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Abstract: The various industrial, biological and engineering applications of third grade fluid have in recent times propel 

continuous research on the flow dynamics and heat transfer characteristics of the non-Newtonian fluid. In this work, effects of 

nonlinear hydrodynamic slip and temperature-jump conditions on pipe flow and heat transfer of third grade fluid with 

nonlinear temperature-dependent viscosities and internal heat generation are presented. The developed nonlinear governing 

equations are solved using regular perturbation method. In order to verify the accuracy of the solution methodology, the results 

of the approximate analytical solution are compared with the results of the numerical solutions using Runge-Kutta fourth-order 

coupled with shooting method. Good agreements are obtained between the analytical and the numerical results. Thereafter, the 

obtained approximate analytical solutions are used to investigate the effects of variable viscosity, non-Newtonian parameter, 

viscous dissipation and pressure gradient on the flow and heat transfer characteristics of the third-grade fluid in the pipe under 

Reynolds’s and Vogel’s temperature-dependent viscosities. The present results can be used to advance the analysis and study of 

the behaviour of third grade fluid flow and steady state heat transfer processes such as found in coal slurries, polymer 

solutions, textiles, ceramics, catalytic reactors, oil recovery applications etc.  

Keywords: Third-Grade Fluid, Pipe Flow, Non-Linear Viscosities, Non-Linear Internal Heat Generation,  

Nonlinear Boundary Conditions 

 

1. Introduction 

The generalization of Navier–Stokes’ model to highly non-

linear models of non-Newtonian fluids has received 

considerable attention in the past few decades. One of the 

earliest classes of such models is the differential type model 

of which the third grade fluid is one of the most popular 

subclasses of the differential type fluids. The third grade fluid 

is a non-Newtonian fluid which its viscosity varies based on 

the applied force. It is a favored fluid due to the exciting 

phenomena it captures such as the shear thinning and 

thickening effects. The mathematical model of the third grade 

fluid represents a more realistic description of the behavior of 

non-Newtonian fluids. The model also represents a further 

attempt towards the study of the flow structure of non-

Newtonian fluids. Consequently, considerable interests have 

been shown in the third grade fluid over the past few decades 

by various researchers due to its potential applications in 

industry and technology. It should be stated that the 

governing equations for the third grade fluid model are 

nonlinear and much more complicated than those of 

Newtonian fluids. Moreover, the equations require additional 

boundary conditions to obtain a physically meaningful 

solution. This issue has been discussed in detail by various 

researchers who made a complete thermodynamic analysis of 

a third grade fluid and derived the restriction on the stress 

constitutive equation (1-18). In their works, they investigated 

some stability characteristics of the third grade fluids and 

showed that the fluids exhibit features different from those of 

the Newtonian and second grade fluids. In an attempt to 



70 Gbeminiyi Sobamowo et al.:  Nonlinear Slip Effects on Pipe Flow and Heat Transfer of Third Grade Fluid with   

Nonlinear Temperature-Dependent Viscosities and Internal Heat Generation 

improve the characteristics of the visco-elastic properties of 

the fluid, the stability of the third grade fluid model was 

studied by Fosdick and Rajagopal [1] while Majhi and Nair 

[2] investigated the effects of stenotic geometry and the non-

Newtonian parameter of the third grade fluid on the resistive 

impedance and wall shearing stress. Their results were 

compared with similar study submitted by Massoudi and 

Christie [3] who presented the numerical solutions on the 

effects of variable viscosity and viscous dissipation on the 

flow of third grade fluid in a pipe using the finite difference 

method. Yurusoy and Pakdemirli [4] developed approximate 

analytical solution for the flow of the third grade fluid in a 

pipe using constant viscosity model, variable viscosity 

models under no slip condition while Vajrevelu et al [5] 

presented a numerical solution for the third grade fluid flows 

between rotating cylinder using Schauder theory and 

perturbation technique. The fluctuating behaviour of 

magnetohydrodynamic rotational flow of the third grade fluid 

on a porous plate was studied by Hayat et al. [6]. The 

similarity solutions to boundary layer equation for the third 

grade fluid were developed by Muhammet [7] using the 

special coordinate system generated by the potential flow. 

The steady flow analysis of the third grade fluid between 

circular concentric cylinders with heat transfer was presented 

by Yurusoy [8]. In the study, the pipe temperature is assumed 

to be higher than fluid temperature. Also, Pakdemirli and 

Yilbas [9] developed approximate analytical solution of non-

Newtonian fluid using Vogels viscosity model and entropy 

generation in a pipe. The steady flow of a third grade fluid 

past a porous horizontal plate with partial slip was 

investigated by Sajid et al. [10]. Elahi et al. [11] used 

implicit finite difference method to analyze the unsteady free 

convective flow of a third grade fluid past an infinite vertical 

plate when uniform suction is applied at the plate. Jayeoba et 

al. [12] presented the analytical approximate solution to 

determine the temperature fields for steady flow of a third 

grade fluid in a pipe with models of viscosities including a 

heat generation term for the no slip boundary condition. Most 

of the studies previously carried out on the third grade fluid 

are limited to no slip flow condition which is a simplified 

method of predicting the actual behavior of the fluid in 

various applications. In practice most problem of fluid flow 

exists as either partial slip or slip condition. Therefore, 

Ogunmola et al. [13] presented perturbation solutions for the 

non-linear analysis of the flow of third grade fluid with 

temperature-dependent viscosities and internal heat 

generation. In their work, a linear variation of source term 

with temperature was assumed and the non-linear slip 

boundary conditions were linearized. Abbasbandy et al. [14] 

and Nayak et al. [15] presented numerical results for the flow 

of third grade fluid between two porous walls, and porous 

vertical plate, respectively. Aiyesimi et al. [16] analyzed the 

unsteady magnetohydrodynamic thin flow of a third grade 

fluid with heat transfer and under no slip condition in an 

inclined plane. Effects of variable viscosity on the flow of a 

third grade fluid flowing over a radiative surface with 

Arhenius equation was studied by Ogunsola and Peter [17] 

while Yunusoy et al. [18] obtain the perturbation solution for 

the analysis of the flow of third grade fluid flow between two 

parallel plates. Moreover, different approximate analytical 

methods have been used to analyze the flow of fluid in pipe, 

channels and over a plate under the influences of 

hydrodynamic slip boundary conditions [19-27]. In this 

work, regular perturbation method is used to develop 

approximate analytical solutions for the non-linear models 

for the pipe flow of third grade fluid with temperature-

dependent viscosities and internal heat generation under 

third-degree non-linear hydrodynamic slip and temperature-

jump conditions are presented. Effects of non-linear 

variations of internal heat generations with temperature are 

studied under Reynold and Vogel’s temperature-dependent 

viscosities. Also, the develop models were used to investigate 

the effects of other flow parameters on the flow behaviour 

and heat transfer characteristics of the third grade fluid. 

2. Problem Formulation 

The Cauchy stress tensor for an incompressible 

homogeneous thermodynamically compatible third grade 

fluid is given by 

T= -�	I +µ��+ ��	��+ ��	���+ S                 (1) 

where 

S =��	�� + ��	(	��	�� +	��	��) + ��(
����)�� 

T is the stress tensor, �		 is	 the	 pressure,	 I	 is	 the	 identity	
tensor,	 µ is the dynamic viscosity and ��	(I =1, 2), �� (1, 2, 

3) are material constants.  

�� = (����	�) + (����	�)T 

�� = !
!" A� + ��(����	�) + (����	�)T

A1 

Generally, the �$ areRivlin- Ericken tensor defined as  

�% = !
!"�%&� +�%&�L+ '(�%&�; for n>1         (2) 

where V denotes velocity field, grad is the operator gradient 

and d/dt is the material time derivative. When the motions of 

the fluid are thermodynamically compatible, the Clausius-

Duhem inequality and the assumption that the Helmholtz free 

energy is minimum when the fluid is locally at rest require 

that  

�� = ��	 = 0, 	�� ≥ 0, µ≥ 0, ��	 ≥ 0 [��	 + ��	] ≤ √24/��                                                    (3) 

Since �� > 0 the stress tensor can predict shear thickening 

as well as the normal stress. Thus stress tensor relation can be 

written as 

T= -�	I +µ��+ ��	��+ ��	���+[/	+ ��(
����)��]          (4) 
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Where velocity field can be expressed as  

V=v (r)                                           (5) 

And temperature field as  

θ = θ (r)                                         (6) 

substituting velocity field using the modified constitutive 

relation in the balance of linear momentum in the absence of 

body forces and assuming fluid can only undergo isochoric 

motion (i.e. div v=0), we have a partial differential equation 

of the form 

�	 121" = div T + �	b                              (7) 

Consider the flow of a third grade fluid in an infinitely 

long pipe as shown in Figure 1. The momentum and 

temperature equation with incorporated quadratically varying 

source term with temperature are given by system of 

differential Eqs. (8, 9, 10, 11) 

�
3
!
!3 4�(2 ∝� ∝�� 6

!7
!3 8

�9 � 1:
13                    (8) 

0 � 1:
1∅                                        (9) 

�
3
!
!3 <�/

!7
!3=  

�
3
!
!3 42��� 6

!7
!3 8

�9 � 1:
1>            (10) 

? 4�3
!
!3 <�

!(
!3=9  / <

!7
!3=

�  2�� <!7!3=
@  ABC	D E DF�� � 0                                                      (11) 

 
Figure 1. Physical model and coordinate system. 

The slip condition at the pipe wall can be introduced in terms of shear stress. In their paper, ogunmola et al. [13] used 

linearized forms of hydrodynamic slip and temperature-jump conditions (first-order boundary conditions) given in Eq. (12) to 

analyze the flow problem. 

G	H� � I 6!7!3 8J3KL , M	D	H� E DN� � E? 6
!(
!38J3KL                                                              (12) 

In this work, non-linear hydrodynamic slip and temperature-jump conditions (third- and fourth-order boundary conditions) 

given in Eq. (13) are applied. 

G	H� � I O!7!3  
�PQ
R <

!7
!3=

�ST
3KL

, M	D	H� E DN� � E? O!(!3  / <
!7
!3=

�  2�� <!7!3=
@ST

3KL
                         (13) 

At the center of the pipe, the boundary condition is given as  

!7
!3 	0� � 0,

!(
!3 	0� � 0                                                                              (14) 

using the dimensionless parameters as stated in the nomenclature, the dimensionless equation (leaving out the bars on the 

equations for conveniences) for Equs. (10 and 11) yields the following: 

!R
!3

!7
!3  

R
3 <

!7
!3  

3!U7
!3U =  

V
3 <

!7
!3=

� <!W!3  
�3!U7
!3U = � B                                                         (15) 

!UX
!3U  

�
3
!X
!3  Γ <

!7
!3=

� 4/  Λ <!7!3=
�9  [\� � 0                                                                (16) 
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And the dimensionless boundary conditions under slip condition are given as 

G	H� � ] O!7!3  Λ <!7!3=
�ST

3KL
, \ = − �

^� O
!X
!3 + Γ/ <!7!3=

� + ΓΛ <!7!3=
@ST

3KL
                                    (17) 

�G
�� (0) = 0,

�\
�� (0) = 0 

where 

D = 1+ 8Kn and Ap = -2Kn 

In this work, two equations of temperature-dependent 

viscosity, namely, the Reynolds and the Vogel’s models are 

used. 

i. Temperature-dependent viscosity using Reynolds model 

	/(D) = /F_`&a((&(b)c                         (18) 

ii. Temperature-dependent viscosity using Vogel’s model 

/(D) = /F_`d/(f&(b)c                        (19) 

The non-dimensionalized form of the temperature-

dependent viscosity using Reynold’s and Vogel’s model are 

/ = _(−g\)                               (20) 

/ = _(h/(^&X)&(b)                             (21) 

2.1. Analysis of the Flow Heat Transfer in the Pipe Using 

Reynold’s Model of Viscosity 

The regular perturbation technique is used to determine the 

approximate analytical solution for the Reynold’s viscosity 

model.  

Taking the Maclaurin’s series, Eq. (20) takes the form 

/ = _ij(−g\) = 1 − g\ + l(g�)                (22) 

Series solutions of the equation of the velocity and 

temperature may be obtained by using perturbation method 

taking m as the perturbation parameter. Solutions are obtained 

in the form. 

G = GF + mG� + l(m�)                      (23) 

\ = \F + m\� + l(m�)                      (24) 

Substitute Equ. (23 and 24) into Equ. (14) and changing 

parameters in the terms yields. 

Where Λ = mn, [ = mo, I = mp 

l(mF): � !U7b!3U 	+ 	
!7b
!3 = B�               (25) 

l(m�): �G��� + �
��G�
��� − p\F

�GF
�� − p\F

��GF
��� − p�

�GF
��

�\F
��  

= −n <!7b!3 =
� <!7b!3 + 3�

!U7b
!3U = + B�               (26) 

Also, substitute Equ. (23), 24 and 26) into Equ. (15) and 

changing parameters in the terms yields 

Where Λ = mn, [ = mo, I = mp  

l(mF): � !UXb!3U 	+ 	
!Xb
!3 +

!Xb
!3 + Γ� <

!7b
!3 =

� = 0               (27) 

\(m�): � !UXs!3U 	+ 	
!Xb
!3 +

!Xs
!3 + Γ� <

!7b
!3 =

� . 4n <!7b!3 =
� −

p\F9 + 2Γ� !7b!3
!7s
!3 + �o\C� = 0     (28) 

The boundary conditions for the leading order equation are 

!7b
!3 (0) =

!Xb
!3 (0) = 0                     (29) 

GF(H) = ] O!7b!3 +Λ <!7b!3 =
�ST

3Ksu
, \F = − �

^� O
!Xb
!3 + Γ/ <!7b!3 =

� + ΓΛ <!7b!3 =
@ST

3Ksu
                      (30) 

With the boundary conditions it could be easily shown that Eq. (29) gives  

GF = v
@ 6�� +

�w
x +

VvUw
xQ − �

xU8                                                                       (31) 

and 

\F = − yvU3z
{@ + yvU

�{^�xQ −
yvU
@^�xU −

Vyvz
�{^�xz +

yvU
{@xU                                                         (32) 

Also, for the first-order equation, the boundary conditions are given as  

!7s
!3 (0) =

!Xs
!3 (0) = 0                                                                       (33) 

 G�(H) = ] O!7s!3 + Λ<
!7s
!3 =

�ST
3Ksu

, \� = − �
^� O

!Xs
!3 + Γ/ <

!7s
!3 =

� + ΓΛ<!7s!3 =
@ST

3Ksu
                             (34) 

where 

D= 1+8Kn 
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Substituting the corresponding terms from the solutions in Equs. (31) and (32) into Equ. (26) and (28) and integrate twice 

subject to the boundary condition in Equ. (33) and (34) yields. 

	G� � E |yU}Q~�
{@  	|y}Q~U{@xQ E

|�y}Q~U
�{xU E |�y}�~U

{@xz  |y}Q~U
��{xz E

|y}Q~�
���� E

avQ3z
��� E w|yUvQ

��@x�  
w|yvQ
��xz E

w|�yvQ
�xQ E w|�yv�

��x�  w|yvQ
���x� E

	w|yvQ���x� E
wav�
��xQ E	

�wavQ
��xQ  

w�yvQ
��xz  

w��yvQ
�xQ  w��Vyv�

��x� E w�yvQ
���x�  ] 6

�|v�y�
�@��{x�  

�|v�yU
�F@�x� E

�|�v�yU
���x� E �|�v�yU

�F@�x� E
�|v�yU
����x� E

�|v�yU
�����x� E

�ya}�
�F@�x� E

��ya}�
�F@�x�  	

�|�yQ}�
{�@@x� E

���yU}�
���x�  ���UyU}�

���x� 	 ���UyU}�
���x� 	E ���yU}�

�F@�x�  	
���yU}�
�F��x�  	

���y}�
���x�  

���y�}�
���x� E	���yU}����{x�  

	���yU}����x� E ���UyU}�
��x� 	E 	���UyU}����x�  	���yU}����x� E	

���yU}�
�{�x� E ���y}�

���x� E	
����y}�
���x� E ���VyQ}�

{�@@x�  	���VyU}����x� E	���UVyU}z���x� E ���UVyU}�
���x�  

���VyU}�
�F@�x� E ���yU}�

�F��x� E
���Vy}�
���x� E ����Vy}�

���x�  	 ��yU}��@��{x� E
��yU}�
�F@�x�	  

���yU}�
���x�	  

���yU}�
�F@�x� E

��yU}�
����x�	  

��yU}�
�F@�x�	 E	

��yU}�
�����x�  	

�yav�
�F@�x� 	 

��yav�
�F@�x� 8  

|yU}U
��F@x� E

|yvQ
{@x�	 	 

|�yvQ
�{xz  

|�yv�
{@x�	 	E

|yvQ
��{x�	  

|yvQ
����x�	  	

avQ
���xz	  	

�avQ
���xz	                                           (35) 

Substitute Equs. (31 and 34) into Eq. (26) and then changing the terms back to original parameters, finally gives 

w� v
@ 6��  

�w
x  

VvUw
xQ E �

xU8 E
|yU}Q~�
{@  	|y}Q~U{@xQ E

|�y}Q~U
�{xU E |�y}�~U

{@xz  |y}Q~U
��{xz E

|y}Q~�
���� E

avQ3z
��� E w|yUvQ

��@x�  
w|yvQ
��xz E

w|�yvQ
�xQ E

w|�yv�
��x�  w|yvQ

���x� E	
w|yvQ
���x� E

wav�
��xQ E	

�wavQ
��xQ  

w�yvQ
��xz  

w��yvQ
�xQ  w��Vyv�

��x� E w�yvQ
���x�  ] 6

�|v�y�
�@��{x�  

�|v�yU
�F@�x� E

�|�v�yU
���x� E �|�v�yU

�F@�x� E
�|v�yU
����x� E

�|v�yU
�����x� E

�ya}�
�F@�x� E

��ya}�
�F@�x�  	

�|�yQ}�
{�@@x� E

���yU}�
���x�  ���UyU}�

���x� 	 ���UyU}�
���x� 	E ���yU}�

�F@�x�  	
���yU}�
�F��x�  	

���y}�
���x�  

���y�}�
���x� E

	���yU}����{x�  	
���yU}�
���x� E ���UyU}�

��x� 	E 	���UyU}����x�  	���yU}����x� E	���yU}��{�x� E
���y}�
���x� E	

����y}�
���x� E ���VyQ}�

{�@@x�  	���VyU}����x� E	���UVyU}z���x� E
���UVyU}�
���x�  ���VyU}�

�F@�x� E ���yU}�
�F��x� E

���Vy}�
���x� E ����Vy}�

���x�  	 ��yU}��@��{x� E
��yU}�
�F@�x�	  

���yU}�
���x�	  

���yU}�
�F@�x� E

��yU}�
����x�	  

��yU}�
�F@�x�	 E

	 ��yU}������x�  	
�yav�
�F@�x� 	 

��yav�
�F@�x� 8  

|yU}U
��F@x� E

|yvQ
{@x�	 	 

|�yvQ
�{xz  

|�yv�
{@x�	 	E

|yvQ
��{x�	  

|yvQ
����x�	  	

avQ
���xz	  	

�avQ
���xz	         (36) 

Following the same procedural approach, we have for the dimensionless temperature as 

\ � E ΓB2�464 + ΓB2
16���3−

ΓB2
4���2−

ΛΓB4
16���4+

ΓB2
64�2+

ayUvz3�
��{  + 

|yUvz3�
�{��@  - 

|yUvz3z
�F�@^�xQ +	

|yUvz3z
��{^�xU	 +

|yVv�3z
�F�@xz	 −	

|yUvz3z
@F�{xz	 −

	|yQvz3��@��{ + |yUvz3z
���xQ	 −	

|yUvz3z
���^�xU	 −

|yUv�3z
���^�xz	 +

|yUvz3z
�F@�xz	 −

|yUvz3�
����� − yavz3�

���� − �yavz3�
���� − �yvU3�

��F@ + �yvU3�
{@^�xQ  -

�yvU3U
�{^�xU −

�Vyvz3U
{@^�xz +

	�yvU3U��{xz −
y�vU3U
��{^�xz −	

y�vz
�{^�x� −

|yUvz
�F@�^�x� +

|yUvz
��{^�Ux� −

|yUvz
{@^�Ux� −

|Vyv�
��{^�Ux� +

|yUvz
�F�@^�x� + 

|yQvz
�F��^�x�	 −

|yUvz
���^�Ux� +

|yUvz
��^�Ux� +

|yUv�
���^�Ux�	

|yUvz
���^�x� +

|yUvz
���{^�x� +

yavz
���^�x� 	+

�yavz
���^�x� + 

�yvU
��@^�x� −	

�yvU
��^�Uxz +

�yvU
�xQ^�U +

�yVvz
��x�^�U +

�yvU
��^�x� −

�yvU
���^�x�	 −

|yQvz
��@^�x�	 +

|yUvz
��^�x�	 −

|yU}z
�^�Uxz	 −

|yUv�
��^�Ux� +

|yUvz
���^�x�	 −

|yUvz
���^�x�	 −

yavz
��^�xz −	

�yavz
��^�xz −

��yzv�
�@��{^�xsb +

��yQv�
�F@�^�xsb −

��yQv�
���^�Ux� −	

��yQv�
�F@�^�Uxsb +

��yQv�
����^�xsb −

��yQv�
�����^�xsb −

��yUv�
�F@�^�x� −

���yUv�
�F@�^�x� +

��U�yzv�
{�@@x�	 −

��yQv�
���^�Ux� +

��yQv�
���^�Qx� +

��yzv�
���^�Qx� −

��yQv�
�F@�^�Ux� +

��yQv�
�F��^�Ux� +

��yUv�
���^�Ux� +

���yUv�
���^�Ux� - 

��yzv�
���{^�Ux� +

��yQv�
���^�Ux� −	

��yQv�
��^�Qx� −

��yQv�
���^�Qx� +

��yQv�
���^�Ux� −

��yQv�
�{�^�Ux� −

�yUv�a
���^�Ux� −

��yUv�a
���^�Ux� −

|�yzv�V	
{�@@^�Uxsb +

|�yQv�V
���^�Ux� - 

|�yQv�V
���^�Qx� +

|�yQvsbV
���^�Qxsb +

|�yQv�V
�F@�^�Uxsb 	−

|�yQv�V
�F��^�Uxsb −

a�yUv�V
���^�Ux� -

�a�yUv�V
���^�Ux� 	+

|�yzv�
�@��{^�xsb −

|�yQv�
�F@�^�x� +

|�yQv�
���^�Ux� +

|�yQv�
�F@�^�Uxsb −

|yQv�
����^�x� +

|�yQv�
�����^�xsb +

ayUv��
�F@�^�x� −

�ayUv��
�F@�^�x� −

|yQVv�
���{^�x� +

|yUv�V
���^�x� - 

|yUv�V
��^�Ux� - 

|yUv�V
���^�Ux� +

|yUv�V
���x� −

|yUv�V
�{�^�x� −

ayv�V
���^�x� −

�ayv�V
���^�x� −

ayvz
��{x� −

|yUvz
�{��@x� +

|yUvz
�F�@^�x� −

|yUvz
��{^�x� −

|yUvz
�F�@^�x� +

|yUvz
@F�{x�	 +

|yQvz
�@��{x� −

|yUvz
���x� +

|yUvz
���^�x� +

|yUv�
���^�x� −

|yUv�
���^�x� −

|yUvz
�F@�x�	 +

|yUvz
�����x� +

ayvz
����x� 	+

�ayvz
����x� +

�yvU
��F@x� −

�yvU
{@^�x� +

�yvU
�{^�xz + 

�Vyvz
{@^�x� −

�yvU
��F@x� −

�yvU
��{x�                             (37) 

We can change M, N and P in the above to the terms in the governing dimensionless equations since Λ = mn, [ = mo, I =
mp. 

2.2. Analysis of the Flow Heat Transfer in the Pipe Using Vogel’s Model of Viscosity 

With the aid of Maclaurin series, the Vogel’s viscosity model can be written as 

/ = _ij <h^ − DF= 41 −
�hX
^U + l(m�)9 = _ij <

h
^ − DF= <1 −

�hX
^U =                                         (38) 

Taking the series solution of the velocity and temperature fields yields the expansion 

G = G + mG� + l(m�)                                                                               (39) 

\ = m\F + m�\� + l(m�)                                                                             (40) 
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Substitute Equ. (38, 39 and 40) into Equ. (14) and change parameters in the terms yields. 

l	mF�: � !U7b!3U 	 	
!7b
!3 � B�                                                                         (41) 

l	m��: !7s!3  �
!U7s
!3U E p\F

!7b
!3 E p\F

!U7b
!3U E p�

!7b
!3

!Xb
!3 � En <

!7b
!3 =

� <!7b!3  3�
!U7b
!3U =  B�       (42) 

Also, substitute Equ. (38, 39 and 40) into Equ. (15) and change parameters in the terms yields. 

l	mF�: � !UXb!3U 	 	
!Xb
!3  

!Xb
!3  Γ� <

!7b
!3 =

� = 0                                                              (43) 

\(m�): � !UXs!3U 	+ 	
!Xb
!3 +

!Xs
!3 + Γ� <

!7b
!3 =

� . 4n <!7b!3 =
� − p\F9 + 2Γ� !7b!3

!7s
!3 + �o\C� = 0                          (44) 

Where Λ = mn, [ = mo, I = mp  

Following the same procedural analysis as carried out previously subject to the same boundary conditions, we have the 

dimensionless velocity for the Vogel’s Model of Viscosity as 

w=
�
@ 6B∗�� +

�wv3
x + �wVv∗Q

xQ − v∗
xU8 +

h
^U 6

&yvv∗U3�
��F@ − �yvv∗3U

{@xQ + �Vyv∗Q3U
�xU + �yv∗U3U

@xv − yvv∗3U
��{xz 8 -

hyvv∗3�
�FF^U −

Vv∗z3z
��v + hw

^U 6
&yvUv∗3�
��@x� −

�yvUv∗
��xz +

�Vy}v∗Q
@xQ + �yv∗

�xU −
yvUv∗U
���x� 8 −

hwyvU
�{Fxz^U −

Vwv∗Q
�xQ +

�Vwh
@^U

h
^U 6

&yvv∗z
��@x� −

�yvv∗z
��x� +

�Vyv∗�
@x� + �yv∗z

�@xzv −
yvv∗z
���x�8 −

�hwVyvv∗Q
{F@^Ux� −

�VU�}∗�
��vx� −

h
^U

h
^U 6

&yvv∗U
��F@x� −

�yvv∗
{@x� +

�Vyv∗Q
�xz + �yv∗U

@xUv −
yvv∗
��{x�8+

hyvv∗
�FF^Ux� +

Vv∗z
��vxz (45) 

The dimensionless temperature for the Vogel’s Model of Viscosity is given as 

\ = &�vv∗3z
{@ − &��vv∗

�{xQ + �V�v∗U
�xU + ��v∗

vx − �vv∗
{@xz +

�vv∗h
@^U 6

&�vv∗3�
@F�{ − �vv∗3z

��^�xQ +
V�v∗U3z
��^�xU +

�v∗3z
�{vx^� −

�vv∗3z
�F�@xz8 −

h�
^U O4

&�vUv∗U3�
@F�{ −

�vUv∗U3z
��� + V�vv∗Q3z

���^�xU +
�v∗U3z
��x^� −

�vUv∗U3z
�F@�xz 9 −

h�vUv∗3�
^U��@F − avv∗z3�

���v S − �av∗z3�
��v + ��vv∗3�

��F@ + ��vv∗3U
{@^�xQ −

V�v∗�3U
�^�x − �v∗3U�

@^�vx +
�vv∗yU�
��{xz − �vv∗h

@^�^U 6−
�vv∗
���xQ −

�vv∗
{@^�x� +

V�vv∗U
�^�x� +

�v∗
@^�vxz −

�vv∗
��{x�8 +

h�
^U O4

&�vUv∗U
���^�x� −

�vUv∗U
���xQ +

V�vv∗Q
��^�Ux� +

�vv∗U
�^�Uvxz −

�vUv∗U
���x� 9 −

h�vUv∗
���F^�U^Ux� −

avv∗z
@�vx�^�US +

�av∗z
�{^�Ux� −

��vv∗
��@^�x� −

��vv∗
��^�xz +

V��v∗U
@^�UxU +

��v∗
�v^�UxU −

��vv∗
���^�x� +

hUyV�vUv∗�
�����F^UxsU +

hUyV�vUv∗�
���{^�^zx� −

hUyVU�Uv∗�
����^�^zx� −

hUyV�Uv∗�
{�{^�^Ux� + 

hU�UyVvUv∗�
��@�@^zx� +

hUyV�UvUv∗�
����F^Uxss +

hyV�av∗�
�@{@^Uxsb +

hUyV�UvUv∗�
���{^�^Uxss +

�hUyV�UvUv∗�
@F�{^�U^UxsU  - 

�hUVUy�Uvv∗�
���^�U^Ux� -

�hUyV�Uv∗�
��{^�U^Uxz +

�hUyV�UvUv∗�
�{��@^�^Uxss +

hUyV�UvUv∗�
@F�{^�xss + �hyV�UvUv∗�

�F�@^�^Ux� −
hUyVU�Uvv∗�
�@��^�^Uxss −

�hUyVU�Uvv∗�
�F�@^�U^Ux� +

�hUyVQ�Uv∗�
{@^�U^Ux� +

�hUyVU�Uv∗�
��^�U^zx�v −

�hUyVU�Uvv∗�
�F@�^�^Uxsb −

hUyVU�Uvv∗�
���^�^zx� −

�ha�yVUv∗�
���^�^Uvx�  -

hUyVU�Uv∗�
{�{^�^Ux� −

�hUyV�Uv∗�
��{^�^Ux� +

�hUyVU�Uv∗�
��^�U^Uvx� −

�yV�Uv∗�
�{^�U^zx�vU −

�yVhU�Uv∗�
�F�@^�^Ux� −

hUyV�Uv∗�
��{^�^Ux� −

�hy��Vv∗�
{@^�^Ux�vU +

hUyV�UvUv∗�
��@�@^UxsU +

�hUyV�UvUv∗�
�{��@^�^zxss −

�hUyVU�Uvv∗�
�F@�^�^zxsb −

�hUyV�Uv∗�
�F�@^�^Ux� +

�hUyV�Uvv∗z
{���{^zxsU +

hUVy�Uvv∗�
�{��@^Ux� +

�hyV��vv∗�
@F�{^�^Uxsb +

hUVy�UvUv∗�
����F^zxss +

hUyV�UvUv∗�
@F�{^�^Uxss - 

hU�UVUyvv∗�
���^�^zx� −

hU�UVyv∗�
��{^�^Ux� +

hU�UVyvUv∗�
�{��@^Uxss +

hU�UyVvUv∗z
�F@�F^zxsb +

h�yV�v∗�
�F�@x� + h�yV�v∗�

�@{@^Uxsb +
�h�yV�v∗�
�F�@^U^�x� −

�h�yVU�v∗�
���^Uv^�x� −

�h�yV�v∗�
{@^U^�x�vU +

�h�yV�v∗�
@F�{^Uxsb +

h�yV�v∗�
�F�@^Ux� +

�yV�v∗sb
��{vUx� +

hU�UvQyv∗Q
�@����^zxsb +

hU�UvQyv∗Q
����F^�^zxsb −

hU�UvUyVv∗z
��@F^�^zx� −

hU�UvUyv∗Q
��Fv^zx�  + 

hUy�vQv∗Q
^z@���Fxsb +

hUy�vQv∗U
^z����Fx� +

�y�avUv∗�
^U�F�Fxsb +

hUy�UvQv∗Q
^U����Fx�^� +

hUy�UvQv∗Q
^z�F�@x�^�U −

�y�UvUv∗zV
^U���x�^�U −

hUy�Uvv∗Q
^U{@x�^�U +

hUy�UvQ
^z@F�{x�^� +

hUy�UvQv∗U
^z���F^�x� +

�y�Uvv∗�
^U��{x�^� −

hUyV�UvUv∗z
^U��@Fx�^� −

hUyV�UvUv∗z
^U��{x�^�U +

hUyVU�Uvv∗U
^U�{xz^�U + hUyV�Uv∗z

^z�x�^�U −
hUy�UvUv∗Q
^z{@Fx�^� −

hy�V�v∗�
^U��^�x� −

hUy�Uv∗U
^U��Fx�^� −

hUy�Uvv∗Q
^U{@Fx�^�U +

hUy�UVv∗z
^U�x�^�U +

hUy�Uv∗Q
^z@vxz −

hy�Uvv∗Q
^U��{x�^� −

hUy�Uvv∗U
^U��Fx�^� −

hy��v∗�
^U�{x�v^� +

hUy�UvQv∗Q
^U@F�{x� −

hUyV�UvUv∗z
���^�x� − hUy�Uvv∗Q

^U��{x�^� +
yhU�UvUv∗
�{��@^zx� +

yhU�UvQv∗U
�F@�F^Ux� +

yha�vv∗�
�F�@^Ux� +

yhU�UvQv∗U
����F^Ux� +

yhU�UvQv∗U
���F^Ux� −

yhU�UVvUv∗Q
{@F^zx� − yhU�UvUv∗U

��F^Ux� + yhU�UvQv∗U
�F@�F^Ux� +

yhU�UvQv∗
��{FF^zx� +

yh�avv∗z
���^Ux� +

yh�avv∗Q
�F�F^Ux� +

y�a�vv∗�
��{^U^�xz −

yhV�av∗�
��^Ux�^� −

y���v∗�
�{^Ux� +

yh�av∗�
�F�@^Ux� +

yhaUvv∗z
��@F^Ux� +

yhaUvv∗z
���F^Ux� +

yaUv∗�
{@x� − �vv∗h

@^ 6&�v∗v@F�{x� −
�v∗v

��{^�x� +
&�Vv∗U
��x� + &�v∗

�{^�x� −
�v∗v
�F�@x�8+

h�
^U 6<

&�vUv∗U
@F�{x� −

�vUv∗U
���^�xz +

V�vv∗Q
���x� +

�v∗U
��x� −

�vUv∗U
�F@�x�= −

h�vUv∗
��@F^Ux� −

av∗z
���x�8 +

�av∗z
��{x� −

��vv∗
��F@x� −

��vv∗
{@^�x� +

��Vv∗
�xQ + ��v∗

�@vxQ −
��vv∗
��{x�              (46)

3. Results and Discussion 

The results of the above developed models are presented below in the figures below. The results for the velocity and 

temperature distributions for both Reynolds and Vogel viscosity model under slip and temperature jump condition are reported 

graphically below at different varying parameters. 
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Figure 2. Effect of pressure gradient parameter C on the velocity distribution of Reynolds viscosity model when for Λ = δ = C =γ=1. 

 

Figure 3. Effect of varying parameter Γ on the velocity distribution of Reynolds viscosity model when for Λ = δ = C =γ=1. 

 

Figure 4. Effect of pressure gradient parameter Λ on the velocity distribution of Reynolds viscosity model when γ= Γ = Λ = δ =C= γ= 1. 
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Figure 5. Effect of varying parameter γ for the velocity distribution of Reynolds viscosity model when for Λ = δ = C =Γ =1. 

 

Figure 6. Effect of pressure gradient parameter A on the velocity distribution of Reynolds viscosity model when γ= Γ = Λ = δ = γ=C= 1. 

 

Figure 7. Effect of varying parameter B on the velocity distribution of Reynolds viscosity model when for Λ = δ = C =γ=Γ =1. 
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Figure 8. Effect of pressure gradient parameter C on the velocity distribution of Reynolds viscosity model when γ= Γ = Λ = δ = γ= 1. 

 

Figure 9. Effect of varying parameter Γ on the velocity distribution of Reynolds viscosity model when for Λ = δ = C =γ=1. 

 

Figure 10. Effect of pressure gradient parameterΛ on the velocity distribution of Reynolds viscosity model when γ= Γ = Λ = δ =C= γ= 1. 
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Figure 11. Effect of varying parameter To on the velocity distribution of Reynolds viscosity model when for Λ = δ =γ= C =Γ =1 

 

Figure 12. Effect of pressure gradient parameter C on the temperature distribution of Reynolds viscosity model under no slip condition when γ= Γ = Λ = δ = 

γ= 1. 

 

Figure 13. Effect of varying parameter C for the temperature distribution of Reynolds viscosity model under slip condition when for Λ = δ = Γ =γ=1. 
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Figure 14. Effect of varying parameter Γ on the temperature distribution of Reynolds viscosity model under no slip condition when γ= δ = Λ = -C = 1. 

 

Figure 15. Effect of varying parameter Γ on the temperature distribution of Reynolds viscosity model under slip condition when for Λ = -C = δ =γ=1. 

 

Figure 16. Effect of varying parameter Λon the temperature distribution of Reynolds viscosity model under no slip condition when γ= δ = Γ = -C = 1. 
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Figure 17. Effect of varying parameter Λ on the temperature distribution of Reynolds viscosity model under slip condition when for Γ = -C = δ =γ=1. 

 

Figure 18. Effect of varying parameter γ on the temperature distribution of Reynolds viscosity model under no slip condition when δ = Λ = -C = 1. 

 

Figure 19. Effect of varying parameter γ on the temperature distribution of Reynolds viscosity model under slip condition when for Λ = -C = δ =γ=1. 
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Figure 20. Effect of varying parameter A on the temperature distribution of Vogel’s viscosity model under no slip condition when B=Γ = Λ = δ =-C= To=1. 

 

Figure 21. Effect of varying parameter A on the temperature distribution of Vogel’s viscosity model under slip condition when for B=Λ = δ = Γ =-C=To=1. 

The shows the effect of pressure drop parameter, C for the 

Reynolds viscosity model on the velocity distribution in the pipe 

is shown in Figure 2. From the result, it shows that as the 

numerical value of C increases for no slip condition, the 

maximum velocity of the fluid which is at the center of the pipe 

but the fully developed velocity profile doesn’t begin at the 

origin which shows that there is a slip or no sticking of the fluid 

particle at the walls of the pipe. Increasing values of viscous 

dissipation (Γ) gives a corresponding increase in velocity 

distribution for the Reynolds viscosity model and viscous 

dissipation, Γ is maximum at the pipe center as depicted in 

Figure 3. The similar trends are recorded in the controlling 

parameters of the flow and heat transfer processes as shown in 

Figures 4-11. 

Effects of slip on the temperature distribution are 

presented in Figures 12-32. Figures 12-19 show the effects of 

pressure drop parameter, C, viscous dissipation (Γ), viscosity 

variation parameter (γ), non-Newtonian material parameter 

of the fluid, Λfor the Reynolds’ viscosity model. It can be 

seenthat as the fluid parameters increase, the temperature 

distribution increases and attains maximum value at the 

center of the pipe for bot no slip and slip conditions. 

However, the effects of slip shows that the curvesshift to the 

right and away from the origin i.e. the fully developed profile 

does not begin at the origin for the slip condition as shown in 

Figures 13, 15, 17 and 19. These same trends are displayed 

for the controlling for parameters of the fluid under Vogel’s 

viscosity model as shown in Figure 22-33. However, an 

opposed trend was recorded in parameter A. For increasing 

values of parameter A in the Vogel’s Viscosity model gives 

decreasing temperature distribution and the effect of the 

Vogel’s parameter A is maximum at the center of the pipe for 

both slip and no slip conditions shown in Figures 20 and 21  

Also, the third grade fluid can be seen to exhibit Newtonian 

character for the Reynolds viscosity model when Λ= 0 and also 

the effect when the fluid behaves non Newtonian at increasing 

values of Λ. It can be seen from the Figures 26 and 27 that at 

increasing values of non-Newtonian parameter (Λ) for the 
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Vogel’s model gives increasing values of temperature distribution which maximum effect occurs at center of the pipe. 

 

Figure 22. Effect of varying parameter C on the temperature distribution of Vogel’s viscosity model under no slip condition when B=Γ = Λ = δ =-C= To=1. 

 

Figure 23. Effect of varying parameter δ on the temperature distribution of Vogel’s viscosity model under slip condition when for B=Λ = Γ =-C=To=1. 

 

Figure 24. Effect of varying parameter Γ on the temperature distribution of Vogel’s viscosity model under no slip condition when B= Λ = δ =-C= To=1. 
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Figure 25. Effect of varying parameter Γ on the temperature distribution of Vogel’s viscosity model under slip condition when for B= δ = Γ =-C=To=1. 

 

Figure 26. Effect of varying parameter Λ on the temperature distribution of Vogel’s viscosity model under no slip condition when B= Γ = δ =-C= To=1. 

 

Figure 27. Effect of varying parameter Λ on the temperature distribution of Vogel’s viscosity model under slip condition when for B= δ = Γ =-C=To=1. 
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Figure 28. Effect of varying parameter B on the temperature distribution of Vogel’s viscosity model under no slip condition when A=Γ = Λ = δ =-C= To=1. 

 

Figure 29. Effect of varying parameter B on the temperature distribution of Vogel’s viscosity model under slip condition when for A=Λ = δ = Γ =-C=To=1. 

 

Figure 30. Effect of varying parameter To on the temperature distribution of Reynolds viscosity model under no slip condition when γ= δ = Λ = -C = 1. 
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Figure 31. Effect of varying parameter To on the temperature distribution of Vogel’s viscosity model under slip condition when for Λ = -C = δ =γ=1. 

 

Figure 32. Effect of varying parameter δ on the temperature distribution of Vogel’s viscosity model under no slip condition when γ= To = Λ = -C = 1. 

 

Figure 33. Effect of varying parameter δ on the temperature distribution of Vogel’s viscosity model under slip condition when γ= To = Λ = -C = 1. 
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When heat generation term is excluded the effect is seen 

as δ=0. Figures 32 and 33 show the effects of temperature-

dependent internal heat generation term for the Vogel’s 

viscosity model on the temperature distribution for linear 

temperature-dependent heat source. From the figures, it 

shows that as δ increases, the temperature distribution of 

the fluid increases. This behaviour is due to the fact that 

the heat generation mechanism creates a layer of hot fluid 

and at some level when the internal heat generation 

parameter is relative large, the resulting temperature of the 

fluid finally exceeds the least temperature distribution in 

the pipe [12]. 

Table 1. Comparison of Results for Reynold’s Model. 

Γ θmax (FDM) θmax (Perturbation) Absolute Diffrence 

5 0.0850 0.0846 0.0004 

10 0.1780 0.1783 0.0003 

15 0.2565 0.2570 0.0005 

20 0.4310 0.4305 0.0005 

Table 2. Comparison of Results for Reynold’s Model. 

Λ θmax (FDM) θmax (Perturbation) Absolute Diffrence 

0 0.0185 0.0188 0.0003 

5 0.0138 0.0140 0.0002 

10 0.0085 0.0087 0.0002 

15 0.0120 0.0116 0.0004 

Table 3. Comparison of Results for Vogel’s Model. 

A θmax (FDM) θmax (Perturbation) Absolute Diffrence 

1 0.0168 0.0170 0.0002 

2 0.0068 0.0070 0.0002 

3 0. 0029 0.0030 0.0001 

4 0.0010 0.0010 0.0000 

Tables 1-3 show the comparison of the results of finite 

difference method (FDM) and the perturbation method. The 

Tables show good agreement between the two results. The 

observed discrepancy might be due to the linearized 

boundary conditions. 

5. Conclusion 

In this work, nonlinear analysis of heat transfer in a pipe 

flow of a third grade fluid with temperature-dependent 

viscosities and heat generation under non-linear slip boundary 

conditions has been carried out using perturbation technique. 

The obtained approximate solutions of the linear and quadratic 

temperature-dependent heat generation have been used to 

investigate the effects of the model parameters on the flow and 

heat transfer in the third grade fluid. The results can be used to 

advance the analysis and study of the behaviour of third grade 

fluid flow and steady state heat transfer processes such as 

found in coal slurries, polymer solutions, textiles, ceramics, 

catalytic reactors, oil recovery applications etc. 

Nomenclature 

a and b Constant from dimensional Vogel’s viscosity model 

M Constant from dimensional Reynold’s viscosity model 

A= a/ (D����β) Dimensionless constant from Vogel’s viscosity model 

B= (b +D����)/ (D����β) Dimensionless constant from Vogel’s viscosity model 

B� Initial concentration of reacting species 

C= (H�//C�GC) (�p ���	�  Pressure gradient parameter 

K Constant thermal conductivity 
�p ����  Pressure gradient along the normal to the pipe axis 

�p ����  Pressure gradient in the axial direction 

�p � ��  Pressure gradient in rotational direction 

Q Heat generation constant 

r Dimensional perpendicular distance in pipe axis 

�̅= r/ R Dimensionless perpendicular distance in pipe axis 

R Radius of the pipe 

D�	���� Initial temperature 

W(r) Dimensional velocity component in the z axis 

G¢  =	G /GC Dimensionless velocity component in the z axis 

GC Dimensional reference velocity 

z Axis of the cylinder 

��,��,�� Constant material constant 

β = RD����/E Activation energy 

γ = MβD���� Reynolds viscosity variational parameter 

/	 Dynamic shear viscosity 

μ�= /	//C� Dimensionless viscosity 

 	 Rotational direction 
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Γ = 4/C�GC�/ (KD����β) Viscous heating parameter 

θ= (T - D�) E/ (RD�������) Dimensionless temperature excess 

Λ= β�GC�/ (/C��C�) Non-Newtonian material parameter of the fluid 

δ = QE��H�B�/ (RKD�������) Heat generation parameter 
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