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Abstract: In this paper generalized Gaussian and mean curvatures of a parallel hypersurface in ���� Euclidean space will be 

denoted respectively by �� and ��, and Generalized Gaussian and mean curvatures of a parallel hypersurface in �₁ⁿ⁺¹ Lorentz 

space will be denoted respectively by ��  and �� .Generalized Gaussian curvature and mean curvatures, ��and ��ofaparallel 

hypersurface in ����Euclidean space are givenin[2].Before nowwe studied relations between curvatures of a hypersurface in 

Lorentzian space and we introduced higher order Gaussian curvatures of hypersurfaces in Lorentzian space. In this paper, by 

considering our last studieson higher order Gaussian and mean curvatures, we calculate the generalized ��and ��ofaparallel 

hypersurface in �₁ⁿ⁺¹ Lorentz space and we prove theorems about generalized ��and ��  ofa parallel hypersurface in �₁ⁿ⁺¹ 

Lorentz space. 
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1. Introduction 

Suppose that 
 is an n-dimensional vector space over the 

real numbers for � = 1,2, . .. 
A symmetric bilinear form �: 
 × 
 →R is 

i) positive (resp.negative) definite if and only if ���� ≠ 0 

implies �(����, ����) > 0 (!"#$. �(�, �) < 0)for all ���� in 
, 

ii) non-degenerate if and only if �(����, &�) = 0 for all &� in 
 

implies that ���� = 0��, and 

iii) indefinite if and only if there exist ����and &� in 
 with �(����, ����) > 0 and �(&�, &�) < 0. 

A non-degenerate, symmetric bilinear form�  is called a 

scalar product. For an indefinite scalar product � on 
 , a 

vector ���� ≠ 0�� is said to be(see [5], p. 4) 

a) spacelike if and only if �(����, ����) > 0, 

b) timelike if and only if �(����, ����) < 0, and 

c) null if and only if �(����, ����) = 0. 

2. Basic Concepts 

Definition 1.1. 

Let '  be a unit normal vector field on semi-

Riemannianhypersurfaces( ⊂ (�.The(1,1)  tensor field *  on 

( such that 

〈*(
), ,〉 = 〈..(
, ,), '〉/0!122
, , ∈ ℵ(() 

is called the shape operator of ( ⊂ (� derived from '. (see 

[1], p. 107) 

Definition 1.2. 

Let (  and (� be two hypersurfaces in E₁ⁿ⁺¹ with unit 

normal vectors 5of (and5�of (�.  

5 = 6 78 99:;
�

8<�
 

where each 78  is a => function of M. If there exists a 

function/,from M to (� such that 

/: ( → (� 

? → /(?) = ? + !5A 

Then(�  is called parallel hypersurfaceof (, where ! ∈ B. 

(see[3]) 
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Definition 1.3. 

Let (  be a hypersurface in �₁ⁿ⁺¹andCD(?)be a tangent 

space on (, at ? ∈ (. If *A denotes the shape operator on (, 

then 

*A: CD(?) → CD(?) 

is a linear mapping. If we denote the characteristic vectors by 

k₁,k₂,...,F�  and the corresponding characteristic vectors by 

x₁,x₂,..., G�  of *A  then F₁, F₂ , . . . , F�  are the principal 

curvatures and  x₁,x₂,..., G�are the principal directions of (, 

at ? ∈ (  . On the other hand, if we use the notions H8I�=+1and ε₁=±1  

��(�)(k₁, k₂, . . . , F�) = ε�k� + 6 εLkL
M

L<N
 

�N(�)(k₁, k₂, . . . , F�) = 6 εLkLkO
M

L<�PQ + 6 εLkLkO
M

LI�PQ  

�R(�)(k₁, k₂, . . . , F�) = 6 εLkLkOkS
M

L<�PQPT + 6 εLkLkO
M

LI�PQPT kS 
⋮ 

��(�)(k₁, k₂, . . . , F�) = ε� V kL
M

L<�
 

then the characteristic polynomial of S(P) becomes 

?W(A)(F) = Fⁿ + (−1)�₁⁽ⁿ⁾Fⁿ⁻¹+. . . +(−1)ⁿ��⁽ⁿ⁾ 
and �₁, �₂, . . . , ��  are uniquely determined, where the 

functions�8 are called the higher ordered Gaussian curvatures 

of the hypersurface ( (see[3]). 

Theorem 1.1. 

Let(�be a parallel surface of the surface( ⊂ ��R. Let the 

Gaussian curvature and mean curvature of( be denoted by � 

and �at ? ∈ (, respectively. Gaussian curvature and mean 

curvature of (�are denoted by ��and��. Then we know that 

i) 5A is timelike 

�� = �1 + 2!� − !²� 

�� = � − !�1 + 2!� − !²� 

ii) 5Ais spacelike 

�� = �1 + 2!� + !²� 

�� = � + !�1 + 2!� + !²� 
 

[3]. 

Theorem 1.2. 

Let ( be a hypersurfacein �₁ⁿ⁺¹,�₁, �₂, . . . , ��theso-called 

higher order Gaussian curvatures and F₁, F₂ , . . . , F�  the 

principal curvatures at the point ? ∈ ( . Let us define a 

function 

]: ( → B 

? → ](?) = ](r, F₁, F₂ , . . . , F�) 

= V 1 + H8!F8
�

8<�
 

such thatH8I� =+1 and ε₁=±1 

](r, F₁, F₂ , . . . , F�)
= 1 + ! _ε�k� + 6 εLkL

M
L<N `

+ !N a 6 εLkLkO
M

L<�PQ + 6 εLkLkO
M

LI�PQ b
+ !R a 6 εLkLkOkS

M
L<�PQPT + 6 εLkLkO

M
LI�PQPT kSb

+ ⋯ + !� _ε� V kL
M

L<� ` 

or 

](k₁, k₂ , . . . , F�) = r�� + !N�N + ⋯ + !��� 

[4]. 

Theorem 1.3. 

Let ( be a hypersurfacein�₁ⁿ⁺¹, �₁, �₂, . . . , ��are the so-

called higher order Gaussian curvatures and  k�, kN, . . . , F�are 

the principal curvatures at the point ? ∈ ( . �� and ��  are 

generalized Gaussian and mean curvatures of (�at the point /(?). Suppose that the function 

]: ( → B 

? → ](?) = ](r, F₁, F₂ , . . . , F�) 

= V 1 + H8!F8
�

8<�  

such that H8 =+1 and ε₁=±1 (i≠+1). 

Then we have 

�� = H def(g,h₁,h₂ ,...,he)die�! ](r, F₁, F₂ , . . . , F�)  
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�� = df(i,h₁,h₂ ,...,he)di](!, F₁, F₂ , . . . , F�) . 
Proof 

If F is principal curvatures of ( at the point ? in direction k, then 
h��ih is the principal curvatures of ( lllat the point /(?) 

in direction /∗(k) , that is, *̅o/∗(k)p = h��ih /∗(k)  which 

means that / preserves principal directions, where /∗ is the 

differential of / and we know that 

*̅o/∗(k�)p = F�1 + !F� /∗(k�) 

*̅o/∗(kN)p = FN1 + !FN /∗(kN) 

*̅o/∗(k�)p = F�1 + !F� /∗ 

then we know that the shape operator of ( lllis  

*̅ =
qr
rr
s H�F�1 + !H�F� ⋯ 0⋮ ⋱ ⋮0 ⋯ H�F�1 + !H�F�uv

vv
w
 

and ��� = det *i  

=H { |}h}��i|}h} … |ehe��i|ehe� 

=H |}h}|�h�…|ehe∏ (��|;ih;)e;�}  

= H ∏ |;h;e;�}∏ (��|;ih;)e;�}  

We multiply the right sides of the equation with �! 
= H �! ∏ H8F8�8<��! ∏ (1 + H8!F8)�8<�  

= H �! ���! ](r, k�, kN, . . . , F�) 

and we derivate to ](r, k�, kN, . . . , F�)  order n according to r  

9](r, k�, kN, . . . , F�)9! = 9(1 +  r�� + !N�N + ⋯ + !���)9!  

=�� + 2!�N + ⋯ + �!����� 

9N](r, k�, kN, . . . , F�)9!N = 9(�� + 2!�N + ⋯ + �!�����)9!  

= 2�N + ⋯ + �(� − 1)!��N�� 

and we continue to derivation, we have  

9�](r, k�, kN, . . . , F�)9!� = �! �� 

and we obtain with implying equality 

��� = H def(g,�},��,...,he)die�! ](r, k�, kN, . . . , F�) . 
We proof the other equality  

��� = 1� .&*i  

= 1� � H�F�1 + !H�F� + ⋯ + H�F�1 + !H�F�� 

= 1� �H�F� ∏ (1 + H8!F8) + ⋯ + H�F� ∏ (H8!F8)���8<��8<N ∏ (1 + H8!F8)�8<� � 

We derivate according to r 

9](r, k�, kN, . . . , F�)9! = 9(∏ (1 + H8!F8)�8<� )9!  

= 9o(1 + H�!F�)(1 + HN!FN) … (1 + H�!F�)p9!  

= H�F�(1 + HN!FN)(1 + HR!FR) … (1 + H�!F�) 

+(1 + H�!F�)HNFN(1 + HR!FR) … (1 + H�!F�) 

+(1 + H�!F�)(1 + HN!FN)HRFR … (1 + H�!F�) 

⋯ 

+(1 + H�!F�)(1 + HN!FN)(1 + HR!FR) … (1+ H���!F���)H�F� 

= H�F� V(1 + H8!F8) + HNFN(1 + H�!F�) V(1 + H8!F8)�
8<R

�
8<N

+ ⋯ + H�F� V(H8!F8)���
8<�

 

So we have last equation and we obtain that  

��� = 1�
df(g,�},��,...,he)di](r, k�, kN, . . . , F�) . 

3. Generalized Theorems 

Theorem 2.1. 

Let (�  be a parallel hypersurface in �₁ⁿ⁺¹  and ��, �N, … , ��   are the so-called higher order Gaussian 

curvatures of ( at the point ? ∈ (, and let 

6 !8�İ = −1���
8<�
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thenthe generalized Gaussian curvature of (� is 

�� = H 1!� . 
Proof 

We know that the generalized Gaussian curvature of a 

parallel hypersurface is given by 

�� = H def(g,h₁,h₂ ,...,he)die�! ](r, F₁, F₂ , . . . , F�)  

= H ∏ H8F8�8<�1 + !�� + !N�N + ⋯ + !��� 

since we have, 

6 !8�İ = −1���
8<�

 

then 

6 !8�8 =���
8<� 1 + !�� + !N�N + ⋯ + !������� = −1 

andfinallyweget 

�� = H ∏ H8F8�8<�!���  

�� = H ∏ H8F8�8<�!� ∏ H8F8�8<� = H 1!� . 
Theorem 2.2. 

Let (� be a parallel hypersurface in ����� and ��, �N, … , �� 

so-called higher order Gaussian curvatures of (, at the point ? ∈ ( and let 

6(� − 1)�
8<� !8�8 = 1 

then generalized Gaussian curvature of (� is 

�� = 1!. 
Proof: 

We know that the generalized mean curvature of a parallel 

hypersurface is given by 

�� = df(g,�},��,…,he)di](r, k�, kN, … , F�)  

= �� + 2!�N + ⋯ + �!�����1 + !�� + !N�N + ⋯ + !��� 

= 1! !�� + 2!N�N + ⋯ + �!���1 + !�� + !N�N + ⋯ + !��� 

6 !8�8 =�
8<� 1 + !�� + !N�N + ⋯ + !��� 

since we have that 

�� = 1! ∑ �!8�8�8<�1 + ∑ !8�8�8<�  

we can write that 

6 !8�8 =�
8<� 6(� − 1)�

8<� !8�8 + 6 !8�8
�

8<�
 

so we obtain that 

�� = 1! ∑ (� − 1)�8<� !8�8 + ∑ !8�8�8<�1 + ∑ !8�8�8<�  

If we add and subtract 1 inthe numerator, the above 

equality does not change 

�� = 1! 1 + ∑ (� − 1)�8<� !8�8 + ∑ !8�8 − 1�8<�1 + ∑ !8�8�8<�  

= 1! _1 − �1 − ∑ (� − 1)�8<� !8�81 + ∑ !8�8�8<� �` 

= 1! _1 − � 1 − 11 + ∑ !8�8�8<� �` 

and we have that 

�� = 1!. 
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