively and for any solution ui of system of IVP
such that ui(p) ∈ Ω, we have

vi0 ≤ vi1 ≤ vi2 ≤ ... ≤ vin ≤ ρi ≤ ui ≤ γi ≤ ... ≤ wi2 ≤ wi1 ≤ wi0.
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Proof. Let

σ(ηi)(p) = fi(p, η1, η2, ..., ηNDα
0+η1,D

α
0+η2, ...,D

α
0+ηN ) +NiD

α
0+ηi(p) +Miηi(p), p ∈ (0, T ].

For any η = (η1, η2, ..., ηN ) ∈ Ω, consider the linear initial value problem (LIVP)

(D2α
0+ui)(p) +NiD

α
0+ui(p) +Miui(p) = σ(ηi)(p), p ∈ (0, T ],

p1−αui(p)|p=0 = ui0, p1−α(Dα
0+ui)(p)|p=0 = ui1.

By Lemma 2.8 and relation (
D2α
a+u

)
(p) =

(
D2α
a+

[
u(p)−

(
I1−αa+ u

)
(a+)

p− aα−1

Γ(α)

])
(x)

LIVP has exactly one solution ui(x) ∈ Cα1−α([0, T ]) and is given by

ui(p) = (Aηi)(p) = Γ(α)ui0eα(λi2, p) + Γ(α)(ui1 − λ2ui0)

[
eα(λi2, p) ∗ eα(λi1, p)

]
(p) +

[
eα(λi2, p) ∗ eα(λi1, p) ∗ σηi(p)

]
(p),

where

λi1 =
−Ni +

√
N2
i − 4Mi

2
, λi2 =

−Ni −
√
N2
i − 4Mi

2
≤ 0. (6)

(Dα
0+Aηi)(p) = Γ(α)ui0λ

i
2eα(λi2, p) + Γ(α)(ui1 − λ2ui0)

1

λi1 − λi2

[
λi1eα(λi1, p)− λi2eα(λi1, p)

]
(p)

+
1

λi1 − λi2

{
λi1eα(λi1, t) ∗ σ(ηi)(t)− λi2eα(λi2, p) ∗ (σηi)(p)

}
(p).

Then A is an operator from Ω into Cα1−α([0, T ]) and ηi(p) is a solution of finite system of FDE if and only if ηi = Aηi. Since
λi1 ≥ 0 ≥ λi2 in (6), we have

1

λi1 − λi2

[
λi1eα(λi1, p)− λi2eα(λi2, p)

]
(p) ≥ 0, p ∈ (0, T ].

Using Lemma 2.10 and Lemma 2.11, lower and upper solutions, definition of ui(t) and (Dα
0+Aηi)(x), we get

vi(p) = (Aηi)(p) = Γ(α)ui0eα(λi2, p) + Γ(α)(ui1 − λi2ui0)

[
eα(λi2, t) ∗ eα(λi1, )

]
(p) +

[
eα(λi2, p) ∗ eα(λi1, p) ∗ (σηi)(p)

]
(p)

vi(p) ≤ Avi(p) = Γ(α)ui0eα(λi2, p) + Γ(α)(ui1 − λi2ui0)

[
eα(λi2, p) ∗ eα(λi1, p)

]
(p) +

[
eα(λi2, p) ∗ eα(λi1, p) ∗ σvi(p)

]
(p)

≤ (Aηi)(p) ≤ (Awi)(p) ≤ wi(p), ∀ ηi(p) ∈ Ω.

That is
vi(p) ≤ Avi(p) ≤ Aηi(p) ≤ Awi(p) ≤ wi(p), ∀ ηi(p) ∈ Ω (7)

and if
vi(p) ≤ θi(p) ≤ φi(p) ≤ wi(p) then (σθi)(p) ≤ (σφi)(p), Aθi(p) ≤ Aφi(p),

and Dα
0+Aθi(p) ≤ Dα

0+Aφi(p).
(8)

By Lemma 2.8, for i = 1, 2, we have

zi1(p) = Dα
0+(Aηi − vi)(p)− λi2(Aηi − vi)(p) ≥ 0, t ∈ (0, T ],∀ ηi(p) ∈ Ω.

Hence
Dα

0+(Aηi)(p) = Dα
0+vi(p) + λi2(Aηi − vi)(p) ≥ Dα

0+vi(p) + λi2(wi − vi)(p) = Di
1(p)



Jagdish Ashruba Nanware: Qualitative Properties of Solutions of Finite System of Differential
Equations Involving R-L Sequential Fractional Derivative

44

Similarly, we can show

Dα
0+(Aηi)(p)−Dα

0+vi(p) + λi2(Aηi − vi)(p) ≥ 0, p ∈ (0, T ], ∀ ηi(p) ∈ Ω.

∴ Dα
0+(Aηi)(p) ≥ Dα

0+vi(p)− λi2(Aηi − vi)(p) ≥ Dα
0+vi(p)− λi2(wi − vi)(p) = Di

2(p).

Therefore
A(Ω) ⊂ Ω.

Now let
vi0 = vi, wi0 = wi, vin = Avi,n−1, win = Awi,n−1, n = 1, 2, 3, ...

From (7) and (8), we have

vi(p) ≤ vi1(p) ≤ vi2(p) ≤ ... ≤ vin(p) ≤ ... ≤ win(x) ≤ ... ≤ wi2(p) ≤ wi1(p) ≤ wi(p)

Di
1(p) ≤ Dα

0+vi1(p) ≤ Dα
0+vi2(p) ≤ ... ≤ Dα

0+vin(p) ≤ ... ≤ Dα
0+win(p) ≤ ... ≤ Dα

0+wi2(p) ≤ Dα
0+wi1 ≤ Di

2(p)

Clearly, the upper sequence wik is monotone non-decreasing and bounded below and that lower sequence vik is monotone
non-decreasing and bounded above. Moreover, Dα

0+vik, Dα
0+wik ∈ [Di

1(p), Di
2(p)].

Let Bi = {vin : n = 1, 2, 3, ...}. Now we show that the set Bi is relatively compact in Cα1−α([0, T ]). For any ηi(p) ∈ Ω, by
definition of lower and upper solutions and Lipschitz condition, we have

(D2α
0+vi)(p) +NiD

α
0+vi(p) +Mivi(p) ≤ fi(x, v1, v2, ..., vNDα

0+v1,D
α
0+v2, ...,D

α
0+vn) +NiD

α
0+vi(p) +Mivi(p)

≤ fi(p, η1, η2, ..., ηNDα
0+η1,D

α
0+η2,D

α
0+ηN ) +NiD

α
0+ηi(p) +Miηi(p)

≤ fi(p, w1, w2, ..., wnD
α
0+w1,D

α
0+w2, ...,D

α
0+wn) +NiD

α
0+wi(p) +Miwi(p)

Since Bi, Ω ⊂ Cα1−α([0, T ]) are bounded sets, therefore

{σηi(p) = fi(x, η1, η2,D
α
0+η1,D

α
0+η2) +NiD

α
0+ηi(p) +Miηi(p)|ηi ∈ Ω}

is bounded. Thus there exists constant L > 0 such that

‖σ(vik)(p)‖ = max|p1−ασ(vik(p)| ≤ L, ∀, k = 1, 2, ....⇔ |σ(vik(p)| ≤ Lp1−α,∀ p ∈ (0, T ].

On the other hand by using Lemma 2.8, {vk(p)|k ∈ N} satisfies

vik(p) = Γ(α)yi0eα(λi2, p) + Γ(α)(yi1 − λi2yi0)

[
eα(λi2, p) ∗ eα(λi1, p)

]
(p)

+

[
eα(λi2, p) ∗ eα(λi1, p) ∗ (σ(vi,k−1)(p)

]
(p) (9)

(Dα
0+vik)(p) = Γ(α)yi0λ2eα(λi2, p) + Γ(α)(yi1 − λi2yi0)

1

λi1 − λi2

[
λi1eα(λi1, p)− λi2eα(λi2, p)

]
(p)

+
1

λi1 − λi2

[
λi1eα(λi1, p) ∗ σ(vi,k−1)(p)− λi2eα(λi2, p) ∗ σ(vi,k−1)(p)

]
(p) (10)

Let G(λij , p) = p1−α
[
eα(λij , p) ∗ σ(vi,k−1)(p)

]
, p ∈ [0, T ], j = 1, 2. Without loss of generality, we assume that 0 ≤ t1 <

t2 ≤ T , from λi2 < 0 ≤ λi1, we have∣∣∣∣G(λi2, t1)−G(λi2, t2)

∣∣∣∣ =

∣∣∣∣t1−α1

(
eα(λi2, t) ∗ σ(vi,k−1)(t1)

)
− t1−α2

(
eα(λi2, t) ∗ σ(vi,k−1)(t2)

)∣∣∣∣
=

∣∣∣∣t1−α1

∫ x

0

eα(λi2, x− t1)σ(vi,k−1)(t1)dt− t1−α2

∫ x

0

eα(λi2, t)σ(vi,k−1)(t2)dt

∣∣∣∣
≤ LΓ(α)

|λi1|

∣∣∣∣Eα,α(λi2, t
α
1 )− Eα,α(λi2, t

α
2 )

∣∣∣∣+
2LΓ(α)

Γ(2α)
(t2 − t1)α

(11)



45 Pure and Applied Mathematics Journal 2021; 10(2): 38-48

and ∣∣∣∣G(λi1, t1)−G(λi1, t2)

∣∣∣∣ =

∣∣∣∣t1−α1 [eα(λi1, t) ∗ σ(vi,k−1)(t1)] =

∣∣∣∣t1−α1

∫ x

0

eα(λi1, x− t1)σ(vi,k−1)(t1)dt

− t1−α2

∫ x

0

eα(λi1, t)σ(vi,k−1)(t2)dt

∣∣∣∣ ≤ (LΓ(α)

|λi1|
+
LTα

α

)∣∣∣∣Eα,α(λi1, t
α
1 )− Eα,α(λi1, t

α
2 )

∣∣∣∣
+

2LΓ(α)

Γ(2α)
Eα,α(λi1, T

α(t2 − t1)α)

(12)

From Eα,α(p) ∈ C([0, T ]), ∀ ε > 0, there exists δ = δ(ε), when |t1 − t2| < δ (without loss of generality 0 ≤ t1 < t2 ≤
T ), we have ∣∣∣∣Eα,α(λi1, t

α
1 )− Eα,α(λi1, t

α
2 )

∣∣∣∣ < ε

8L1
(13)∣∣∣∣Eα,α(λi2, t

α
1 )− Eα,α(λi2, t

α
2 )

∣∣∣∣ < ε

8L2
(14)

(t2 − t1)α <
ε

8L3
(15)

where

L1 = max

{
|Γ(α)(yi1 − λi2yi0)λi1|

|λi1 − λi2|
,

1

|λi1 − λi2|

(
Γ(α) +

|λi1|Tα

α

)}
L2 = max

∣∣∣∣Γ(α)(yi0λ
i
2),
|Γ(α)(yi1 − λi2yi0)λi1|

|λ1 − λ2|
,
LΓ(α)

|λ1 − λ2|

∣∣∣∣
L3 =

2LΓ(α)

Γ(2α)|λi1 − λi2|

(
|λi2|+ |λi1|Γ(α)Eα,α(|λi1|Tα)

)
Using (11) to (13) in (10), we obtain∣∣∣∣t1−α1 (Dα

0+vik)(t1)− t1−α2 (Dα
0+vik)(t2)

∣∣∣∣ =

∣∣∣∣t1−α1 Γ(α)ui0eα(λi2, t1) + t1−α1 Γ(α)(ui1 − λi2ui0)

− 1

λi1 − λi2
[λi1eα(λi1, t)− λi2eα(λi2, t)](t1) + t1−α1

[
λi1eα(λi1, t) ∗ σ(vi,k−1)(t)− λi2eα(λi2, t) ∗ σ(vi,k−1)(t)

]
(t1)

− t1−α2 Γ(α)ui0eα(λi2, t)− t1−α2 Γ(α)(ui1 − λi2ui0)
1

λi1 − λi2

[
λi1eα(λi1, t)− λi2eα(λi2, t)](t2)

]
− t1−α2

[
λi1eα(λi1, t) ∗ σ(vi,k−1)(t)− λi2eα(λi2, t) ∗ σ(vi,k−1)(t)

]
(t2)

∣∣∣∣ ≤ ∣∣∣∣Γ(α)ui0λ
i
2

∣∣∣∣.∣∣∣∣Eα,α(λi2t
α
1 )− Eα,α(λi2t

α
2 )

∣∣∣∣
+
|Γ(α)(ui1 − λi2ui0)

|λi1 − λi2|

{
|λi1||Eα,α(λi1t

α
1 )− Eα,α(λi1t

α
2 )|+ |λi2||Eα,α(λi2t

α
1 )− Eα,α(λi2t

α
2 )|
}

+
L

|λi1 − λi2|

(
(Γ(α) +

|λ|Tα

α
)|Eα,α(λi1t

α
1 )− Eα,α(λi1t

α
2 )|+ Γ(α)|Eα,α(λi2t

α
1 )− Eα,α(λi2t

α
2 )|
)

+
2LΓ(α)

Γ(2α)|λi1 − λi2|

(
|λi2|+ |λi1|Γ(α)Eα,α(|λi1|Tα)

)
(t2 − t1)α ≤ ε.

Thus Bi is equicontinuous in Cα1−α([0, T ]), by Ascoli-Arzela theorem, we have that Bi is relatively compact set of
Cα1−α([0, T ]). Similarly we can prove {wik(p)} is relatively compact set of Cα1−α([0, T ]). Hence, the sequences
{vik(p)}, {wik(p)} converges uniformly to ρi(p), γi(p) respectively on [0, T ] i.e.

lim
k→∞

vik(p) = ρi(p) , lim
k→∞

wik(x) = γi(x), p ∈ [0, T ]

lim
k→∞

D2α
0+vik(p) = D2α

0+ρi(p) , lim
k→∞

D2α
0+wik(p) = D2α

0+γi(p), p ∈ [0, T ].
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Thus by relations (vi ≤ vi1...), it follows that vi and wi satisfy

vi ≤ vi1 ≤ vi2 ≤ ... ≤ vin ≤ ρi ≤ γi ≤ ... ≤ win ≤ ... ≤ wi2 ≤ wi1 ≤ wi
Di

1(p) ≤ Dα
0+vi1 ≤ Dα

0+vi2 ≤ Dα
0+ρi ≤ Dα

0+γi ≤ ... ≤ Dα
0+vin ≤ ... (16)

≤ Dα
0+win ≤ ... ≤ Dα

0+wi2 ≤ Dα
0+wi1 ≤ Di

2(p)

Lastly we prove ρi(p), γi(p) are minimal and maximal solutions of finite system of IVP . Since fi is continuous , σ(ηi)(p)
is continuous and is monotone non-decreasing in vi, the sequence vik converges to ρi(p) implies that σ(vik)(p) converges to
σ(ρi)(x), x ∈ (0, T ].

Taking limit as k →∞ of vik i.e equation (4.4) and by dominated convergence theorem, ρi(p) satisfies the integral equation

ρi(p) = (Aρi)(p) = Γ(α)yi0eα(λi2, p) + Γ(α)(yi1 − λi2yi0)

[
eα(λi2, t) ∗ eα(λi1, t)

]
(p)

+

[
eα(λi2, p) ∗ eα(λi1, p) ∗ (σρi)(p)

]
(p)

Thus ρi(p) is an integral representation of the solution to LIVP, that is ρi(p) is an integral representation of the solution of
finite system of IVP.

Since fi is continuous and by Lemma 2.1, ρi(p) is a classical solution of finite system of IVP. This proves that lower sequence
vik(p) converges to a solution ρi(p) of finite system of IVP. Similarly we can show that the upper sequence wik(p) converges
to a solution γi(p) of finite system of IVP and satisfies ρi(p) ≤ γ(i)(p),Dα

0+ρi(p) ≤ Dα
0+γi(p), p ∈ (0, T ]. Thus by standard

arguments it follows that

vi ≤ vi1 ≤ vi2 ≤ ... ≤ vin ≤ ρi ≤ γi ≤ ... ≤ win ≤ ... ≤ wi2 ≤ wi1 ≤ wi

and hence ρi(p) and γi(p) are minimal-maximal solutions of finite system of IVP on [v, w] respectively.
Finally if for p ∈ (0, T ], vi ≤ yi2 ≤ yi1 ≤ wi, Di

1(p) ≤ zij ≤ Di
2(p), j = 1, 2 there exists Ni,Mi such that

fi(p, y1, y2, z1, z2)− fi(p, y1, y2, z1, z2) ≤ Ni(zi − zi) +Mi(yi − yi)

fi(p, y1, y2, z1, z2) is quasimonotone nondecreasing in y1, y2, Z1, Z2

for y, z ∈ C1−α([0, T ])) then ρi(p) = γi(p) is a unique solution of finite system of IVP. It is sufficient to prove ρi(p) ≤
γi(p),Dα

0+ρi(p) ≥ Dα
0+γi(p), p ∈ (0, T ]. Thus finite system of IVP and above hypothesis gives, for wi(p) = ρi(p)− γi(p)

(D2α
0+wi)(p) +NiD

α
0+wi(p) +Miwi(p) = D2α

0+(ρi − γi)(p) +NiD
α
0+(ρi − γi)(p) +Mi(ρi − γi)(p)

= D2α
0+ρi −D2α

0+γi)(p) +NiD
α
0+ρi(p)−NiDα

0+γi(p) +Miρi(p)−Miγi(p) = (φwi)(p) ≥ 0, p ∈ (0, T ]

x1−αwi(p)|p=0 = 0, p1−α(Dα
0+wi)(p)|p=0 = 0.

Dα
0+wi)(p) =

1

λi1 − λi2

{(
λi1eα(λi1, p)− λi2eα(λi2, p)

)
∗ (φwi)(p)

}
(p)

Then by Lemma 2.11, we have wi(p) = 0, p ∈ (0, T ]. Thus

ρi(p) = γi(p), Dα
0+ρi(p) = Dα

0+γi(p), p ∈ (0, T ].

Therefore we obtain ρi(p) = ui(p) = γi(p) is a solution of finite system of initial value problem (1).
Theorem 3.2. Assume that
(1) vi0, w

i
0 ∈ Cα1−α([0, T ]) are ordered lower- upper solutions of the finite system of initial value problem IVP (1) and fi ∈

C([0, T ]× RN),
(2) fi satisfies Lipschitz condition

|∆| ≤Mi|vi − wi|+Ni|Dα
0+vi −Dα

0+wi|, (17)
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where

∆ =fi(p, x1, ..., xN ,D
α
0+x1, ...,D

α
0+xN )− fi(p, y1, ..., yN ,Dα

0+y1, ...,D
α
0+yN );

xi, yi ∈ [v, w], Dα
0+xi,D

α
0+yi ∈ [Di

1(p), Di
2(p)],

and Mi > 0, Ni > 0, N2
i > 4Mi

are Lipschitz constant such that

Di
1 = Dα

0+xi(p) + λi2(yi(p)− xi(p)), Di
2 = Dα

0+yi(p)− λi2(yi(p)− xi(p)),

λi1 =
−Ni +

√
N2
i − 4Mi

2
≥ 0 > λi2 =

−Ni −
√
N2
i − 4Mi

2

Then finite system of IVP (1) has unique solution in sector [v, w].
Proof. From (17), we have

−Mi(xi − yi)−Ni(Dα
0+xi −Dα

0+yi) ≤ ∆ ≤Mi(xi − yi) +Ni(D
α
0+xi −Dα

0+yi)

where

∆ =fi(p, x1, ..., xN ,D
α
0+x1, ...,D

α
0+xN )− fi(p, y1, ..., yN ,Dα

0+y1, ...,D
α
0+yN )

vi ≤ xi ≤ yi ≤ wi, Dα
0+xi,D

α
0+yi ∈ [Di

1(p), Di
2(p)].

By Theorem 3.1, the finite system of IVP (1) has unique solution in the sector [v, w].

4. Conclusion
We have developed monotone technique for finite system

of sequential fractional differential equations with initial
conditions when the function on the right side is mixed quasi
monotone using lower and upper solutions. It is successfully
applied to prove qualitative properties such as existence and
uniqueness of solutions of the problem under investigation.
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