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Abstract: The Dy-schemes (and their particular tools example jets) are related to determine conformal blocks of space-time
pieces that are invariant under conformal transformations. All algebras will be commutative and Sym will always denote Sympx
However, all Hom, and [, will be understood over the base field k. This will permit the construction of one formal moduli
problem on the base of CAlg, whose objects are obtained as limits of the corresponding jets in an Affg,... An algebra B,
belonging to the Dy-schemes to the required formal moduli problem is the image under a corresponding generalized Penrose
transform, in the conformal context, of many pieces of the space-time, having a structure as objects in commutative rings of

CAlg; each one.
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1. Introduction

The development of the jets technique as forgetfil functors
can establish equivalences between categories of opposite
class as D, —algebras and affine D, —schemes, being their

relation with these categories as co-limints of ring structures
modulo an ideal J , that can be a bi-sided ideal I*, when

we want establish correspondences between two manifolds
inside a same context (conformally, holomorphicity, etc) and
obtain transformed objects with the same invariance. In the
ambit of the commutative algebra [1] these relations can
establish equivalences to the construction of one formal

moduli problem on the base of CAlgk, whose objects are

obtained as limits of the corresponding jets in a Affy,,. - In this

last, results very useful this technique in special with the
demonstration of be conformally invariant of some
characteristics of the objects in the D, —schemes can derive

their notorious spectrum.

In this research, are used some properties of the jets as the
functores D, —sch - O, —sch, and using some tools as
algebras of conformal blocks cohomologies to establish a
commutative scheme of a moduli problem to conformal
properties of geometrical invariants. These geometrical

invariants are obtained as images under a corresponding
generalized Penrose transform which can derive of the Verdier
duality in the cohomological context of the categories and
consigned in the structure of the objects of these categories,
that is to say algebraic modules.

Then the homogeneous bundles and their objects can be
extrapolated in homogeneous polynomials where these
polynomials are direct images of the corresponding jets
applied to objects belonging to a ©, - algebra or D, -

schemes.

2. D« ~Schemes

Fix a base field %, and a smooth scheme X, over k. A
D, -scheme is a scheme equipped with a flat connection

over x. For an affine scheme, this is equivalent to being the
spectrum of a 7P - algebra. For example, affine D, -

schemes of finite type have the form:

Spec((SymD, U F)/T) (1.1)

for some coherent ©, -sheaf ‘F,and some D, —ideal sheaf
I . Throughout this talk, we will often pass freely from D, -
algebras to affine D, - schemes and vice-versa (the two
categories are opposite in the usual sense).
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A very important example of an affine D, - scheme is
Spec(Sym M) , for any 7 -module M. This suggests that
D, —algebras are generalizations of 7, —modules, which is
supported by the following fact: P, —modules parametrize
solutions of linear differential equations, while P, —algebras
parametrize solutions of nonlinear differential equations.
More precisely, suppose we take the p  —schemes(SymDy)
where the ideal [ , is generated (locally) by “polynomials”
P,,..,P, OSymD" .

Then giving a map of P, —modules:

(SymD})/I - O, (1.2)

is the same as giving a collection of functions f..... f,» which
satisfy the system of nonlinear differential equations:

P (fi5s 1) =0, (1.3)

A map of P, —schemes is one which is a morphism of
D, - algebras at the level of coordinate rings. A more

involved notion is the following:
Definition 1. 1. Given a morphism of D, - schemes

VY - Z, the functor of horizontal sections HorHom(Z, V), is
given by:

SOSch — HorHom(Z x S, V), (1.4)

HorHom, consists of horizontal

morphisms of D, —schemes.

morphisms, i.e.

The above definition is completely analogous to that of the
functor Sect, replacing ©, - with D, . Note that for a
morphism of ©, - —algebras to be a morphism of D, —
algebras is a closed condition. Since the functor of sections is
representable, it follows that the functor of horizontal sections
is also representable.

Moreover  HorSect (Z, V) - Sect(Z,Y), is a closed
embedding.
3. Jets
In this section, we will show that the forgetful functor
Dy —sch - Oy —sch, 2.1
has a right adjoint, which is called the Jet functor:
J 1Oy —sch - D, —sch,
X (2.2)

Homp,(Z, JY) = Homg (Z,Y)

for any ©, -scheme y, and any P, -scheme z. At the
level of algebras, this functor will be a left adjoint to the
forgetful functor:

J 1Oy —alg - D, —sch,

Homy, (JA,B) =Hom, (4, B), (23)

forany ©, -algebra A ,and any P, -algebra B. Naturally,

SpecJA = JSpec(A) . Basically, there is only one natural

construction which will make
J ,into a left adjoint:

JA=Sym(D, O, A, (2.4)

where T, is the D, —ideal generated by Ker(SymA - A). In
other words,
JA, is the D -algebra generated by A. Setting Z = x,

in (2. 2) gives us the following:
Proposition 2. 1. For any @, -scheme V, we have:

HorSect(X, JY) = JSecT(X, V), 2.5)
Example 2. 1. For any ©, -module N, we have:
JSymN) =Sym@®, O, N), (2.6)

Example 2. 2. Let X, be a smooth projective curve,
C =Spec((Symg)“), as in our previous expositions [2], and
consider the fiber bundle Ca, =Cxk*aX, on X.

Then we have:

HorSee( X, Jka ) =Hitch(X), 2.7)

and

(JCy) = Hitch, (), (2.8)

for any closed point x [1.X. The first equality follows from
Proposition 2. 1, while the second one follows from
Proposition 3. 1, in the next section.

Let us now prove that the definition of jets in (2. 4) is the
correct one, i.e. that it satisfies property (2. 3). For this,
consider the following constructions:

(@9:JA - B) - (¢:A-B), ga=¢l0a),
(@:A-B) (@ JA - B), fdDa)=dP(a),

where ¢, denotes any map of D, - algebras, while ¢',
denotes any map of O, —algebras. It’s easy to check that the
assignments ¢ — ¢', and ¢ — ¢ are well-defined, are
inverses to each other and are natural in A, and B.

4. Relation between Morphisms of Affine
Schemes and Morphisms of Algebras

This section is not just motivated by etymological questions,
but will actually be very useful for us. Our purpose will be to
prove the following result:

Proposition 3. 1. Pick a closed point x J X. and let y/, be

any Or ~scheme.
Then the fiber of JVY, over X, is given by:
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O
(JVY), = Sect(Spf O, Y). (3.1)
O
where ., is the completed local ring of X, at x.
Proof. Let us recall that for any f- scheme § , we define:

0 0
(Spf O, )xS = DliDm ((SpecO, /m;)xS) % (SpecO;) X S,

Therefore, the structure ring of Spf (DoxxspeoC, is

O

- . ny - 2
o.0C:= g:g((ox/mx)DC)ioxD C, (3.2)

The above proposition makes the terminology clear, since a
section from the formal disk to 1y, is, by definition, an \ —jet

at x . By naturality, it will be enough to prove the proposition
in the affine case Y =SpecA. In the following, C, wil
denote any algebra and B, will denote any P, — algebra.
We claim the following functorial bijections hold:

Hom(Spec C, Spec B, ) JHom(B, , C), (3.3)
and
o o

Hom(B,,C) OHomy, (B, 0, 0C), (3.4)

Specialize B = JA , and we have:

o O o O
Homy, (JA, O, 0C)=Homy (A,0,00C), (3.5)
and
o o [}

Hom g (A, O, 0C) =Hom(Spf O,xSpec C, Spec A), (3.6)

This sequence of identifications proves (3. 1) on the level of
C —points, and since they hold naturally in C , they are
enough to establish Proposition 3. 1.

* Relation (3. 3) is just the bijection between morphisms of
affine schemes and morphisms of algebras.

* To prove relation (3. 4), it is enough to verify it in the
bigger category of vector spaces and D, -modules. Then, we

need to verify that for any
D, —module M, and any vector space V , we have

o 0
Hom(M,,¥) OHom;, (M, 0. 0O07), (3.7)
The map going from right to left is just evaluation at x.
Let’s now define the map going from left to right: given any
morphism of vector spaces
¢:M-, what does it mean to assign to it a morphism

M- (%X[DW ? It merely means to give morphisms
@, M- o, /m oy, for x, all n, which satisfy the inverse

limit compatibilities. We start off with ¢ = ¢, and then
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there is a unique way to inductively define each ¢, , such
that the inverse limit is a morphism of D, —algebras.

* Relation (3. 5) is just property (2. 3).

* Relation (3. 6) is just the bijection between morphisms of
affine schemes and morphisms of algebras.

5. Conformal Blocks

The functor k—sch — D, —sch, sending a k - scheme
S .o the D, —schemeX xS (which has
coordinate ring o, 0, OS) has a right adjoint functor:

“constant”

Hp(X,0:D, —sch - k—sch,

Hom(S, Hp (X, 2)) OHomyp, (X XS, 2), .1

for any D, - scheme Z , and any k- scheme S .
Alternatively, we can define this functor for algebras:

Hp(X,0: D, -Alg - k—-Alg,

Hom(H (X, B),C) OHom), (B,0, [, O), (4.2)

for any P, -algebra B, and any k - algebra ¢ . Obviously,
Spec H, (X, B) =H_ (X,SpecB). The scheme H_(x,2),
is called the scheme of conformal blocks of Z, and it is
tautologically the largest constant D, —subscheme of Z.

Example 4. 1. For any D, -scheme Z, we have:

Hp(X,Z) OHorSect(X, 2), 4.3)

This follows easily by unraveling the definitions.
Example 4. 2. Setting z = yy, in the above for some ©

—scheme V, and combining with the Proposition 2. 1, gives
us:

Hy (X, JY) OHorSect( X, YY), 4.4

6. Cohomologies

In this section we restrict to y projective of dimension n,
and to affine D, - algebras. The reason why we denote
algebras of conformal blocks by H,(X,B), is that they turn
out to be some sort of “cohomology algebras” [3] of the D, -

algebra B . In fact, Verdier duality implies the following
natural bijection for D, —modules:

Hom 4, (M, O, O, V), JHom(H g (X,M),7), (5.1

for any D, - module M, and any vector space V . By
definition, H, (X,M), are the cohomology groups of the

complex of sheaves of K -vector spaces:
1o i+le
= MOg NT°X - MO NYT°X — ., (5.2)

These cohomology groups coincide with R*7z (M), where
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71: X - pt,is the projection to a point. Note that (5. 2)
implies that

This can be further re-interpreted as follows. Pick a closed
point x[J X ,let j:x -~ X , be the closed embedding and
j:X-x - X, be the open embedding. Then for any D, -

module M, we have the exact triangle:

iM[-n] > j.j°M, (5.4)

The shift by n happens when we pass from P, —modules
to quasicoherent O, —modules, as we will be doing now. This

induces a long exact sequence on cohomology:

s HRE X -x M M, - HE(X M) -

5.5
> Hig (X -x,M), (5-3)

We claim that the last group is 0. To see this, recall that
Lichtenbaum’s theorem says that the C&h cohomological
dimension of X -x, is at most -1,e.g. H"(X -x,F) =0for

any quasi-coherent F. As the
D, —module M , is a quotient of the form:

D, O, F - M, (5.6)

for some quasicoherent F, and

Hyp (X -x,D, 0o F)=H"(X-x,F)=0
it also follows that H, (X —x,M)=0. Therefore, (5. 3) and
(5.5) imply:

H,(X,SymM)=Sym(M, /Img), (5.7)

The above description applies equally well to D, -

algebras, so we infer:
Corollary 5. 1. For any D, -algebra B, we have:

Hy (X, B) OB, /(Im), (5.8)

where Im¢ , denotes the ideal generated by the image of the
co-boundary mapping

@:H"' (X -xB) - B,, (5.9)
We can actually do all of this with any finite number of
closed points x,...,x, OX The analogue of the

co-boundary map is &, given by:

s HN(X - xy ox 1, BOP- B, 0...0B

X

(5.10)
- H(;’R(X,B) -0,

We will need an algebra, not just a vector space, so define
the map:

@ H"'(X-{x ...x},BOf-B, 0..08,,

e =g O...01+...+10...010¢ ),

In the above, @' denotes the projection of the map ¢', to

the ith - factor.
Proposition 5. 1. We
isomorphism:

have the following natural

B, ((Img) 0B, 0...0B, /(Img) (5.11)

where (Img), denotes the ideal generated by the image of the

map (Z
To prove the proposition 5. 1, is necessary to take the
natural morphism from left to right sending 5 OB, , to

b, 010...1. Its injectivity is immediate, and its surjectivity
follows readily from the k& = 2, case. Since it will also make

the explanation clearer, let’s just do k£ =2. We have the
following commutative diagram

n-1 _ $ i n
H (X XI,B) —>Bx1 - H (X,B)—>0

l l =1
4 ¢ ”
Hn (X_{xth}aB)"Bxl DBXZ HH”(X:B) - O,

Take any b, DBtz,and look at nb,)0H"(X,B). By the
above diagram, there exists 408, such that n(a)=n(b,).
This that  (-a,b,) OKerrr,
(=a,b,) O¢'(h), for some /1. Take any p OB, , and we

means if and only is

have:
b, Ob, =b Dg(h) = (b, IDAD @(h) =
(b, OD(Og(h) O1+10 ¢ (k)
~(b () D10(Img) + B,

This implies that the map (5. 11) is surjective, and
concludes the proof of proposition 5. 1. Therefore, the
corollary 5. 1, implies the following corollary.

Corollary 5. 2. For any P, -algebra B, we have:

Hy(X,B) 0B, 0..0B, (Img), (5.12)

7. Results

The conformal blocks can be obtained by the apparatus of
the Penrose transform through their extension, interpreting the
invariances under scheme of “CRings” and D, —schemes.

Home (JA:B) = HOI'nAlgk (X’ SpeCJA)s (6 1)

where B, is ap, _algebra.

Let X, be smooth over z, locally at X. Let T . be the
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D, -ideal generated by Ker(Sym(A - A), where A, isa O, -
sub-algebra of O, [1/x], generated by the sub-sheaf x"'T . But
VY =SpecA, to Y, any O, -scheme, then jyy, is a D, -
scheme. Specializing B = j4 , we have Homy, ( JA,(%x SC)

by (3. 5), and the left of (6. 1) is proved. To establish the right
side of (6. 1) we need use the relations between morphisms of
affine schemes and morphisms of algebras to that the category
of schemes can be identified with a full subcategory of Sp y

Indeed, for any object 1/ =SpecA , and let Aff,» denote the
full subcategory of Spy > consisting of objects X, over 1,
where X , is affine. We define AffRel,, » 1O be the full
subcategory of Affy » consisting of objects X , whose
structure map X - Y , factors through an affine open
sub-scheme of /. The inclusion AffRel, — Spy» induces an

equivalence between Spy > and the category of sheaves of sets

on AffRel,- JA» isthe P, —algebra generated by A . By (2.
V.
HorSect(X, JY), which is equivalent to the conformal bock
Hy(X,JVY) Then by (4. 2)  we
Spec Hp (X, B) = Hy (X,SpecB), and considering the property of
the jet a J, given by SpecJA = JSpec(A), (mentioned in the

5) we have for any (O, - scheme we have

have

section 2) we have that the jet carry us to an object in“CRings”
defined by an k— .algebra  SpecR , where R, is a
commutative g -ring to 0<n<oo. Then is followed (6.
1).

Proposition. 6. 1. For any 7, -algebra B8, we have that
every conformal block is the Penrose transform

P:H(JA,0)OH, (X, B) (6.2)
An application example of the solution classes given by

integrals of (6. 2) are given for the solutions to the field

equations of the Bach tensor and Eastwood-Dighton tensor”

B, =0, E,. =0,

abc

(6.3)

where the tensors , to the conformal case can be designed as
elements of a D, -algebras or ©, -algebras.

If we consider the scheme commutative moduli we could
think in the forgetful functor defined in (2. 3), that is to say, the
jet J:O, —alg — D, —sch, where are verified the relations in
the conformal context of the space-time
(¢:JA~B) - (¢:A - B), and g:4 - B) - (¢:JA - B), to the
concrete case of a conformal factor between D, —algebras

! Sp° denote the category of sheaves of sets on Aff.

Aff, denote the category of affine schemes with certain covering topology
whose images cover Affy -

2 Here B =@’ +1/2R0d)Cab(,d, where Copets denotes the Weyl
curvature, while that

E e = $A'B'C'D'DDD'qJABCD ~Wsep DDD'@A'B'C'D"
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and O, -algebras.

Indeed, a complex space-time m, satisfying (6. 3) will be
called a solution to the conformal gravity equations [4, 5] if
M (as a 4 - dimensional complex Riemannian manifold)
implies that (M, g), is a solution of (6. 3) with algebraically
several Weyl curvature implying that exists a conformal factor
a , such that g=qa’g ,where their meaning of Ricci

~ . ~ 1
curvature of R , satisfies R, = Zg.

Due that the Bach and Easwood-Dighton equations haves
are both symmetric trace-free tensors and are both
conformally invariants, with conformal weight -2, meaning
that under the transformation

gmg=a’g, (6.4)
we have

B B=a7B, (6.5)
and

E—E=a7’E, (6.6)

Moreover, they are both invariant under bi-holomorphisms
meaning that it

@M > M, 6.7

is a bi-holomorphism then these tensors depends upon the
metric in such a manner that

B(@*(2)) = 9* (B(g)). (6.8)

where ¢*(g)=_J"A, OmOn since considering the jet of the
*,in xOm , we have B(J"A)OSpec(J"A) ,
spectrum element in a D, —sheme. For other side, in the

metric g

D, —algebras, the image ¢* B(g) 0 J"Spec(A) , and the similar

to*

E(@*(8)) =+@* (E(g)), 6.9

The value at x[Om, of these tensors is a holomorphic
function inSpec(A), of the m —jet of g, at x, Om 0N, that

is to say

J " (Spec(A)) =Spec(J " A), (6.10)

The interesting of this application is the property of the jet
of their homogeneous polynomial context. Likewise, if
h(@*r,a’s,a’t,...,a"u)0SpecR*, then (6. 10) takes the
form:

3 Jets of metrics of the form:
_ c_d cd c d_f
gab - Jab + r(ab)(cd)x X+ S(ab)(cde)x X+ t(ab)(cdef)x XX

c..d f
Tt Uy de y X X X

4 4, sign depends upon the choice of sign for the associated star operator,

*ZDZ — Dz.
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na*r,a’s,a’t,....a"u) = a* (h(r,s.t,...,u)).  (6.11)
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