

Software Engineering
2013; 1(2): 7-12

Published online September 10, 2013 (http://www.sciencepublishinggroup.com/j/se)

doi: 10.11648/j.se.20130102.11

Cost models and productivity building applications based
on the notification of changes in databases

Jose-Ramon Coz-Fernandez, Ruben Heradio-Gil, Jose-Antonio Cerrada-Somolinos

Departamento de Ingeniería de Software y Sistemas Informáticos. Universidad Nacional de Educación a Distancia. Ciudad Universitaria,

Juan del Rosal 16, E-28040. Madrid, Spain

Email address:
jrcozf@gmail.com(Jose-Ramon Coz-Fernandez), rheradio@issi.uned.es(Ruben Heradio-Gil),

jcerrada@issi.uned.es(Jose-Antonio Cerrada-Somolinos)

Tocite thisarticle:
Jose-Ramon Coz-Fernandez,Ruben Heradio-Gil, Jose-Antonio Cerrada-Somolinos. Cost Models and Productivity Building Applications

Based on the Notification of Changes in Databases.Software Engineering.Vol. 1, No. 2, 2013, pp. 7-12. doi: 10.11648/j.se.20130102.11

Abstract: This paper presents a generative approach to build a Software Product Line (SPL). This Software Product Line is

used to build applications based on the Notification of Changes in databases. The paper highlights the benefits, in terms of

productivity and cost, using this approach. To obtain the economicdata we have used two cost models, the SIMPLE Model

(Structured Intuitive Model for Product Line Economics) and one adaptation of COPLIMO (Constructive Product Line

Investment Model). Both models demonstrate the great productivity of this SPL. The paper also introduces the Exemplar

Driven Development (EDD) process used to build the Software Product Line.

Keywords: Databases, Domain Engineering, Generative Programming, Software Product Lines, Cost Models

1. Introduction

Some of the more significant research lines advocating

for the increase in the productivity of the software

development are the Generative Programming (GP) [1] and

Software Product Lines (SPL) engineering [2]. GP proposes

to raise the level of abstraction of programming languages

through specifications or models. Early case studies have

exhibited significant barriers to adopt an SPL [3] approach.

The approach proposed in this paper is the construction of a

SPL using an approach based on GP. To build the SPL an

adaptation of the [4] Exemplar Driven Development (EDD)

is used. The SPL created is about the notification of

changes in databases [5].

The purpose of the notification of changes in databases is

to provide a range of services to users to make them aware

of the changes that are being produced in a database.The

paper presents two Cost Modelsfor this SPL based in the

SIMPLE [6] [7] [8] and the COPLIMO [9] (Constructive

Product Line Investment Model). These models show some

analysis about the high productivity and profitability of the

SPL proposed. Researchers at the Software Engineering

Institute (SEI), Clemson University, the Fraunhofer

Institute for Experimental Software Engineering, and

Siemens created the Structured intuitive Model for Product

Line Economics (SIMPLE), and the COPLIMO is a

COCOMO [10] extension.

This paper is structured as follows: Section 2 presents

the domain and describes the generative approach. Section

3 summarizes the SIMPLE Model, presents the Cost Model

for this approach and offers different sceneries for the Cost

Model application. Section 4 gives an overview of the

COPLIMO approach for this SPL. The solution provided in

several study cases and the comparative with both models

are presented in Section 5. Finally, Section 6 summarizes

the presented work.

2. Software Product LineOverview

The research problem is to find the Cost Model for

implementing the changes notification service (CNS) in

databases, using a generative approach. The CNS

isresponsible for the communicationof the changes that

happen in the database to the subscribed users or systems.

Users or systems can be interested only in specific events.

For instance, they may need to be reported about: insertions,

deletions, updates, logins, logouts, startups, shutdowns and

others.To implement this kind of features nowadays

databases offer different mechanisms such as Advanced

Queue, Pipes and Alert / Signals technologies, different

procedural extension languages such as PL / SQL and

specialized libraries that extend these languages such as AQ,

8 Jose-Ramon Coz-Fernandez

Pipe and Alert /Signals Libraries [11].

Although these utilities facilitate the developments,

products must be programmed manually and the cost of

development is high. The development of specific

for this domain depends not only on the specific

requirements established (priorities, time management,

subscribers, searches, granularity of the solution, visibility,

navigation between messages and so on), but the internal

structure of the database (tables, keys, users and others).

The requirements of this domain have been analyzed after

developing several products.

A new DSL (Domain Specific Language), called

Notification Change Service Language (NCSL) has been

developed to gather the domain variability and specify the

domain requirements. This language is

(Backus-Naur form) notation. All the requirements of our

domain are specified through this language. In order to

derive new products, the application engineer writes NCSL

specifications, from the user requirements, that are

completed with information automatically gathered from

the database as tables, users, fields, keys, schemas and

others. Some elements of this NSCL describe variability

related to the internal database informa

schemas and others) whereas other elements describe the

events priorities, times, subscribers, type of visibility,

events to be notified by the service, permissions and so on.

Users, through a program implemented for this purpose,

specify their needs against this NSCL.

For our generative approach, EDD is used. EDD is a SPL

methodology which takes advantage of the similarities

among domain products to build them by analogy [10]. The

EDD starting point is whatever domain product built usin

conventional software engineering. The product that must

exist as the start point of EDD is called exemplar. It is

assumed that this exemplar implements implicitly the

intersection of all the domain product requirements. To

satisfy the domain variable requirements that are out of the

intersection, EDD uses the concept of exemplar

flexibilization. Figure 1 illustrates a summary of EDD.

Figure 1.Summary of EDD.

Fernandez et al.: Cost Models and Productivity Building Applications B

Notification of Changes in Databases

Although these utilities facilitate the developments,

products must be programmed manually and the cost of

development is high. The development of specific products

for this domain depends not only on the specific

requirements established (priorities, time management,

subscribers, searches, granularity of the solution, visibility,

navigation between messages and so on), but the internal

ase (tables, keys, users and others).

The requirements of this domain have been analyzed after

A new DSL (Domain Specific Language), called

Notification Change Service Language (NCSL) has been

iability and specify the

domain requirements. This language is expressed in BNF

Naur form) notation. All the requirements of our

domain are specified through this language. In order to

derive new products, the application engineer writes NCSL

fications, from the user requirements, that are

completed with information automatically gathered from

the database as tables, users, fields, keys, schemas and

others. Some elements of this NSCL describe variability

related to the internal database information (tables, keys,

schemas and others) whereas other elements describe the

events priorities, times, subscribers, type of visibility,

events to be notified by the service, permissions and so on.

Users, through a program implemented for this purpose,

For our generative approach, EDD is used. EDD is a SPL

methodology which takes advantage of the similarities

among domain products to build them by analogy [10]. The

EDD starting point is whatever domain product built using

conventional software engineering. The product that must

exist as the start point of EDD is called exemplar. It is

assumed that this exemplar implements implicitly the

intersection of all the domain product requirements. To

quirements that are out of the

intersection, EDD uses the concept of exemplar

Figure 1 illustrates a summary of EDD.

Summary of EDD.

The flexibilization is the mechanism that allows

establishing an analogy relation (in a formal

the exemplar and the new product, so the new products can

be derived automatically from the exemplar. The tool that

performs the flexibilization is a domain specific compiler

(DSC), which is used during application engineering phase

to derive automatically new products.An adaptation of

EDD has been developed, where a NSCL is built specifying

the user features and using the necessary information from

the database. This database information is contained in

meta-tables and it is obtained automatic

domain specific language exist (in this case, the NSCL), the

DSC for this language is implemented.EFL is an external

flexibilization technique that supports noninvasive

exemplar transformations and crosscutting flexibilizations.

It is applicable to whatever kind of software artifact and

provides an efficient generative variant construction [12

[13].

EFL is used to build the DSC that deal with the

specification variability and also with the implementation

variability in our domain. A typical

made of an analyzer which takes as input a specification,

and a generator which is responsible for generating the new

product. The most important part is that generator is

responsible for analyzing the exemplar and adapts it in

order to generate the new product according to the given

specification. In our approach the generator is also

responsible for detecting dependencies and inconsistencies

in the configuration model.Finally, some sub

can analyze the internal elements of

all the necessary information of the domain. Figure 2

illustrates how the process works

information from the NCSL

generator formed by several sub

coordinated to get the rest of the products of the line.

Figure 2.Generator and Compiler based in EFL

Cost Models and Productivity Building Applications Based on the

The flexibilization is the mechanism that allows

establishing an analogy relation (in a formal way) between

the exemplar and the new product, so the new products can

be derived automatically from the exemplar. The tool that

performs the flexibilization is a domain specific compiler

(DSC), which is used during application engineering phase

automatically new products.An adaptation of

EDD has been developed, where a NSCL is built specifying

the user features and using the necessary information from

the database. This database information is contained in

tables and it is obtained automatically. Once the

domain specific language exist (in this case, the NSCL), the

DSC for this language is implemented.EFL is an external

flexibilization technique that supports noninvasive

exemplar transformations and crosscutting flexibilizations.

able to whatever kind of software artifact and

erative variant construction [12]

EFL is used to build the DSC that deal with the

specification variability and also with the implementation

variability in our domain. A typical DSC written in EFL is

made of an analyzer which takes as input a specification,

and a generator which is responsible for generating the new

product. The most important part is that generator is

responsible for analyzing the exemplar and adapts it in

to generate the new product according to the given

specification. In our approach the generator is also

responsible for detecting dependencies and inconsistencies

in the configuration model.Finally, some sub-generators

can analyze the internal elements of the database to obtain

all the necessary information of the domain. Figure 2

works: the analyzer obtains the

information from the NCSL (DSL specification) and one

formed by several sub-generators work

et the rest of the products of the line.

Generator and Compiler based in EFL.

 Software Engineering2013; 1(2): 7-12 9

3. The SIMPLE approach

Once we have obtained the SPL, our interest is focused to

analyze the productivity of our approach. We started using

SIMPLE (Structured intuitive Model for Product Line

Economics), because it is a model to facilitate

decision-making in a product line context by allowing a

decision-maker to calculate the costs and benefits of

different decision alternatives.

SIMPLE employs a small set of basic cost functions and

benefit functions to allow a product line decision-maker to

decompose the decision into constituent (and easily valuable)

parts.SIMPLE is based on the observation that establishing

and then using a product line engineering capability involves

the following four costs:

• CORG: The cost to an organization of adopting the

product line approach for its products. Such costs

can include reorganization, process improvement,

training, and whatever other organizational remedies

are necessary.

• CCAB: The development cost to develop a core asset

base suited to support the product line being built.

This includes costs such as commonality/variability

analysis, a generic software architecture, and the

cost of developing the software and its supporting

designs, documentation, and test infrastructure.

• CUNIQUE: The development cost to develop unique

software that is not based on a product line platform.

Usually this will be a small portion of a product but

in the extreme it could be a complete product.

• CREUSE: The development cost to reuse core assets in

a core asset base. This includes the cost of locating

and checking out a core asset, tailoring it for use in

the intended application (if necessary), and

performing the extra integration tests associated

with reusing core assets.

The cost of establishing a product line consisting of n

products can be written as

�� � �������	
 � � ��
���
�
�
��� ���������� � ���
�������������

(1)

Where CORG, CCAB, CUNIQUE and CREUSE are cost functions

that, given the appropriate parameters, return the

corresponding costs.For our generative approach, and using

the SIMPLE Cost Model, we have the next assumptions:

���� � 0; �
���
� � 0;

��	
 � � ������
�
��� ����������� � �"�# � �"�#� � ��$(2)

Where:

• CDSL: The cost to develop the Domain Specific

Language (NCSLC – Notification Changes Service

Language).

• CDSLC: The cost to development the Domain Specific

Language Compiler. This is the cost of the exemplar

flexibilizations (CFLE) and the cost of the generators

development (CGEN).

• CTEST: The cost to develop the initial test products (n

is the number of test products). This cost is not

necessary to be considered for all thecases, however

weconsider it because we have developed several

initial test products for our SPL.

• CEX: The development cost for the exemplar. Since

our exemplar is similar to every product, CEX is like

CTEST for one product.

Then the Total Cost of our SPL (CTSPL) is:

���%# � � ������
�&�
��� ����������� � ����# � �'#� � ���� (3)

CNCSL is the cost to specify all the requirements. In our

SPL all the requirements have been integrated into the NSCL

program and it is not necessary to do the flexibilizations on

the exemplar. This cost,CNCSL, is negligible with respect the

rest (see the equation 1 for evaluating the NSCL program

cost).Then, our Cost Model is:

���%# � � ������
�&�
��� ����������� � ���� (4)

The Cost of the development of building product

independently, with the SIMPLE Model, should be:

���%# � � ��()*+
,
��� ����������) (5)

As the number of test products (n) is always less than the

number of total products (m), we obtain the first conclusion:

if the Cost of the Generators (CGEN) is not very high then the

cost of our SPL is less than the cost of developing the

products independently. The productivity of our SPL

depends on the cost of the generators. For our case, we can

consider a similar cost for every test product, then:

���%# � �- � 1��()*+��������������� (6)

If it is not necessary to develop the initial test products,

then n=0. Then, our second conclusion is: the cost of our

SPL is the cost of the generator plus the cost of the exemplar

development (similar to one product).

In the case of the development of our products

independently, the analysis made shows that the cost of

every product has dependencies with the database size. The

database size, in a simplified form, depends on the number

of entities with requirements of notification changes and the

number of users or systems who subscribe to the NCS. In all

cases the cost of every product can be expressed as:

�()*+���������� � �� � /�0 � 1�0 (7)

Where C1and C2 are constants, N is the number of entities

with Notification Changes Requirements and U is the

number of subscriptions to the NCS. The constants values

depends on the mechanism used to build the products. Then,

the cost of the development of all the products is:

�� � � ������
,
��� ����������� � 2��� � /�0 � 1�0� (8)

Where m is the number of products. Then, if we compare

the CT (the cost of the development of the products

10 Jose-Ramon Coz-Fernandez et al.: Cost Models and Productivity Building Applications Based on the

Notification of Changes in Databases

independently) with the Cost of the SPL, we obtain the next

conclusion about the SPL cost.

���� 3 2��� � /�0 � 1�0� 4 ���%# 3 �� (9)

The number of products that can be obtained with the

proposed SPL is measured. This number corresponds to the

combinations of features that have sense, that is to say, that

do not maintain dependencies or constraints among them.

If this value is high, the CGEN is very much less than CT.

The third conclusion isthe cost of the SPL is much lesser

than the cost of development the products independentlyif

the number of the products of the SPL is high.

4. TheCOPLIMO approach

We used another different approach based on the standard

COPLIMO, a COCOMOIIextension, in order to obtain the

productivity of the SPL developed.According to this

standard and having to:

• PLS(N) is the Product Line Savings for a Software

Product Line (SPL) with N products.

• PMR(N) is the cost in PM (person / months) for

building N products in a Software Product Line

(SPL)

• PMNR(N) is the cost in PM for building N

products without reusing components (outside of

the SPL)

We obtain the main equation (10) of our economic model:

PLS�N� � PMNR�N� ; PMR�N� (10)

Where PMNR(N) is estimated as:

PM � <Size� ∏ EM�
�
��� (11)

• A is an organization-depend constant.

• E is the “scaling parameter”. It reflects the

disproportionate effort for large projects, due to

the growth of interpersonal communications

overhead and growth of large-system integration

overhead.

• EMi are Effort Multipliers (required software

reliability, database size, product complexity,

required reusability…).

If we have the COPLIMO assumptions, PMR(N) is

estimated by:

PMR�N� � PMR�1� � �N ; 1�PMNR�1� BPFRAC �
RFRAC FF

�GG � AFRACH (12)

Where:

• PFRAC, RFRAC and AFRAC are the unique,

back-box and white-box reused parts of our

products.

• RCWR (Relative Cost of Writing for Reuse) is a

multiplier to estimate the effort of making software

reusable across the SPL.

• AA (Assessment and Assimilation) is the effort

required to assess the candidate reusable

components and choose the most appropriate one,

plus the effort to assimilate the component code and

documentation into the new product.

For our Software Product Line (SPL) we have:

PMNR�N� � /< esize� ∏ eEM�
�
��� (13)

Where esize is the size of the exemplar and eEM are the

Efforts Multipliers of the exemplar. The “scaling parameter”

is:

J � K � 0.01 ∑ SFN
O
N�� P (14)

Where B is the “scaling base exponent for the effort” and

SFi are the scale factors: precedentedness, development

flexibility, architecture, risk resolution, team cohesion and

process maturity. Finally, the cost for building N products in

our SPL is:

PMR�N� � PMR�1� � �N ; 1� FF
�GG Q∑ QF RSNTUV ∏ RWXYZ

Y[\]^
Y[\] (15)

Where gsize is the size of the generators, G is the number

of generators and gEM are the Efforts Multipliers of the

generators.Our interest is to obtain the Return On

Investment (ROI):

ROI�N� � abSc SdeNORS
abSc NOeUScfUOc � ghi�j�

|ghi���| (16)

In the paper [14] is showed a specific application for the

Notification Services related with ITIL (Technology

Infrastructure Library) [15], using a similar approach. We

use this COMPLIMO adaptation to compare with our

initial model based in SIMPLEfor several study cases

discussed in the next section.

4. The SPL and Several Study Cases

The presented SPL has been employed for conducting

several case studies with different databases: a database

supporting a university that offers courses, a control system

for air navigation that contains electronic controls that

inform pilots of changes in different aspects of navigation

and others. Oracle database has been used in all these case

studies. Different implementation mechanisms provided by

Oracle are applied for implementing the products: Pipes,

Signals and Alerts, Advanced Queue Management. In all of

these studies the SPL generates the 100% of the new

products, covering all the features specified.

Using the SIMPLE approach, the study of investment

profitability is summarized below for 18 products; we used

the metrics in LOC (Lines of Code). We used the cost of the

generators necessary to develop the SPL and the total cost

of the SPL included the test products and the NCSL

Program.

Table 1.Value of the Parameters based in SIMPLE

Mechanism Parameters

Pipes C1, C2, m

Advanced Queue C1, C2 , m

Signals – Alerts C1, C2, m

Pipes CGEN, CTSPL 2500 LOC, 3000 LOC

Advanced Queue CGEN, CTSPL 2500 LOC, 3000

Signals – Alerts CGEN, CTSPL 2500 LOC, 3000 LOC

Then, using the third conclusion discussed in the Section

3, we obtain that in the case of the Pipes or Signals

mechanisms for only one subscriber to the NCS, if our

database has only three entities to develop the SPL, the SPL

has more productivity than the development of the products

independently. In the case of Advanced Queue mechanism,

with only 16 products to develop, our SPL has more

productivity than to develop the products independently

using a small database.

In our study cases we have worked with several databases:

the first database has the smallest size, with only 8 entities

that contained changes notifications features and with 10

subscribers to the notifications changes service.

one, with a medium size, contained 50 tables and 10

subscribers. The third one contained 200 tables and 30

subscribers and in the last one there are 400 tables and 50

subscribers. With all these data the productivity of our SPL

is very high. The number of products obtained in some of

these case studies with this mechanism is about tens of

thousands. This estimation is calculated using all the valid

requirements combinations. The number of valid feature

combinations is illustrated in table 2.

Table 2.Number of Products

Type or Requirement Number of combinations

Pipes

Time Management

Subscriptions

Granularity

Priority

Aggrupation

Visibility

Navigation

Searches

Waits

Operations

TOTAL

Combinations Not Valid

Number of Products

TOTAL

This shows the productivity of our SPL, using the

SIMPLE approach.Using the COPLIMO approach, w

Software Engineering2013; 1(2): 7-12

lue of the Parameters based in SIMPLE

Values

111, 17, 18

271, 46, 18

111, 17, 18

2500 LOC, 3000 LOC

2500 LOC, 3000 LOC

2500 LOC, 3000 LOC

discussed in the Section

, we obtain that in the case of the Pipes or Signals – Alerts

mechanisms for only one subscriber to the NCS, if our

tities to develop the SPL, the SPL

has more productivity than the development of the products

independently. In the case of Advanced Queue mechanism,

with only 16 products to develop, our SPL has more

productivity than to develop the products independently,

In our study cases we have worked with several databases:

the first database has the smallest size, with only 8 entities

that contained changes notifications features and with 10

subscribers to the notifications changes service. The second

one, with a medium size, contained 50 tables and 10

subscribers. The third one contained 200 tables and 30

subscribers and in the last one there are 400 tables and 50

subscribers. With all these data the productivity of our SPL

number of products obtained in some of

these case studies with this mechanism is about tens of

thousands. This estimation is calculated using all the valid

The number of valid feature

Number of Products

Number of combinations

2

12

2

3

2

2

3

3

2

3

32

497.664

124.416

373.248

497.664

This shows the productivity of our SPL, using the

Using the COPLIMO approach, we get

all the parameters of our model. Some o

the table 3.

Table 3.Value of the Paramet

Parameter Description

∑SFj(gen) Sum of all Scale Factors for the Generators

∏EMj (gen)
Product of 17 Effort Multipliers for the

Generators

E (gen) Scaling exponent for effort (Generators)

AA Assessment and As

Substituting all parameters into the formulas and using the

algorithms described in [16], where N is the number of

products in our SPL, we obtain that the number

necessary for our product line has benefits is more than 10

We used the case of a middle size database (third case of our

study cases) and the Advanced Queue mechanism

N l 10 4
That is, with only 10 products, our SPL will be productive.

In the SIMPLE case we obtained that with only 16 products

to develop, our SPL has more productivity than to develop

the products independently.

database. In the case of the middle size database we

only 12 products (similar results).

model the data obtained are based in the number of LOC and

for the COMPLIMO approach we introduced

the “scaling parameters”

Assimilation”parameter or the “

For the larger databases the code to be generated is bigger

than for the small ones. The database size, in a simplified

form, depends on the number of entities with requirement

of notification changes, the number of users of the database

who subscribe to the notification changes service and the

number of attributes in each entity.

This study shows that the profitability increases with the

size of the database, that is to say,

automatically generated. In this study we have considered

different implementation technologies. Figure 3 illustrates a

study of our four databases with different sizes, and the

average number of code lines generated for each product.

these data confirm the great productivity of our SPL.

Figure 3.Productivity in big databases

11

all the parameters of our model. Some of them are listed in

Value of the Parameters based in COMPLIMO

Description Value

Sum of all Scale Factors for the Generators 6.32

Product of 17 Effort Multipliers for the

Generators
2.33

Scaling exponent for effort (Generators) 0.97

Assessment and Assimilation 4

Substituting all parameters into the formulas and using the

algorithms described in [16], where N is the number of

products in our SPL, we obtain that the number of products

necessary for our product line has benefits is more than 10.

middle size database (third case of our

study cases) and the Advanced Queue mechanism:

4 mno�N� p 0 (17)

That is, with only 10 products, our SPL will be productive.

In the SIMPLE case we obtained that with only 16 products

to develop, our SPL has more productivity than to develop

the products independently. This case was the smallest

database. In the case of the middle size database we need

(similar results). In the case of SIMPLE

model the data obtained are based in the number of LOC and

for the COMPLIMO approach we introduced another data as

”, the “assessment and

or the “effort multipliers“.

For the larger databases the code to be generated is bigger

than for the small ones. The database size, in a simplified

form, depends on the number of entities with requirements

of notification changes, the number of users of the database

who subscribe to the notification changes service and the

number of attributes in each entity.

This study shows that the profitability increases with the

size of the database, that is to say, more code is

automatically generated. In this study we have considered

different implementation technologies. Figure 3 illustrates a

study of our four databases with different sizes, and the

average number of code lines generated for each product.All

these data confirm the great productivity of our SPL.

Productivity in big databases.

12 Jose-Ramon Coz-Fernandez et al.: Cost Models and Productivity Building Applications Based on the

Notification of Changes in Databases

5. Conclusions

This paper has showed the construction of a Software

Product Line (SPL) using a generative programming

approach. A new Domain Specific Language, called NCSL,

has been developed to gather the domain variability. An

adaptation of Exemplar Driven Development has been used

to develop the SPL.

The Cost Model of this SPL based in SIMPLE has been

presented andseveral sceneries have been analyzed, using

this Cost Model.The cost of the SPL and the cost of the

development of the products independently have been

compared. This Cost Model presented has been applied to

solve different study cases related to change notifications

service in databases. In all these study cases the SPL cost is

lower than the products development independently.

We have used another approach based in COPLIMO

obtaining the productivity of the SPL. The conclusion with

COPLIMO is the same: the great productivity of our SPL.

This productivity increases with the database size. Even with

very small databases, the SPL is much more productive than

using traditional product development.

References

[1] K. Czarnecki and U. Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison-Wesley, 2000.
ISBN-13: 978-0201309775.

[2] Clements, P. and Northrop, L. Software Product Lines:
Practices and Patterns. Addison-Wesley, 2001. ISBN-13:
978-0201703320.

[3] Verlage, M.; Kiesgen, T. Five years of product line
engineering in a small company. Proceedings of 27th
International Conference on Software Engineering, 2005
(ICSE 2005), pp. 534-543. DOI:
http://dx.doi.org/10.1145/1062455.1062551

[4] R Heradio Gil, J. F. Estívariz López, I. Abad Cardiel and J. A.
Cerrada Somolinos. Translation from Abstract Specifications
to Executable Code via Exemplar Transformations. V
JornadassobreProgramación y Lenguajes (PROLE'05). Pages
185-191. 2005.

[5] Coz, J.R., Heradio, R., Cerrada, J.A. and Lopez, J.C. A
generative approach to improve the abstraction level to build
applications based on the notification of changes in
databases. 10th International Conference on Enterprise
Information Systems (ICEIS). Barcelona, Spain. 2008.

[6] Clements, Paul; McGregor, John; & Cohen, Sholom. The
Structured Intuitive Model for Product Line Economics
(SIMPLE) (CMU/SEI-2005-TR-003). Software Engineering
Institute, Carnegie Mellon University, 2005.
http://www.sei.cmu.edu/library/abstracts/reports/05tr003.cf
m

[7] Böckle, Günter; Clements, Paul; McGregor, John D.;
Muthig, Dirk; Schmid, Klaus. "A Cost Model for Software
Product Lines", Fifth International Workshop on Product
Family Engineering (PFE-5), Siena, Italy, November 4-6,
2003.DOI: http://dx.doi.org/10.1007/978-3-540-24667-1_23

[8] Böckle, G.; Clements, P.; McGregor, J.D.; Muthig,
D.;Schmid, K. "Calculating ROI for Software Product
Lines", IEEE Software, Volume 21, Issue 3, May-June 2004,
pages 23-31.DOI:
http://dx.doi.org/10.1109/MS.2004.1293069

[9] B. Boehm et al. Software Cost Estimation with COCOMO II;
Prentice Hall, 2000. ISBN-13: 978-0130266927.

[10] B. Boehm, A. W. Brown, R. Madachy and Y. Yang. A
software product line life cycle cost estimation model.
International Symposium on Empirical Software Engineering,
2004; 156-164.

[11] Oracle Documentation Library.
http://www.oracle.com/technology/documentation/index.ht
ml

[12] Heradio, R. Metodología de desarrollo de software basada
en el paradigma generativo. Realización mediante la
transformación de ejemplares. Ph. D. Thesis, Departamento
de Ingeniería de Software y Sistemas Informáticos de la
UNED, España. 2007.

[13] A Ruby implementation of EFL in RAA (Ruby
Aplication Archive).http://raa.ruby-lang.org/project/efl/DOI:
http://dx.doi.org/10.1109/ISESE.2004.1334903

[14] J.R. Coz-Fernandez, R. Heradio-Gil, D. Fernandez-Amoros
and J. Cerrada-Somolinos, "A Domain Engineering
Approach to Increase Productivity in the Development of a
Service for Changes Notification of the Configuration
Management Database" Journal of Software Engineering
and Applications, Vol. 6 No. 4, 2013, pp. 207-220. DOI:
10.4236/jsea.2013.64026

[15] Simon Adams. ITIL V3 foundation handbook. pp.7-11. TSO.
2009. ISBN: 978-0113311972.

[16] D. Fernández-Amorós, R. Heradio Gil and J. Cerrada
Somolinos. Inferring Information from Feature Diagrams to
Product Line Economic Models. ACM International
Conference Proceeding Series; Vol. 446 archive. Proceedings
of the 13th International Software Product Line Conference,
2009

