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Abstract: The objective of this paper is to show that the approximate solution, by the finite volumes method, converges to the
renormalized solution of elliptic problems with measure data. The methods used are a priori estimates and density arguments.
In the first part, we recall formulas and give some notations which are useful for the next of the work. It is also mentioned some
definitions and properties on Partial Differentials Equations. In the second part we show the bases principle of the main methods
of discretization, more precisely, the finite volume method. In the third part, we study a no coercive elliptic convection-diffusion
equation with measure data. In our case, we take a diffuse measure data instead of L1-data. The main originality in the present
work is that we pass to the limit in a ”renormalized discrete version”. A first difficulty is to establish a discrete version of the
estimate on the energy. The second difficulty is to deal with the diffuse measure data. By adapting the strategy developed in
the finite volume method, we state and show our main result: the approximate solution converges to the unique renormalized
solution. This work ends with a conclusion.
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1. Introduction
In this work, we consider the discretization by the cell-

centered finite volume method of the following convection-
diffusion problem:

{
−∆u+ div(vu) + bu = µ in Ω,

u = 0 on ∂Ω,
(1)

where Ω is an open bounded polygonal subset of Rd, d ≥ 2,
v ∈ (Lp(Ω))d, 2 < p < +∞ if d = 2, p = d, if d ≥ 3,

b ∈ L2(Ω), b ≥ 0 and µ is a diffuse measure.
The space of bounded Radon measures is denote byMq

b(Ω),
with 1

q + 1
p = 1. J. Carrillo and M. Chipot proved that for

µ ∈ Mq
b(Ω), there exists f ∈ L1(Ω) and F ∈ (Lp(Ω))d such

that µ = f − divF , see [2].
For the study of problem (1), the obstacles encountered

are the noncoercive character of the operator u 7−→ −∆u +
div(vu) + bu and the measure data.

Recall that a renormalized solution of (1) is a measurable
function u defined from Ω to R, such that u is finite a.e. in Ω
and

∀k > 0, Tk(u) ∈ H1
0 (Ω), (2)

lim
k→+∞

1

k

∫
Ω

|∇Tk(u)|2dx = 0, (3)
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
∀h ∈ C1

c (R),∀ψ ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω

∇uh(u)∇ψdx+

∫
Ω

∇uψ∇uh′(u)dx−
∫

Ω

uh(u)v.∇ψdx

−
∫

Ω

uh′(u)ψv.∇udx+

∫
Ω

buh(u)ψdx =

∫
Ω

ψh(u) dµ,

(4)

with Tk the truncate function at height k (see Figure 1 below).

Figure 1. The function Tk .

Since h has a compact support, each term of (4) is well
defined. Recently, Botti et al used the finite volume method to
solve Poroelasticity problems using high order operators, see
[3, 4]. The Hybrid High-Order method has also been studied
by several authors, see [6, 9]. The existence and the uniqueness
of a renormalized solution to (1) for L1 data and b ∈ L2(Ω)
is proved by M. Ben Cheick and O. Guibé, see [1]. Eymard et
al. [11] studied problem (1) with bounded measure data and
b ∈ L2(Ω). In the present case, it is taken a diffuse measure
data instead of L1-data, which was considered by S. Leclavier,
see [14]. Passing to the limit in a ”renormalized discrete
version” is the main originality in the present paper, this is
to say that a discrete version of ϕh(u) is taken as test function
in the finite volume scheme. A first difficulty is to establish a
discrete version of the estimate on the energy (3). Moreover it
is worth noting that in (4) all the terms are ”truncated” while
a discrete version of ϕh(u) in the finite volume scheme leads
to some residual terms which are not ”truncated”. The second
difficulty is to deal with the diffuse measure data.

The paper is organized as follows. In Section 2, we present
the finite volume scheme and the properties of the discrete
gradient. Section 3 is devoted to prove several estimates,
especially the discrete equivalent to (4) which is crucial to pass
to the limit in the finite volume scheme. In Section 4, the proof
of the convergence of the cell-centered finite volume scheme
via a density argument is concerned. A brief conclusion closes
this work in the last section.

2. Finite Volume Scheme
Let us define the admissibility mesh in the present work, see

[14].
A family T of related subsets of Ω ⊂ Rd is called a mesh.

Any K ∈ T is called control volume. We impose that every
K ∈ T is opened, the union of the T is Ω and the interface is in
some hyperplane. For K,L ∈ T two distinct control volumes,

their interface is denoted by K/L := K ∩ L . Let K ∈ T , we
can write (N for ”neighbour”):
N(K) = {L ∈ T ;L /∈ K,K/L 6= ∅}, the set of neighbour

of K and ∂K =
⋃

L∈N(K)

K/L, the edge of K. Finally, the

Lebesgue measure in d-dimensional is denoted by |K| and by
|∂K| (respectively K/L) for the (d− 1)-dimensional measure
of ∂K (resp. of K/L).

Thus, set E a finite family of disjoint subsets of Ω contained
in affine hyperplanes, called the ”edges”, and set P =
(xK)K∈T a family of points in Ω such that :

1. each σ ∈ E is a non-empty open subset of ∂K, for some
K ∈ T ,

2. by denoting E(K) = {σ ∈ E ;σ ∈ ∂K}, one has
∂K =

⋃
σ∈E(K) σ for all K ∈ T ,

3. for all K 6= L in T , either the measure of K ∩ L is
null or K ∩ L = σ for all σ ∈ E , that we denote then
σ = K/L,

4. for all K ∈ T , xk is in the interior of K,
5. for all σ = K/L ∈ E , the line [xK , xL] intersects and is

orthogonal to σ,
6. for all σ ∈ E , σ ⊂ ∂Ω∩∂K, the line which is orthogonal

to σ and going through xk intercepts σ.
We denote by |K| (resp. |σ|) the Lebesgue measure of

K ∈ T (resp. of σ ∈ E ). The unit normal to σ ∈ E(K)
outward to K is denoted by ηK,σ . Eint (resp. Eext ) is defined
as the set of interior (resp. the boundary) edges. For all
K ∈ T and σ ∈ E(K) , we denote dK,σ the Euclidean distance
between xk and σ.

For any σ ∈ E , dσ is defined by dσ = dK,σ + dL,σ , if
σ = K/L ∈ Eint (in which case dσ is the Euclidean distance
between xK and xL ) and dσ = dK.σ , if σ ∈ Eext ∩ E(K).

The size of the mesh, denoted by hT , is defined by hT =
sup
K∈T

diam(K).

There exists ζ > 0 such that for all K ∈ T and for all
σ ∈ EK ,

dK.σ ≥ ζdσ. (5)

In the sequel, the discrete W 1,q
0 norm and the discrete

versions of Poincaré and Sobolev inequalities will be useful
to solve the problem (see [7]).

Definition 2.1. (discrete W 1,q
0 norm ) Let Ω be an open

bounded polygonal subset of Rd, d ≥ 2, and let T be an
admissible mesh. Define X(T ) as the set of functions from Ω
to R which are constant over each control volume of the mesh.
For vT ∈ X(T ) and q ∈ [1,+∞[, we define the discrete W 1,q

0

norm by
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‖ vT ‖q1,q,T =
∑

σ∈Eextσ∈E(K)

|σ|dσ
∣∣∣vK
dσ

∣∣∣q +
∑

σ∈Eintσ=K/L

|σ|dσ
∣∣∣vK − vL

dσ

∣∣∣q,
where vK = χK v.

Definition 2.2. (Discrete finite volume gradient) For all K ∈ T and for all σ ∈ E(K), we define the volume DK,σ as the cone
of basis σ and of opposite vertex xK . Then, we define the ”diamond-cell” Dσ by:

Dσ = DK,σ ∪DL,σ if σ = K/L ∈ Eint,
Dσ = DK,σ if σ ∈ Eext ∩ E(K).

For any vT ∈ X(Tm) and notice that |Dσ| =
|σ| dσ
d

, the discrete gradient∇T vT is defined by:

∀σ = K/L ∈ Eint, ∇T v(x) = |σ|vL − vK
|Dσ|

ηK,σ = d
vL − vK
dσ

ηK,σ,∀x ∈ Dσ,

∀σ ∈ Eext ∩ E(K), ∇T v(x) = d
0− vK
dσ

ηK,σ, ∀x ∈ Dσ.

Figure 2. Example of control volume for the method of finite volume in two dimensions of space.

Theorem 2.1. (of Rellich) [15] Let Ω be an open set of R that
us supposing boundary and with border enough regular. Then,
the injection W 1,p

0 (Ω) ↪→ Lp(Ω) is compact.
Proposition 2.1. (Discrete Poincaré inequality) Let T be an

admissible mesh and vT ∈ X(T ). Then, if 1 ≤ q ≤ 2,
‖ vT ‖Lq(Ω)≤ diam(Ω) ‖ 5vT ‖1,q,T .

Proposition 2.2. (Discrete Sobolev inequality) Let 1 ≤ q ≤
2, T be an admissible mesh and ζ > 0 satisfying for all
K ∈ T and all σ ∈ E(K) , dK,σ ≥ ζdσ , Then, with q∗ = dq

d−q
if q < d and q∗ < ∞ if q = d = 2, there exists C > 0 only
depending on (Ω, q, q∗, ) such that, for all vT ∈ X(T ),we
have ‖ vT ‖Lq∗(Ω)≤ C ‖ vT ‖1,q,T .

Before writing the finite volume scheme, let us define a
discrete finite volume gradient (see [13])).

Lemma 2.1. (Weak convergence of the finite volume
gradient) Let (Tm)m≥1 be a sequence of admissible meshes
such that there exists ζ > 0 satisfying for all m > 1, for all
K ∈ T and for all σ ∈ E(K), dK,σ ≥ ζdσ , and such that
hTm −→ 0. Let vTm ∈ X(Tm) and let us assume that there
exists α ∈ [1,+∞[ and C > 0 such that ‖ vTm ‖1,α,Tm≤ C,
and vTm and that L1(Ω) converges in v ∈ W 1,α

0 (Ω). Then

∇TmvTm converges to∇v weakly to Lα(Ω)d.
Let T be an admissible mesh, we can define the finite

volume discretization of (1). For K ∈ T and σ ∈ E(K),
we define

bK =
1

|K|

∫
K

bdx, (6)

vK,σ =
1

|Dσ|

∫
Dσ

v.ηK,σdx, (7)

FK,σ =
1

|Dσ|

∫
Dσ

F.ηK,σdx, (8)

fK =
1

|K|

∫
K

fdx. (9)

So, we can write the scheme (1) as following:
For all K ∈ T ,

∑
σ∈E(K)

|σ|
dσ

(uK − uL) +
∑

σ∈E(K)

|σ|vK,σuσ,+ + |K|bKuK = |K|fK −
∑

σ∈E(K)

|Dσ|FK,σ (10)
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with

∀σ = K/L ∈ Eint,
{
uσ,+ = uK if vK,σ ≥ 0,
uσ,+ = uL, otherwise, (11)

∀σ ∈ Eext ∩ E(K),

{
uσ,+ = uK if vK,σ ≥ 0,
uσ,+ = 0, otherwise. (12)

We denote by uσ,− the downstream choice of u which is
such that {uσ,+, uσ,−} = {uK , uL} (with uL = 0 if σ ∈
Eest ∩ E(K)).

3. Estimations

In this section, we first establish in Proposition 3.1 an
estimate on ln(1+|uT |) which is crucial to control the measure
of the set {|uT | > n}. Then, we show in Proposition 3.2 an
estimate on Tn(uT ) and the convergence of Tn(uT ) to Tn(u).
Finally, we prove in Proposition 3.3 a discrete version of the
decay of the energy.

Proposition 3.1. (see [14]) Let T be an admissible mesh. If
uT = (uK)K∈T is a solution to (10), then

‖ ln(1 + |uT |)‖21,2,T ≤ C(µ,Ω) + d|Ω|
p−2
p ‖v‖2LP (Ω)d , (13)

where C(µ,Ω) is a constant depending on µ and Ω.
Let us state an easy corollary, which is used in the proof of

the estimate of Proposition 3.2.
Corollary 3.1. Let T be an admissible mesh. if uT =

(uK)K∈T is a solution to (10) and, for n > 0, En = {|uT | >
n} , then there exists C > 0 only depending on (Ω, v, f, d, p)
such that

|En| ≤
C(1 + ‖µ‖Mp

b (Ω))

(ln(1 + n))2
. (14)

Proposition 3.2. (Estimation on Tn(uT ) ) Let T be an
admissible mesh. if uT = (uK)K∈T is a solution to (10),
then there exists C > 0 only depending on (Ω, v, µ, n, d) such
that

||Tn(uT )||1,2,T ≤ C, ∀n > 0. (15)

Moreover, if (Tm)m≥1 is a sequence of admissible meshes
such that there exists ζ > 0 satisfying for all m ≤ 1, for all
K ∈ T and for all σ ∈ E(K) , dKσ > ζdσ , there exists
a measurable function u finite a.e. in Ω such that, up to a
sub-sequence Tn(uTm) converges to Tn(u) weakly in H1

0 (Ω),
strongly in L2(Ω) and a.e. in Ω.

Proof The proof is divided into two steps. In Step 1 we
derive the estimate (15) on the truncate on uT . The step 2 is
devoted to extract a Cauchy sub-sequences in measure.

Step 1: Estimation on Tn(uT )
Multiplying each equation of the scheme (2.6) by Tn(uK),

summing over each control volume and reordering the sum, we

obtain S1 + S2 + S3 = S4 − S5 with

S1 =
∑
σ∈E

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL)),

S2 =
∑
σ∈E
|σ|vK,σuσ,+(Tn(uK)− Tn(uL)),

S3 =
∑
K∈T

|K|bkuKTn(uK),

S4 =
∑
K∈T

∫
K

fTn(uK)dx,

S5 =
∑
σ∈E
|Dσ|FK,σ(Tn(uK)− Tn(uL)).

Since b is nonegative and since rTn(r) > 0 ∀r , we notice
that S3 is nonnegative. Moreover, since Tn is bounded by n,
we deduce that

|S4| 6 n‖f‖L1(Ω).

For the term S5, Hölder inequality and relation (5) yield

|S5| ≤
∑
σ∈E
|Dσ||FK,σ||(Tn(uK)− Tn(uL))|

≤ 2n
∑
σ∈E
|Dσ||FK,σ|

≤ 2n
∑
σ∈E

∫
Dσ

|F | dx

≤ 2n
∑
σ∈E
|Dσ|1/q ‖F‖Lp(Ω)d

≤ 2n
∑

σ∈E(K)

(|σ|dK,σ)1/q

d1/q
‖F‖Lp(Ω)d

≤ 2nd1/p ‖F‖Lp(Ω)d . (16)

Therefore,

S1 6 n‖f‖L1(Ω) + 2nd1/p ‖F‖Lp(Ω)d − S2.

S2 can be rewritten as,

−S2 =
∑
σ∈E
|σ||vK,σ|uσ,+(Tn(uσ,−)− Tn(uσ,+)).

The subset A of edges is defined by (see [10]),

A = {σ ∈ E ;uσ,+ > uσ,−, uσ,+ < 0}
∪{σ ∈ E ;uσ,+ < uσ,−, uσ,+ ≥ 0} (17)

and since Tn is non decreasing we have

−S2 =
∑
σ∈E
|σ||vK,σ|uσ,+(Tn(uσ,−)− Tn(uσ,+)).

Notice that ∀σ ∈ A, |uσ,+| ≥ n implies |uσ,−| ≥ n. So, we
deduce that for all σ in A,
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uσ,+(Tn(uσ,−)− Tn(uσ,+)) = Tn(uσ,+)(Tn(uσ,−)− Tn(uσ,+)).

It follows that

−S2 ≤
∑
σ∈A
|σ||vK,σ|uσ,+Tn(uσ,+)(Tn(uσ,−)− Tn(uσ,+))

≤ nd 1
2 ‖v‖L2(Ω)d

(∑
σ∈A

|σ|
dσ

(Tn(uσ,−)− Tn(uσ,+))2
) 1

2

≤ 1

2
n2d‖v‖2L2(Ω)d +

1

2

∑
σ∈A

|σ|
dσ

(
(Tn(uσ,−)− Tn(uσ,+))2

) 1
2

≤ 1

2
n2d‖v‖2L2(Ω)d +

1

2

∑
σ∈E

|σ|
dσ

(
(Tn(uK)− Tn(uL))2

) 1
2 .

Since Tn(uK)− Tn(uL) ≤ uK − uL (because Tn is 1-Lipschitz function), we have

−S2 ≤
1

2

∑
σ∈E

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL)) +
1

2
n2d‖v‖2L2(Ω)d

and we can deduce that

1

2

∑
σ∈E

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL)) ≤ n‖f‖L1(Ω) + 2nd1/p ‖F‖Lp(Ω)d +
1

2
n2d‖v‖2L2(Ω)d .

Therefore, using again the fact that Tn is 1-Lipschitz, we can write :

1

2

∑
σ∈E

|σ|
dσ

(
Tn(uK)− Tn(uL)

)2 ≤ n‖f‖L1(Ω) + 2nd1/p ‖F‖Lp(Ω)d +
1

2
n2d‖v‖2L2(Ω)d .

Applying Lemma 2.1 and the diagonal process, up to a
subsequence still denoted by Tm, for any n ≥ 1, there exist
vn in H1

0 (Ω) such that Tn(uT ) −→ vn and Tn(uT ) ⇀ vn in
the finite volume gradient sense.

Step 2: Up to a subsequence, uT is a Cauchy sequence in
measure

In this step, we follow the ideas of Dal Maso et al. to show
that uTm converges a.e. to u (see [8]). Let ω > 0. For all
n > 0 and all sequences (Tm)m≥1 and (Tp)p≥1 of admissible
meshes, we have

{|uTm − uTp | > ω} ⊂ {|uTm | > n} ∪ {|uTp | > n} ∪ {|Tn(uTm)− Tn(uTp)| > ω}.

Let ε > 0 fixed. By (14), let n > 0 such that, for all admissible meshes Tm and Tp,

meas({|uTm | > n}) +meas({|uTp | > n}) < ε

2
.

Once n is chosen, we deduce from Step 1 that Tn(uTm) is a Cauchy sequence in measure, thus

∃h0 > 0;∀hTm , hTp < h0,meas({|Tn(uTm)− Tn(uTp)| > ω}) < ε

2
.

Therefore, we deduce that
∀hTm , hTp < h0, meas({|uTm − uTp | > ω}) < ε.
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Hence (uTm) is a Cauchy sequence in measure.
Consequently, up to a subsequence still indexed by Tm , there
exists a measurable function u such that uTm −→ u a.e. in
Ω. Due to Corollary 3.1, u is finite a.e. in Ω. Moreover from
convergences obtained in Step 1 we get that

Tn ∈ H1
0 (Ω) and ∇T Tn(uT ) −→ ∇Tn(u) in (L2(Ω))d. (18)

In the following proposition we prove a uniform estimate on
the truncated energy of uT (see (19)) which is crucial to pass
to the limit in the approximate problem. We explicitly observe
that (19) is the discrete version of (3) which is imposed in

the definition of the renormalized solution for elliptic equation
with measure data. As in the continuous case (19) is related
to the regularity of f : f ∈ L1(Ω) and does not charge any
zero-Lebesgue set. If we replace div(vu), we also have to

uniformly control the discrete version of
1

n

∫
Ω
vu∇Tn(u)dx

which is stated in (20).
Proposition 3.3. (Discrete estimate on the energy)
Let (Tm)m ≥ 1 be a sequence of admissible meshes such

that there exists ζ > 0 satisfying ∀m > 1,∀K ∈ T and
∀σ ∈ E(K), dK,σ ≥ ζdσ .

If uTm = (uK)K∈Tm is a solution to (10), then

lim
n→+∞

lim
hTm→0

1

n

∑
σ∈E

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL)) = 0 (19)

where uL = 0 if σ ∈ Eext, and

lim
n→+∞

lim
hTm→0

1

n

∑
σ∈E
|σ||vK,σ||uσ,+||(Tn(uσ,+)− Tn(uσ,−)| = 0. (20)

Proof We first establish (19). Let T be an admissible mesh
and let uT be a solution of (10). Multiplying each equation of

the scheme by
Tn(uK)

n
, summing on K ∈ T and gathering

by edges lead to T1 + T2 + T3 = T4 − T5 with

T1 =
1

n

∑
σ∈E

|σ|
dσ

(uK − uL)(Tn(uK)− Tn(uL)),

T2 =
1

n

∑
σ∈E
|σ|vK,σuσ,+(Tn(uK)− Tn(uL)),

T3 =
1

n

∑
K∈T

|K|bKuKTn(uK),

T4 =
1

n

∑
K∈T

∫
K

fTn(uK)dx,

T5 =
1

n

∑
σ∈E
|Dσ|FK,σ(Tn(uK)− Tn(uL)).

Since b is non-negative and since rTn(r) ≥ 0 ∀r , we
get T3 ≥ 0 . Due to the definition of uT we have T4 =∫

Ω
f
Tn(uT )

n
dx. In view of the point-wise convergence of uT

to u, we obtain that Tn(uT ) converges to Tn(u) a.e. and weak

* as hT −→ 0. It follows that limhT→0 T4 =
∫

Ω
f
Tn(u)

n
dx.

Since u is finite a.e. in Ω,
Tn(u)

n
converges to 0 a.e. and in L∞

weak, and since f belongs to L1(Ω), the Lebesgue dominated

convergence theorem implies that

lim
n→+∞

lim
hT→0

T4 = 0. (21)

For the term T5, using Hölder inequality, relation (5) and
Definition 2.2 yield

|T5| ≤
1

n

∑
σ∈E
|Dσ||FK,σ||(Tn(uK)− Tn(uL))|

≤ 1

n

∑
σ∈E

dσ
d

∫
Dσ

|F | |∇T Tn(uT )| dx

≤ 1

n

∑
σ∈E

dσ
d

∫
Ω

|F | |∇T Tn(uT )| dx

≤ 1

n

∑
σ∈E

dσ
d
‖F‖L2(Ω)d ‖∇T Tn(uT )‖

≤ 1

n

∑
σ∈E

dK,σ
dζ
‖F‖L2(Ω)d ‖∇T Tn(uT )‖

≤ 1

n

diam(K)

ζ
‖F‖L2(Ω)d ‖∇T Tn(uT )‖. (22)
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Using the strong convergence in L2(Ω) and a.e. in Ω of
Tn(uT ) to Tn(u), and relation (22), give

lim
n→+∞

lim
hT→0

T5 = 0. (23)

Using the same techniques as S. Leclavier [14], it follows
that

−T2 ≤
1

n

r2d|v|2L2(Ω)d

2
+

1

2
T1. (24)

From (22), we deduce (19). By the same manage used by S.
Leclavier [14], we prove (20).

The following corollary is useful to pass to the limit in the
diffusion term.

Corollary 3.2. (see [14]) Let (Tm)m≥1 be a sequence of
admissible meshes such that there exists ξ > 0 satisfying for
all m ≤ 1 for all K ∈ T and all σ ∈ E(K), dk,σ ≥ ξdσ .

If uTm = (uK)K∈Tm is a solution to (10), then

lim
n→+∞

lim
hT→0

∑
σ∈E,

|uK |≤2n,
|uL>4n

|σ|
dσ
|uL| = 0. (25)

4. Convergence Analysis

Let us now state the main result of this paper.
Theorem 4.1. If T is an admissible mesh, then there exists

a unique solution to (10). If (Tm)m≥1 is a sequence of
admissible meshes such that there exists ξ > 0 satisfying for
all m ≥ 1 for all K ∈ T and all σ ∈ E(K), dK,σ ≥ ξdσ , and
such that hTm → 0 , then if uTm = (uK)K∈Tm is the solution
to (10) with T = Tm, uTm converges to u in the sense that
for all n > 0, Tn(uTm) converges weakly to Tn(u) in H1

0 (Ω),
when u is the unique renormalized solution of (1).

Before proving Theorem 4.1, we recall the following
convergence result concerning the function (hn) defined, for
any n ≥ 1, by (see [14])

hn(s) =


0, if s ≤ −2n;
s
n + 2, if −2n ≤ s ≤ −n,
1, −n ≤ s ≤ n,
−s
n + 2, if n ≤ s ≤ 2n,

0, if s ≥ 2n.

(26)

Figure 3. The function hn.

Lemma 4.1. Let (Tm)m≥1 be a sequence of admissible

meshes such that there exists ξ > 0 satisfying for all m ≥ 1,
for all K ∈ T and for all σ ∈ E(K), dK,σ ≥ ξdσ . Let
uTm ∈ X(Tm) be a sequence of solution of (10). We define
the function h̃n by
σ ∈ E ,∀x ∈ Dσ ,h̃n(x) = hn(xK)+hn(xL)

2 , then h̃n →
hn(u) in Lq(Ω), ∀q ∈ [2,+∞[ where hTm → 0, where u is
the limit of uTm .

Proof Proof Proof of Theorem 4.1 The proof consists into
two steps. In Step 1 we prove the existence and the uniqueness
of the solution of (10). Concerning the uniqueness of the
renormalized solution, the proof is done by Ouédraogo et al.
[16]. To prove the second point, we adapts one uniqueness
techniques developed in the continuous case by several authors
(see [5, 12]). It is worth noting that we use here a different
method to the one developed by J. Droniou et al. [10]. Using
the results of Section 3, Step 2 is devoted to pass to the limit
in the scheme. It is worth noting that we take in the scheme a
discrete version of what is a test function in the renormalized
formulation.

4.1. Existence and Uniqueness of the Solution of the
Scheme

Since the relation (10) is a linear system of n equations with
n unknowns, it is sufficient to show that the solution of the
relation (10) with µ = 0 (see [14]).

4.2. Convergence

Let ϕ ∈ C∞c (Ω) and hn the function defined by (26).
We denote by ϕT the function defined by ϕK = ϕK(xK)
for all K ∈ T . Multiplying each equation of the scheme
(10) by ϕ(xK)hn(uK) (which is a discrete version of the
test function used in the renormalized formulation), summing
over the control volumes and gathering by edges, we get
V1 + V2 + V3 = V4 − V5 with

V1 =
∑
σ∈E

σ

dσ
(uK − uL)

(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
,

V2 =
∑
σ∈E
|σ|vK,σuσ,+

(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
,

V3 =
∑
K∈E
|K|bKuKϕ(xK)hn(uK),

V4 =
∑
K∈E

∫
K

fϕ(xK)hn(uK),

V5 =
∑
K∈E
|Dσ|FK,σ

(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
.

As far as the term V4 is concerned, by the regularity of ϕ,
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we have ϕT → ϕ uniformly on Ω when hT → 0. We now
pass to the limit as hT → 0. Since hn(uT ) → hn(u) a.e and
L∞ weak ∗, ϕT → ϕ uniformly, |fϕT hn(uT )| ≤ Cϕ|f | ∈
L1(Ω), the Lebesgue dominated convergence theorem ensures
that

V4 =

∫
Ω

fϕT hn(uT )dx −→
hT→0

∫
Ω

fϕhn(u)dx. (27)

Due to the definition of∇T (·) we get for the term V5:

V5 =
∑
K∈E
|Dσ|FK,σ

(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
=

∫
Ω

F · ∇T
(
ϕT (xT )hn(uT )

)
dx. (28)

To pass to the limit as hT → 0 in (28), the following lemma
is useful.

Lemma 4.2. Let T be an admissible mesh, ϕ ∈ C∞c (Ω)
and hn the function defined by (26).. if uT = (uK)K∈T is
a solution to (10), then there exists C > 0 only depending on
(Ω, v, µ, n, d) such that

‖ϕT (xT )hn(uT )‖1,2,T ≤ C, ∀n > 0. (29)

According to Lemma 4.2,∇T
(
ϕT (xT )hn(uT )

)
converges

to ∇(ϕ(x)hn(u)) weakly in H1
0 (Ω), as hT → 0. Therefore,

passing to the limit in (28) gives

V5 =

∫
Ω

F · ∇T
(
ϕT (xT )hn(uT )

)
dx

−→
hT→0

∫
Ω

F · ∇(ϕ(x)hn(u)) dx. (30)

In view of the definition of bT , and since b belongs toL1(Ω),
bT = (bK)K∈T converges to b in L1(Ω) as hT → 0. With
already used arguments we can assert that

V3 =

∫
Ω

bT T2n(uT )ϕT hn(uT )dx

−→
hT→0

∫
Ω

bT2n(u)ϕhn(u)dx. (31)

We now study the convergence of the diffusion term. We
write

V1 =
∑
σ∈E

|σ|
dσ

(uK − uL)(ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

= V1,1 + V1,2

with

V1,1 =
∑
σ∈E

|σ|
dσ
hn(uK)(uK − uL)(ϕ(xK)− ϕ(xL)),

V1,2 =
∑
σ∈E

|σ|
dσ
ϕ(xL)(uK − uL)(hn(uK)− hn(uL)).

Using the same techniques as S. Leclavier [14], it follows
that

lim
n→+∞

lim
hT→0

V1,2 = 0 (32)

and

lim
hT→0

V1,1 =

∫
Ω

hn(u)∇T4n(u).∇ϕdx. (33)

For the convection term we have

V2 =
∑
σ∈E
|σ|vK,σuσ,+

(
ϕ(xK)hn(uK)− ϕ(xL)hn(uL)

)
=

∑
σ∈E, vK,σ≥0

|σ|vK,σuσ,+
(
ϕ(xK)hn(uσ,+)− ϕ(xL)hn(uσ,−)

)
+

∑
σ∈E, vK,σ<0

|σ|vK,σuσ,+
(
ϕ(xK)hn(uσ,+)− ϕ(xL)hn(uσ,−)

)
=

∑
σ∈E, vK,σ≥0

|σ|vK,σuσ,+hn(uσ,+)(ϕ(xK)− ϕ(xL))

+
∑

σ∈E, vK,σ≥0

|σ|vK,σuσ,+ϕ(xL)(hn(uσ,+)− hn(uσ,−))

−
∑

σ∈E, vK,σ<0

|σ|vK,σuσ,+hn(uσ,+)(ϕ(xL)− ϕ(xK))

−
∑

σ∈E, vK,σ<0

|σ|vK,σuσ,+ϕ(xK)(hn(uσ,+)− hn(uσ,−))

= V2,1 + V2,2 + V2,3
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with

V2,1 =
∑
σ∈E
|σ|vK,σuσ,+hn(uσ,+)(ϕ(xK)− ϕ(xL)),

V2,2 =
∑

σ∈E, vK,σ≥0

|σ|vK,σuσ,+ϕ(xL)(hn(uσ,+)− hn(uσ,−)),

V2,3 = −
∑

σ∈E, vK,σ<0

|σ|vK,σuσ,+ϕ(xK)(hn(uσ,+)− hn(uσ,−)).

Using the same techniques as S. Leclavier [14], it follows that

lim
n→+∞

lim
hT→0

(V2,2 + V2,3) = 0 (34)

and
lim
hT→0

V2,1 = −
∫

Ω

T2n(u)hn(u)v.∇ϕdx. (35)

We are now in position to pass to the limit as hT → 0 in the scheme(10). Gathering equations (27) to (35), we can assert that

∫
Ω

hn(u)∇u · ∇ϕdx−
∫

Ω

uhn(u) v · ∇ϕdx+

∫
Ω

b u hn(u)ϕdx−
∫

Ω

f ϕhn(u)dx

+

∫
Ω

F · ∇(ϕ(x)hn(u)) dx = lim
hT→0

T (n, ϕ), (36)

where lim
hT→0

|T (n, ϕ)| ≤ ||ϕ||L∞(Ω) ω(n) with ω(n)→ 0 as n→ +∞.

Let h ∈ C1
c (R) and ψ ∈ C1

c (Ω) ∩ H1
0 (Ω). In view of the regularity of Tn(u)(see (2)) the function h(u)ψ belongs to

L∞(Ω)∩H1
0 (Ω). By the density of C∞c (Ω) in L∞(Ω)∩H1

0 (Ω) (here any element of L∞(Ω)∩H1
0 (Ω) can be approached by a

sequence of C∞c (Ω) which is bounded in L∞(Ω)), from (36) we deduce that∣∣∣∣∫
Ω

∇uhn(u)h(u)∇ψ dx+

∫
Ω

∇uhn(u)ψ∇uh′(u) dx −
∫

Ω

uhn(u)h(u) v · ∇ψ dx−
∫

Ω

uhn(u)h′(u)ψ v · ∇u dx

+

∫
Ω

b u hn(u)h(u)ψ dx−
∫

Ω

ψ h(u)hn(u) f dx +

∫
Ω

F · ∇(ψ h(u)hn(u)) dx

∣∣∣∣ ≤ ‖ϕ‖L∞(Ω)ω(n).

Passing to the limit as n→ +∞ in the previous inequality yields that :∫
Ω

∇uh(u)∇ψ dx+

∫
Ω

∇uψ∇uh′(u) dx−
∫

Ω

uh(u) v · ∇ψ dx−
∫

Ω

uh′(u)ψ v · ∇u dx

+

∫
Ω

b u h(u)ψ dx =

∫
Ω

ψ h(u) dµ,

which is Equality (4) in the definition of a renormalized solution. It remains to prove that u satisfies the decay (3) of the truncate
energy.

Thanks to the discrete estimate on the energy (19) we get,

lim
n→+∞

lim
hT→0

1

n

∑
σ∈E

|σ|
dσ

(T2n(uK)− T2n(uL))2 = 0

and ∑
σ∈E

|σ|
dσ

(T2n(uK)− T2n(uL))2

=
∑
σ∈E
|σ|dσ

(
T2n(uK)− T2n(uL)

dσ

)2
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=
∑
σ∈E

d|Dσ|

(
T2n(uK)− T2n(uL)

dσ

)2

=
1

d

∑
σ∈E
|Dσ|

(
d
T2n(uK)− T2n(uL)

dσ

)2

=
1

d

∫
Ω

|∇T T2n(uT )|2dx,

hence, lim
n→+∞

lim
hT→0

1

n
|∇T T2n(uT )|2 = 0.

Since ∇T2n(uT ) converges weakly in L2(Ω)d, we have also

1

n

∫
Ω

|∇T2n(u)|2 dx ≤ lim inf
hT→0

1

n

∫
Ω

|∇T T2n(uT )|2dx,

which leads to

lim
n→0

1

n

∫
Ω

|∇T2n(u)|2 dx = 0.

Since the renormalized solution u is unique, we conclude
that the whole sequence uTm converges to u in the sense that
for all n > 0, Tn(uTm) converges weakly to Tn(u) in H1

0 (Ω).

5. Conclusion

In this paper, the finite volumes method has been used
to prove that the approximate solution converges to the
renormalized solution of elliptic problems with measure data.
A first difficulty is to establish a discrete version of the
estimate on the energy (3). Moreover it is worth noting that
in (4) all the terms are ”truncated” while a discrete version
of ϕh(u) in the finite volume scheme leads to some residual
terms which are not ”truncated”. The second difficulty is
to deal with the diffuse measure data. Firstly, we presented
the finite volume scheme and the properties of the discrete
gradient. Secondly, we are proven several estimates, especially
the discrete equivalent to (4) which is crucial to pass to the
limit in the finite volume scheme. At last, we established the
convergence of the cell-centered finite volume scheme via a
density argument.
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[10] J. Droniou, T. Gallouët and R. Herbin, A finite volume
scheme for a noncoercive elliptic equation with measure
data. SIAM J. Numer. Anal., 6, 1997-2031, 2003.
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Renormalized solutions for a non-coercive elliptic
problem with measure data. Submitted.


