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Abstract: The portmanteau statistic for testing the adequacy of an autoregressive moving average (ARMA)  model is 

based on the first m autocorrelations of the residuals from the fitted model. We consider some of portmanteau tests for 

univariate linear time series such as Box and Pierce [2], Ljung and Box [9], Monti [12], Peña and Rodríguez [13 and 14], 

Generalized Variance Test (Gvtest) by Mahdi and McLeod [11] and Fisher [4]. We conduct an extensive computer 

simulation time series data, to make comparison among these tests. We consider different model parameters for small, 

moderate and large samples to examine the effect of lag m on the power of the selected tests, and determine the most 

powerful test for ARMA models. The similar portmanteau tests models was evaluated for the real data set on electricity 

consumption in Khan Younis, Palestine (April 2009 - May 2013). We found that, portmanteau tests have the highest values 

of power for large sample data (N = 500) comparing to small and moderate samples (N = 50 and 200).  We found that the 

portmanteau tests are sensitive to the chosen for m value. Indeed there are loss of the power values for lags m ranging from 

m = 5 to 20, where Box-Pierce, Ljung-Box and Monti tests have more power loss than the other selected tests. The power 

loss reaches its minimum values for large sample data comparing to small and moderate samples. In addition, the results of 

the simulation study and real data analysis showed that the most powerful tests varies between Gvtest and Fisher tests. 

Keywords: ARMA Model, Portmanteau Test, Residual Analysis, Autocorrelation, Model Diagnostic, Simulation 

 

1. Introduction and Literature Review 

1.1. Introduction 

Time series model diagnostic checking is the most 

important stage of time series model building. In 

examining the adequacy of a statistical model, an analysis 

of the residuals is often performed. The study of the 

distribution of residual autocorrelations in linear time-

series models started with the seminal work of Box and 

Pierce [2]. If the appropriate model has  been chosen, there 

will be zero autocorrelation in the errors and we use one of 

the portmanteau tests in time series analysis for testing the 

adequacy of a fitted linear time series model. 

A portmanteau test is proposed to test the goodness of fit 

of ARMA models in time series. This test firstly has been 

studied by Box and Pierce [2], then it has been improved 

by Ljung and Box [9], this test is known as the Ljung–Box 

test. Over decades, this test was improved by many 

statisticians. 

In this study we compare the performance of 

portmanteau tests through an extensive numerical 

simulation for different model parameters and sample sizes. 

These simulations examine the sensitivity of choosing 

model parameters to different sample sizes. In particular, 

how do these tests perform for different model parameter 

specifications and for small, moderate and large sample 

sizes? In addition, determine the most powerful 

portmanteau test and study the effect of the lags (m) on the 

power of these tests based on both simulation study and 

real data set. 

1.2. Literature Review 

Portmanteau tests have been studied by many authors, 

for examples, Ljung [8] examined the properties of the 

portmanteau test statistic for various choices of m lags 

autocorrelations of the residuals from the fitted ARMA 



2 Samir K. Safi et al.:  Comparative Study of Portmanteau Tests for the Residuals Autocorrelation in ARMA Models 

 

 

model. A modification which allows the use of small 

values of m is shown to result in a more powerful test. 

Test of goodness of fit for time series models was 

proposed by Monti [12] based on the sum of squared 

residuals partial autocorrelations. The test statistic is 

asymptotically follows a chi-squared distribution. Small 

sample performance is studied through a Monte Carlo 

experiment. It appears sensitive to erroneous specifications 

especially when the fitted model underestimates the order 

of the moving average component.  

Finite-sample performance of Monti's test was 

investigated by Kwan and Wu [6], paying special attention 

to its estimated sizes and empirical powers. their 

simulation results indicate that (i) the test size can be 

affected by the choice of the number of residual partial 

autocorrelations, m, and (ii) the empirical powers of the 

Monti and the Ljung-Box tests are similar in the cases of 

both seasonal and non-seasonal data if m is properly 

chosen. 

Chand and  Kamal [3] compared the performances of 

Box-Ljung test and Monti’s test under different alternative 

hypothesis using Monte Carlo experiment. They showed 

that Monti’s test shows better approximation to Chi-

squared distribution and is at least as good as that of the 

Ljung-Box statistic. Monti’s test provides stable results 

over different values of  lag “m”. 

Lin and McLeod [10] noted several problems with the 

diagnostic test that has been suggested by Peña and 

Rodríguez [13] and an improved Monte-Carlo version of 

this test is suggested. It is shown that quite often the test 

statistic recommended by Peña and Rodríguez [13] may 

not exist and their asymptotic distribution of the test does 

not agree with the suggested gamma approximation very 

well if the number of lags used by the test is small. It is 

shown that the convergence of this test statistic to its 

asymptotic distribution may be quite slow when the series 

length is less than 1000, and so a Monte-Carlo test is 

recommended. Simulation experiment suggests the Monte-

Carlo test is usually more powerful than the test given by 

Peña and Rodríguez [13] and often much more powerful 

than the Ljung Box portmanteau test. 

Peña and Rodríguez [14] proposed a finite sample 

modification of their previous test which is 
1

ˆ1
m

mD n R
 = − 
 

, this statistic is based on the 

determinant of the m-th residual autocorrelation matrix mR . 

The new modified test is asymptotically equivalent to the 

previous one but it has a more intuitive explanation and it 

can be 25% more powerful for small sample size. The test 

statistic is the log of the determinant of the m-th 

autocorrelation matrix.  

Two new statistics were introduced by Fisher [4], First: 

weighted variations of the common Ljung-Box and second: 

the less-common, Monti statistics for checking the 

adequacy of a fitted stationary ARMA process. The new test 

statistics put more emphasis (weight) on the first few 

autocorrelations those most likely to deviate from zero and 

hence is more likely to detect the fitted ARIMA model. 

This paper is organized as follows: Section 2 focuses on 

properties of portmanteau tests. Section 3 discusses the 

power of the portmanteau tests based on Monte Carlo study. 

In Section 4 a monthly consumption of electricity data is 

analyzed. Section 5 summaries the results and offers 

suggestions for future research for the residuals 

autocorrelation in ARMA models using portmanteau tests.  

2. Portmanteau Tests for ARMA 
Models 

In this section we present Box-Pierce [2], Ljung-Box [9], 

Monti [12], Peña and Rodríguez [13 and 14], Mahdi and 

McLeod Gvtest [11] and Fisher [4] portmanteau tests for 

univariate and linear  time series model extensively for this 

purpose. The null hypothesis assuming that the fitted 

model is an adequate model and the residuals behave like 

white noise series. 

Most of portmanteau tests are based on the residual 

autocorrelation coefficient which is provided by:  

1

2

1

ˆ ˆ

ˆ ,

ˆ

n

t t k

t k
k n

t

t

r

ε ε

ε

−
= +

=

=
∑

∑
                           (2.1) 

where 1̂
ˆ, , tε ε…  are the residuals obtained after estimating 

the model in a sample of size n, Peña and Rodríguez [14]. 

2.1. Box and Pierce Portmanteau Test 

The classical portmanteau test statistic is the one 

proposed by Box and Pierce [2]. 

Definition 2.1. (Box and Pierce [2]) Box-Pierce ɶ
BPQ  test 

statistic up to lag m is  

2

1

ˆ ˆ( ) ,

m

BP k

k

Q r n r
=

= ∑ɶ                            (2.2) 

where k̂r is the sample autocorrelation of order k of the 

residual, m is the number of lags being tested and n is the 

sample size. 

This statistic is used to test for significant correlation up 

to lag m. It is well known that for independent and 

identically distributed data, as → ∞n the autocorrelations 

behave as independent normally distributed random 

variables, and therefore under the null hypothesis (correctly 

fitted model) ɶ
BPQ is shown to be asymptotically distributed 

Chi-squared random variable with m-p-q degrees of 

freedom, where p and q are the order of autoregressive and 

moving average terms estimated in the fitted model, 

respectively. 
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Kwan, Sim, and Wu [7] indicated that the normalization 

procedure used in Box-Pierce test is inappropriate for an 

independent and identically distributed (iid) normal series 

with an unknown mean. Consequently, the poor empirical 

performance of the test is not entirely unexpected. On other 

hand, Arranz [1] showed that in finite samples its 

distribution falls apart from the asymptotic one.  

2.2. Ljung-Box Portmanteau Test 

After some discussions about the finite sample 

distribution of the test statistic proposed by Box and Pierce 

[2]; Ljung and Box [9] proposed a modified version of that 

test. 

Definition 2.2. (Ljung and Box [9])  Ljung-Box LPQɶ  

portmanteau test is  

2

1

ˆ
ˆ( ) ( 2) ,

=

= +
−∑ɶ

m

k
LB

k

r
Q r n n

n k
                   (2.3) 

where ˆ, , kn m r  as in Definition 2.1. 

Ljung and Box [9] showed that their test provides a 

substantially improved approximation to Chi-squared 
 
 

distribution with m-p-q degrees of freedom that should be 

adequate for most practical purposes with the same critical 

region as BPQɶ . In many applications the value of m has 

been as high as 20 or 30 even when a simple low-order 

model has been believed to be appropriate, Ljung [8].  

2.3. Monti Portmanteau Test 

The tests in Definitions 2.1 and 2.2 are based on residual 

autocorrelation; alternatively Monti [12] proposed a test 

statistic based on residual partial autocorrelation.  

Definition 2.3 (Monti [12]) Let ˆ
kπ be the kth  residual 

partial autocorrelation, then Monti portmanteau test up to 

lag m is provided by: 

2

1

ˆ
ˆ( ) ( 2) ,

=

= +
−∑ɶ

m

k
M

k

Q n n
n k

ππ                  (2.4) 

where n is the length of the time series. 

Monti [12] proved that if the model is correctly 

identified, MQɶ  is asymptotically distributed as a 
2

m p q− −χ  

random variable. If the model is correctly specified, ˆ
kπ  is 

approximately distributed as normal with mean zero and 

variance 
( )2

n k

n n

−
+

, Kwan and Wu [6]. 

One can alternatively uses the statistic: 

* 2

1

ˆ ˆ( )

m

M k

k

Q nπ π
=

= ∑                            (2.5) 

where *

MQ  is asymptotically equivalent to ɶMQ . The 

difference between *

MQ  and ɶMQ  is the same as between 

the Box-Pierce test ɶBPQ and Ljng-Box test ɶLPQ . In both 

cases, the approximation to the small-sample  distribution 

by a Chi-squared is more accurate for the latter versions, 

which is therefore  recommended, Monti [12]. 

In addition, Monti [12] showed by simulations that  the 

performance of MQɶ is comparable to that of LBQɶ and better 

if the order of the moving average is understated. On the 

other hand, LPQɶ performs better if the order of the 

autoregressive part is understated. 

2.4. Peña and Rodríguez Portmanteau Test (2002) 

The estimated residuals can be considered as a sample of 

multivariate data from some distribution, Peña and 

Rodríguez [13] interested in testing the adequacy for the 

ARMA models on a statistic based on the determinant of the 

residual autocorrelation matrix:  

1

1 1
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⋯
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⋯

                      (2.6) 

where k̂r is the sample autocorrelation of order k of the 

residual. So, under the null hypothesis; testing for model 

adequacy is equivalent to testing if ˆ
mR  is approximately 

the identity matrix. Thus, it  is  sensible  to explore a  test  

based  on this  statistic. 

Definition 2.4. (Peña and Rodríguez [13]) For stationary 

time series data a portmanteau diagnostic test statistic up to 

the lag m is  

1

ˆ ,1 
 
 

= − m

mRD n                     (2.7) 

where n is the length of the time series. 

Peña and Rodríguez [13] showed that if the model is 

correctly identified D is asymptotically distributed as a 

linear combination of Chi-squared random variables and is 

approximately a Gamma distributed random variable for 

large values of m with parameters α and β , where  

( ) ( )( ) ( )1 1 1; , exp , 0 ,f x x x xα αα β α β β
− − − −= Γ − < < ∞

     (2.8) 

where, 

( ) ( )
( )( ) ( )

2

3 1 2

2 2 1 2 1 12

 + − + =
 + + − + 

m m p q

m m m p q
α              (2.9) 

and 

( ) ( )
( )( ) ( )

3 1 2

2 1 2 1 12

 + − + =
+ + − +

m m p q

m m m p q
β              (2.10) 
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In practice, they recommended the matrix ˆ
mR  can be 

constructed using the standardized residuals as this 

improves the Gamma distribution approximation by 

replacing k̂r  with ɺɺ
kr , where ( ) ( ) 1 2

ˆ2k kr n n k r = + − ɺɺ . 

Hence ˆ
mR  will replaced with ˆ

mR , Lin and McLeod [10].  

As pointed out in Lin and McLeod [10], the statistic D 

constructed using the standardized residuals are frequently 

does not exist in practice since the matrix ɺɺmR  is not 

always positive definite, so they recommended to 

concentrate on the original D statistic. They showed that 

the test based on the Gamma approximation is not 

conservative, despite the fact that as shown by Peña and 

Rodríguez [13] the small sample performance is acceptable 

in some cases, the more general use of tests based on the 

gamma approximation cannot be recommended. D test 

statistic may be difficult to implement since it involves 

calculating the determinant of a matrix, Fisher [4]. For 

finite sample size, Monti test ɶ
MQ is always better than D 

test, Peña and Rodríguez [14].  

In order to improve the properties of D test, Peña and 

Rodríguez [14] proposed a new test statistic for diagnostics 

as follows. 

2.5. Peña and Rodríguez Portmanteau Test (2006) 

A finite sample modification of a test by Peña and 

Rodríguez [14] is proposed. The new modified test has a 

more intuitive explanation than the Peña and Rodríguez 

[13]. 

Definition 2.5. (Peña and Rodríguez [14]) For  stationary  

time series  data a new portmanteau diagnostic test statistic 

is  

* ˆlog ,
1+

= − m

n
R

m
D                          (2.11) 

the notation as outlined in Definition 2.4. 

They showed that the test statistic *D  is asymptotically 

distributed as a linear combination of  Chi-squared random 

variables and proposed two different approximations to the 

asymptotic distribution of that test statistic: The first one is 

based on the Gamma distribution. The test statistic follows 

asymptotically a Gamma distribution with parameters α
and β , where  

( ) ( )
( ) ( )( )

2

3 1 2

2 2 2 1 12 1

 + − + =
 + − + + 

m m p q

m m m p q
α               (2.12) 

and  

( ) ( )
( ) ( ) ( )
3 1 2

2 2 1 12 1

m m p q

m m m p q
β

 + − + =
+ − + +

              (2.13) 

The distribution has mean ( )1

2

m
p qαβ − = − +  and 

variance 
( )
( ) ( )2
2 1

2
3 1

m m
p q

m
αβ − +

= − +
+

. They denoted this 

first approximation by GD ∗ which is distributed as 

( , )G α β
 

The second approximation is based on Normal 

distribution. They suggested a power transformation which 

reduces the skewness in order to improve the normal 

approximation. The test statistic is  

( ) ( ) ( )
1 1

1 1
21 1

2

1 1
1

2

− −
−− −∗ − ∗ −  − = − −   

    
ND D

λ λλ λαβ α λ αβ
α λ   (2.14) 

where  

( ) ( )( ) ( )
( ) ( )( ) ( )

1
2

2

2

2 4 1
1

3 2 1 6 1

−
   − + + − +    = − 

 + + − +   

m p q m m p q

m m m p q

λ     (2.15) 

For m moderately large we get, 4≈λ  and α and β  are 

the values as shown in (2.12) and (2.13). The statistic ND ∗

is the second approximation which is distributed as 
(0,1)N

. 

Peña and Rodríguez [14] found that the performance of 

both approximations, ∗GD or ∗ND  for checking for 

goodness of fit in linear models is similar. By Monte Carlo 

study they showed that the new test can be up to 50% more 

powerful than the Ljung-Box and Monti tests, and for finite 

sample size is always better than previous one, D.  

The new tests do not seem to be affected by the value of  

m. The statistics D and Ljung-Box, LBQɶ , have a good size 

performance but they are  much more sensitive to the value 

of m. 

Their simulations showed an improvement in small 

sample time series, but the Type I error rates appear to be 

poor. So Mahdi and McLeod [11] improved *D  test such 

that the degrees of freedom for the Chi-squared 

approximation allow the improved one to have 

conservative Type I errors in practice, Fisher and Gallagher 

[5]. 

Mahdi and McLeod [11] generalized the results of Peña 

and Rodríguez [13 and 14] to the multivariate setting. In 

the univariate case, they recommended the statistic  

* 3 ˆlog
2 1+

= −m m

n
R

m
D                  (2.16) 

The null distribution is approximately Chi-squared with 

( )( ) 1
1.5 1 2 1

− + + − −
 

m m m p q  degrees of freedom and it 

is implemented in the R function gvtest(), so this modified 

statistic is called as Gvtest, since it's a generalized variance 

portmanteau test based on the determinant matrix, hence 

we will not include Peña and Rodríguez tests in our 
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comparisons because of generalization by Mahdi and 

McLeod [11].  

2.6. Fisher Portmanteau Tests 

Fisher [4] introduced two new statistics that are 

weighted variations of the common Ljung-Box and, the 

less-common, Monti statistics and these two new statistics 

are easy to implemented. 

Definition 2.6. (Fisher [4]) Weighted portmanteau tests 

are provided by 

( ) ( )
( )

2

1

ˆ 1
ˆ( ) 2

=

− −
= +

−∑ɶ
m

k

WL

k

r m k
Q r n n

m n k
              (2.17) 

and 

( ) ( )
( )

2

1

ˆ 1
ˆ( ) 2 ,

=

− −
= +

−∑ɶ
m

k

WM

k

m k
Q n n

m n k

π
π           (2.18) 

where 
k̂r and ˆ

kπ as defined in 2.1 and 2.3 respectively. 

The two statistics look similar to the Ljung-Box and 

Monti statistics with the exception a weight 
1− −m k

m
 on 

each autocorrelation or partial autocorrelation. The weights 

are derived using multivariate analysis techniques on the 

matrix of autocorrelations or matrix of partial 

autocorrelations. 

Fisher [4] noted that the sample autocorrelation at lag 1, 

1̂r , is given weight 1=m

m
. The sample autocorrelation at 

lag 2, 
2̂r , is given weight 

1
1

− <m

m
. We can interpret the 

weights as putting more emphasis on the first 

autocorrelation, and the least emphasis on the 

autocorrelation at lag m (corresponding weight 
1

m
). This 

matches the intuition about statistical estimators. The first 

autocorrelation 1̂r  is calculated using information from all 

n observations. The second autocorrelation 
2̂r  is based on 

n-1  observations, and the m-th autocorrelation is based on 

n-m observations. Intuitively, it makes sense to put more 

emphasis on the first autocorrelation as it should be the 

most accurate. This idea also holds true for the partial 

autocorrelations. 

The two statistics are asymptotically distributed as a 

linear combination of Chi-squared random variables. This 

is the same asymptotic distribution as the statistics in Peña 

and Rodríguez [13 and 14]. The weighted Ljung-Box ɶ
WLQ

and weighted Monti ɶ
WMQ statistics are asymptotically 

equivalent to D but have the added benefit of easy 

calculation and computational stability. When a small 

number of parameters have been fit under the null 

hypothesis of an adequate model, the statistics ɶ
WLQ and 

ɶ
WMQ  are approximately distributed as Gamma random 

variables with shape parameter, 

( )( )
( )( )

2
2

3 2 2

3 2 1
,

4 2 3 6 2 1

 + − − + =
 + + − − − +
 

m m m p q

m m m m m p q
γ      (2.19) 

and scale parameter 

( ) ( )
( )( )( )

3 2 2

2

2 2 3 6 2 1

3 2 1

 + + − − − +
 =

 + − − +
 

m m m m m p q

m m m m p q
λ     (2.20) 

The Gamma approximation is constructed to have the 

same theoretical mean and variance as the true asymptotic 

distribution. 

3. Simulation Study 

In this section, we consider the robustness of various 

portmanteau tests. We compare the power among some of 

the portmanteau tests such as Box-Pierce ɶ
BPQ , Ljung-Box 

ɶ
LBQ , Monti ɶ

MQ , Gvtest *

mD , Weighted Ljung-Box ɶ
WLQ , 

and Weighted Monti ɶ
WMQ . Monte Carlo simulations will 

be conducted to examine the sensitivity of the selected 

portmanteau tests to model diagnostics. In particular, 

which is the most appropriate test for examining the 

adequacy of  linear and nonseasonal ARMA models. This 

section displays the results of simulation study. 

Three finite sample sizes (50, 200, and 500) are 

generated from different ARMA(p,q) models with different 

values of the model parameters, where p and q ≤ 2 and 

ARIMA(1,0,0) is fitted for each model. In each case 1000 

of Monte-Carlo simulations with 1000 replications were 

generated by R statistical software package and the power 

of the tests were computed for selected lags m for 0.05 

nominalα  level.  

3.1. Simulation Study for Small Data 

We generated small sample size data (N=50) by R 

statistical software and the power of the tests are computed 

for m = 5, 10, 15, 20. The Results are  presented in Table 

3.1 for m = 5 and 20. The other choices of m are shown in 

Appendix A, Table A.1. 

The simulation results reveal that all portmanteau tests 

are sensitive to the choice of lag m and reach its maximum 

at lag m = 5.  For an example, in model 3 MA(1), there are 

deficiencies of the power of the portmanteau test 
ɶ
WMQ

 

from lags 5 to lag 10 which equals to 

0.293 0.245
100% 16.3%

0.293

− × =
 and similar calculations for 

other models. Then, the averages of the power decrease 

with respect to m from lag 5 to 10 by 21.2%, 21.1%,19.8%, 
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13.3%,  18.6% and 15.1% for BPQɶ , LBQɶ ,  MQɶ , *

mD , WLQɶ  

and WMQɶ , respectively with exception in model 5. 

For AR(p) and MA(q), the simulation results show that 

the performance of  MQɶ  is better than LBQɶ if the order of 

the moving average component is underestimated (see 

models 1, 2, 3, 6 and 7 for all selected lags). On the other 

hand, LBQɶ performs better than MQɶ if the order of the 

autoregressive component is underestimated (see models 4 

and 5 for all lags). 

To further investigate the power of the portmanteau tests, 

the simulation results indicate that the power of the test is 

increased -on average- by 23.6% when using WLQɶ , which 

is proposed by Fisher [4], instead of  LBQɶ . In addition, the 

power of the test is increased -on average- by 25.0% when 

using WMQɶ instead of  MQɶ . 

Based on the simulation results, the difference of the 

power test between *

mD  and WMQɶ  is very small 

(approximately 0.009 only in average) and is smaller than 

the difference of the power test between *

mD and WLQɶ tests 

(approximately 0.05 only in average), with exception in 

model 5.  

Furthermore, the simulation results reveal that Gvtest 
*

mD , is the most powerful test for the most selected models 

for large lags (m = 15 and 20), whereas Weighted Ljung-

Box WLQɶ  and Weighted Monti WMQɶ  outperform and more 

powerful than *

mD  for moderate lags (m =5 and 10). 

The Gvtest *

mD  seems to be sensitive for model 5, AR(2) 

with parameters 1.2 and -0.73 for all lags in small data 

(N=50). The test statistic with the highest power for any 

particular model is shown in bold font. 

Table 3.1. Powers of portmanteau tests for N = 50, m=5 and 20, and 0.05=α  

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 2θθθθ
 1θθθθ

 2φφφφ
 1φφφφ

 
Model 

m=5 

0.682  0.571 0.685 0.548 0.417 0.428  0.7   1 

2 

3 

0.193 0.172 0.196 0.138 0.136 0.140  0.4   

0.293 0.260 0.294 0.209 0.197 0.200  0.5 -    

0.300 0.325 0.300 0.231 0.244 0.252   0.3 0.6 4 

5 0.999 0.999 0.143 0.995 0.997 0.997   0.73-  1.2 

0.816 0.817 0.816 0.755 0.712 0.726 0.6 -  1   6 

7 0.163 0.154 0.177 0.127 0.115 0.117 0.1 0.24   

0.115 0.114 0.116 0.093 0.088 0.095  0.4  0.8 8 

9 

10 

0.943 0.864 0.944 0.879 0.676 0.700  0.7 -   0.5 

0.296 0.233 0.293 0.193 0.183 0.186  0.6 -   0.2 -  

0.402 0.336 0.406 0.272 0.210 0.234  0.5 -  0.2 0.7 11 

12 0.404 0.406 0.414 0.276 0.295 0.287  0.1 0.35-  1.3 

0.882 0.766 0.881 0.821 0.530 0.580 0.3 -0.6  0.4 13 

0.271 0.237 0.281 0.201 0.155 0.172 0.5 -  1.3 0.3 -  0.9 14 

m=20 

0.490 0.319 0.525 0.327 0.241 0.274  0.7   1 

2 

3 

0.122 0.125 0.137 0.106 0.105 0.112  0.4   

0.187 0.179 0.205 0.117 0.149 0.157  0.5 -    

0.185 0.190 0.204 0.117 0.142 0.156   0.3 0.6 4 

5 0.988 0.986 0.116 0.930 0.943 0.974   0.73-  1.2 

0.696 0.622 0.716 0.484 0.441 0.496 0.6 -  1   6 

7 0.108 0.106 0.120 0.086 0.085 0.096 0.1 0.24   

0.071 0.070 0.076 0.067 0.074 0.071  0.4  0.8 8 

9 

10 

0.829 0.655 0.859 0.596 0.382 0.444  0.7 -   0.5 

0.154 0.146 0.197 0.108 0.116 0.133  0.6 -   0.2 -  

0.238 0.186 0.272 0.139 0.142 0.167  0.5 -  0.2 0.7 11 

12 0.250 0.250 0.276 0.168 0.202 0.212  0.1 0.35-  1.3 

0.769 0.442 0.792 0.529 0.310 0.353 0.3 -0.6  0.4 13 

0.149 0.124 0.175 0.100 0.102 0.133 0.5 -  1.3 0.3 -  0.9 14 

 

3.2. Simulation Study for Moderate Data 

We generated moderate sample size data (N=200) by R 

statistical software and the power of the tests are computed 

for m = 5, 10, 15, 20. The Results are  presented in Table 

3.2 for m = 5 and 15. The other choices of m are shown in 

Appendix A, Table A.2. 

The simulation study shows that the power of the 

portmanteau tests is more powerful for N=200 than N = 50 

The averages of the power decrease with respect to m from 

lag 5 to 10 by 13.3%, 14%,11.2%, 4.9%, 6.7% and 5.3% 
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for BPQɶ , LBQɶ ,  MQɶ , *

mD , WLQɶ  and WMQɶ , respectively 

with some exceptions in 5, 6, 9 and 13, where all tests have 

the same highest power for most of lags with 

approximately 100%. 

Table 3.2 shows that  LBQɶ  tends to perform better than 

MQɶ  when the fitted model underestimates the order of the 

autoregressive component (see model 4 for all lags in 

Tables 3.2 and A.2). Conversely, if the fitted model 

underestimates the order of the moving average component 

then MQɶ does better than LBQɶ  (see models 1, 2, 3, 6 and 7 

for all lags in Tables 3.2 and A.2). The results reveal that 

the Weighted Ljung-Box WLQɶ  test raises the power of the 

classical one LBQɶ test by 25.0%  and Weighted Monti 

ɶ
WMQ

test raises the power of Monti MQɶ  test by 25.1% 

with some exceptions in models 5, 6, 9, and 13, where all 

tests have the same highest power for most of lags with 

approximately 100%. 

Furthermore, we notice that the highest power of the 

tests for other models varies between *

mD , WLQɶ and WMQɶ  

for lags 5 and 10 such that the power differences between 

these tests are small (approximately 0.008 only in average). 

In general, the test statistic *

mD  is the most powerful test 

for lags m=15 and 20. The test statistic with the highest 

power for any particular model is shown in bold font. 

Table 3.2. Powers of portmanteau tests for N = 200, m=5 and 15, and 0.05=α  

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 2θθθθ
 1θθθθ

 2φφφφ
 1φφφφ

 
Model 

m=5 

0.999 1 1 0.999 0.997 0.997  0.7   1 

2 

3 

0.497 0.477 0.497 0.381 0.349 0.356  0.4   

0.839 0.812 0.840 0.721 0.665 0.666  0.5 -    

0.956 0.962 0.956 0.914 0.919 0.920   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 1 1 0.6 -  1   6 

7 0.509 0.492 0.503 0.385 0.372 0.373 0.1 0.24   

0.660 0.643 0.660 0.602 0.568 0.570  0.4  0.8 8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.814 0.788 0.834 0.707 0.661 0.663  0.6 -   0.2 -  

0.948 0.927 0.942 0.891 0.851 0.836  0.5 -  0.2 0.7 11 

12 0.928 0.922 0.930 0.823 0.819 0.824  0.1 0.35-  1.3 

1 1 1 1 1 1 0.3 -0.6  0.4 13 

0.931 0.920 0.932 0.830 0.822 0.830 0.5 -  1.3 0.3 -  0.9 14 

m=15 

0.999 0.993 1 0.989 0.885 0.897  0.7   1 

2 

3 

0.335 0.332 0.363 0.277 0.204 0.212  0.4   

0.679 0.619 0.684 0.471 0.407 0.422  0.5 -    

0.911 0.907 0.916 0.734 0.751 0.761   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 0.997 0.998 0.6 -  1   6 

7 0.356 0.335 0.366 0.233 0.212 0.220 0.1 0.24   

0.553 0.529 0.562 0.348 0.335 0.346  0.4  0.8 8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.679 0.604 0.689 0.457 0.387 0.399  0.6 -   0.2 -  

0.886 0.796 0.867 0.701 0.573 0.595  0.5 -  0.2 0.7 11 

12 0.820 0.83 0.854 0.627 0.656 0.667  0.1 0.35-  1.3 

1 1 1 1 0.995 0.997 0.3 -0.6  0.4 13 

0.839 0.795 0.844 0.621 0.578 0.609 0.5 -  1.3 0.3 -  0.9 14 

 

3.3. Simulation Study for Large Data 

We generated moderate sample size data (N=500) by R 

statistical software and the power of the tests are computed 

for m = 5, 10, 15, 20. The Results are presented in Table 

3.3 for m = 5 and 10. The other choices of m are shown in 

Appendix A, Table A.3. 

Table 3.3 shows that all tests appear sensitivity to the 

choice of the value m and reach its maximum at lag m = 5. 

The averages of the power decrease with respect to m from 

lag 5 to 10 by 3.6%, 3.6%, 2.8%, 1.1%, 1% and 1% for 

ɶ
BPQ , ɶ

LBQ ,  ɶ
MQ , *

mD , ɶ
WLQ  and ɶ

WMQ ,  respectively.  

For AR(p) and MA(q), the performance of ɶ
MQ is better 

than ɶ
LBQ  if the order of the moving average component is 

underestimated. Contrariwise, ɶ
LBQ performs better than 

ɶ
MQ if the order of the autoregressive component is 
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underestimated. However, ɶ
LBQ and ɶ

MQ are comparable for 

models 1, 4, 5, and 6 for lags from 5 to 15.  

In addition, ɶ
WLQ  test increases the power only by 7.9% 

only in average when we replaced  ɶ
LBQ  by ɶ

WLQ , and 6.9% 

when replacing ɶ
MQ by ɶ

WMQ , with exceptions in models 2 

and 7 where the power slightly greater than 6.9%. 

According to Monti Carlo study  the differences in power 

between *

mD , ɶ
WLQ  and ɶ

WMQ  tests are very small around 

0.003 only unlike previous samples. In general, *

mD , ɶ
WLQ  

and ɶ
WMQ statistics have the most powerful tests. The test 

statistic with the highest power for any particular model is 

shown in bold font. 

Table 3.3. Powers of portmanteau tests for N = 500, m=5 and 10, and 0.05=α  

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 2θθθθ
 1θθθθ

 2φφφφ
 1φφφφ

 
Model 

m=5 

1 1 1 1 1 1  0.7   
1 

2 

3 

0.864 0.841  0.873 0.782 0.747 0.747  0.4   

0.996 0.995 0.998 0.992 0.989 0.989  0.5 -    

1 1 1 1 1 1   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 1 1 0.6 -  1   6 

7 0.895 0.885 0.895 0.803 0.790 0.791 0.1 0.24   

0.979 0.991 0.979 0.978 0.967 0.977  0.4  0.8 
8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.998 0.996 0.999 0.991 0.988 0.988  0.6 -   0.2 -  

1 1 1 1 1 1  0.5 -  0.2 0.7 11 

12 1 1 0.999 0.998 0.997 0.998  0.1 0.35-  1.3 

1 1 1 1 1 1 0.3 -0.6  0.4 13 

1 1 1 1 0.999 0.999 0.5 -  1.3 0.3 -  0.9 14 

m=10 

1 1 1 1 1 1  0.7   
1 

2 

3 

0.810 0.800 0.814 0.682 0.590 0.598  0.4   

0.992 0.988 0.993 0.969 0.957 0.957  0.5 -    

1 1 1 1 1 1   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 1 1 0.6 -  1   6 

7 0.831 0.821 0.832 0.664 0.655 0.659 0.1 0.24   

0.977 0.987 0.975 0.942 0.927 0.928  0.4  0.8 
8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.994 0.99 0.994 0.957 0.947 0.947  0.6 -   0.2 -  

1 1 1 0.999 0.997 0.996  0.5 -  0.2 0.7 11 

12 1 1 0.998 0.991 0.993 0.995  0.1 0.35-  1.3 

1 1 1 1 1 1 0.3 -0.6  0.4 13 

0.999 0.999 0.999 0.998 0.994 0.992 0.5 -  1.3 0.3 -  0.9 14 

 

4. Illustrative Example: Consumption 
of Electricity Data 

To validate the simulation results, we apply the 

portmanteau tests for testing the adequacy of the fitted 

model on real data set. We consider the monthly 

consumption of electricity (in kilowatt-hours, KWH) in 

Khan Younis city, Palestine, from April 2009 through May 

2013. R-statistical software is used for fitting ARMA model 

for the time series.  

4.1. Data Exploration 

Figure 4.1 displays the time series plot. The series 

displays considerable fluctuations over time, and a 

stationary model does not seem to be reasonable. The 
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higher values display considerably more variation than the 

lower values.  

 

Figure 4.1. Monthly Electricity Consumption, April 2009 through May 

2013 

 

Figure 4.2. The Difference Series of the Monthly Electricity Consumption 

In addition, software implementation of the ADF test for 

stationarity is applied to the original consumption leads to 

a test statistic of -2.4231 and a p-value of 0.4046. With 

nonstationarity as the null hypothesis, this provides strong 

evidence supporting the nonstationarity and the 

appropriateness of taking a difference of the original series. 

The differences of the electricity values are displayed in 

Figure 4.2. The differenced series looks much more 

stationary when compared with the original time series 

shown in Figure 4.1. On the basis of this plot, we might 

well consider a stationary model as appropriate. 

ADF test is applied to the differenced series leads to a 

test statistic of  -5.0478 and a p-value of 0.01. That is, we 

reject the null hypothesis of nonstationarity. 

4.2. Fitting an Inappropriate ARIMA(1,1,0) Model 

Now, suppose the difference of the electricity 

consumption time series data is fitted wrongly by 

ARIMA(1,1,0) model. We perform the aforementioned tests 

to the ARIMA(1,1,0) fitted  model. Table 4.1 shows the p-

values of the portmanteau tests for selected lags, m=5, 10, 

15, and 20 with 0.05=α . Clearly the results indicate that 

for lag 5, all portmanteau tests reject the null hypothesis of 

adequacy model, i.e. all portmanteau tests have the same 

result for autocorrelation diagnostics.  

In addition, for more clarification if one uses Box-Pierce 

ɶ
BPQ  test for model adequacy diagnostics, although for m = 

5, ɶ
BPQ test shows that the fitted ARIMA(1,1,0)  model 

appears to be inadequate, however for m =10, 15 and 20 

the ɶ
BPQ test indicates significant evidence to support the 

null hypothesis of model adequacy. While the classic 

Ljung-Box ɶ
LBQ and Monti ɶ

MQ tests give unstable p-values 

across m, since for m =5 and 15, ɶ
LBQ  and ɶ

MQ  show that 

the fitted ARIMA(1,1,0)  model appears to be inadequate 

model, whereas for m =10 and 20, these tests support the 

model adequacy. Likewise, Weighted Ljung-Box test ɶ
WLQ

suggests an inadequate model for m =5 and 10 and an 

adequate model for m = 15 and 20.  

Furthermore, the analysis shows that Gvtest *

mD  and 

Weighted Monti ɶ
WMQ portmanteau tests tend to be the 

most powerful statistics in detecting inadequacy fitted 

model, the corresponding p-values for all selected lags are 

small enough to reject the null hypothesis of adequacy 

model. Therefore, Gvtest *

mD  and Weighted Monti ɶ
WMQ

portmanteau tests are recommended for autocorrelation 

diagnostics.  

Table 4.1. P-values of the portmanteau tests of the residuals for ARIMA (1,1,0) Model 

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 
m  Model 

0.0013 0.0051 0.0044 0.0126 0.0248 0.0363 5 

ARIMA(1,1,0) 

0.0165 0.0430 0.0189 0.0738 0.1330 0.2002 10 

0.0154 0.0582 0.0241 0.0148 0.0486 0.1519 15 

0.0176 0.0692 0.0357 0.0556 0.1421 0.3675 20 

 
4.3. Fitting an Appropriate Model 

The sample EACF computed on the first differences of 

the electricity consumption series is shown in Table 4.2.  In 

this table, an ARMA(p,q) process will have a theoretical 

pattern of a triangle of zeroes, with the upper left-hand 

vertex corresponding to the ARMA orders. 

Table 4.2 displays the schematic pattern for an MA(1) 

model. The upper left-hand vertex of the triangle of zeros 

is marked with the symbol 0* and is located in the p = 0 

row and q = 1 column, an indication of an MA(1) model. 
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The model for the original electricity consumption series 

would then be a nonstationary ARIMA(0,1,1) model. 

We perform the aforementioned portmanteau tests to the 

ARIMA(0,1,1) model. Table 4.3 shows the p-values of the 

portmanteau tests for selected lags, m=5, 10, 15, and 20 

with 0.05α = . Clearly the result indicates that for all lags, 

all portmanteau tests have insufficient evidence to reject 

the null hypothesis of adequacy model, i.e. all  portmanteau 

have the same result for autocorrelation diagnostics and 

detect the fitted model correctly. 

Table 4.2. EACF for Difference of Electricity Consumption Series 
 

MA 

AR 

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 

0 X 0* 0 0 0 0 0 0 0 0 0 0 0 0 

1 X 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 X 0 0 0 0 0 0 0 0 0 0 0 0 0 

3 0 X 0 0 0 0 0 0 0 0 0 0 0 0 

4 X X 0 0 0 0 0 0 0 0 0 0 0 0 

5 0 X 0 0 0 0 0 0 0 0 0 0 0 0 

6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 X 0 0 0 0 0 0 0 0 0 0 0 0 0 

Table 4.3. P-value of the portmanteau tests of the residuals for ARIMA(0,1,1) Model 

WMQɶ
 WLQɶ

 

*

mD  MQɶ
 LPQɶ

 
ɶ
BPQ

 
m  Model 

0.7418 0.7073 0.5099 0.5999 0.5369 0.5851 
5 

ARIMA 

(0,1,1) 

0.8358 0.8245 0.7531 0.4291 0.4886 0.6392 
10 

0.6119 0.6839 0.6589 0.2226 0.3595 0.6216 
15 

0.5221 0.6515 0.6615 0.4097 0.5617 0.6329 
20 

 
Overall, in case of choosing an inappropriate and 

appropriate fitted models, Gvtest and Weighted Monti 

portmanteau tests detect the model correctly in both cases 

for all selected lags. Therefore, for all circumstances Gvtest 

and Weighted Monti portmanteau tests are recommended 

to use for model diagnostic phase.  

5. Summary and Future Research 

In this section, we introduce summary of the results and 

offer suggestions for future research for the residuals 

autocorrelation diagnostics in ARMA models using 

portmanteau tests.  

5.1. Summary 

We compare six portmanteau tests for goodness-of- fit 

for ARMA time series models. Using Monti Carlo 

simulation, we found that these test have the highest values 

of power for large sample data (N=500) comparing to 

small and moderate samples (N = 50, and 200). 

The study concluded that these tests are sensitive to the 
m  values, such that there are loss in the power with 

respect to m ranging from 5 to 20. The power loss reaches 

its smallest values for large sample data comparing to 

small and moderate samples. For N = 50 and 200, Gvtest 

and Weighted Monti test were not affected by the m
values as large as the other tests and the same behavior for 

Weighted Monti and Weighted Box for N = 500. 

For AR(p) and MA(q), the performance of ɶ
MQ test is 

better than ɶ
LBQ  test if the order of the moving average 

component is underestimated, whereas, ɶ
LBQ performs 

better if the order of the autoregressive component is 

underestimated. Similar behavior of ɶ
MQ and ɶ

LBQ tests was 

also noticed by Monti [12]. 

Fisher and Gallagher [5] compared Fisher tests [4] and 

Gvtest *

mD   for N=100 at lag m = 20 and showed that one 

of the two Weighted statistics is always produce the most 

powerful test, or tied for most powerful test.  

For N=50 and 200, we showed that the highest power of 

the tests varies between Gvtest *

mD  and Fisher tests for 

lags m=5 and 10.  

In general Gvtest *

mD statistic outperforms and 

preferable for lags m=15 and 20. On other hand, when 

N=500 all tests are almost identical, however, Gvtest *

mD  

and Fisher tests outperform for some time series models. 

It's interesting to note from real data analysis that Gvtest 
*

mD  and Weighted Monti tests tend to have more stable p-



Science Journal of Applied Mathematics and Statistics 2014; 2(1): 1-13 11 

 

 

values across m and to be the most powerful tests in 

detecting the goodness of fit for ARMA time series models, 

hence these tests are strongly recommended to be used. 

5.2. Future Research 

Many opportunities of future research are available. The 

plan of the future research on portmanteau tests for the 

residuals autocorrelation diagnostics in ARMA models can 

be split into four main areas. First, extension of the 

portmanteau tests for seasonal, Generalized Autoregressive 

Conditional Heteroskedasticity (GARCH) and Threshold 

Autoregressive (TAR) models. Second, extend the research 

to examine the relationship between ARMA(p,q) 

coefficients and the power of the tests for testing the 

goodness-of- fit tests in time series. Third, one may study a 

portmanteau test that combines Monti ɶ
MQ and Ljung–Box 

ɶ
LBQ tests for detecting adequacy fitting for ARMA(p,q) 

model since ɶ
LBQ  tends to perform better than ɶ

MQ  when 

the fitted model underestimates the order of the 

autoregressive component and vice versa. Finally, 

determine the appropriate range for lag m to each 

portmanteau test to increase the ability for model 

misspecification detection. 
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Appendix A 

Table A.1. Powers of portmanteau tests for N = 50, m=10 and 15, and 0.05=α  

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 2θθθθ
 1θθθθ

 2φφφφ
 1φφφφ

 
Model 

m=10 

0.597 0.444 0.606 0.423 0.279 0.298  0.7   1 

2 

3 

0.155 0.148 0.156 0.118 0.110 0.117  0.4   

0.245 0.213 0.248 0.166 0.146 0.162  0.5 -    

0.234 0.256 0.255 0.145 0.183 0.110   0.3 0.6 4 

5 0.996 0.997 0.134 0.981 0.983 0.987   0.73-  1.2 

0.784 0.744 0.786 0.651 0.537 0.572 0.6 -  1   6 

7 0.136 0.122 0.147 0.107 0.104 0.105 0.1 0.24   

0.091 0.092 0.092 0.074 0.069 0.072  0.4  0.8 8 

9 

10 

0.910 0.735 0.919 0.753 0.510 0.558  0.7 -   0.5 

0.211 0.175 0.244 0.173 0.147 0.148  0.6 -   0.2 -  

0.320 0.234 0.335 0.192 0.168 0.192  0.5 -  0.2 0.7 11 

12 0.317 0.322 0.340 0.199 0.235 0.232  0.1 0.35-  1.3 

0.864 0.614 0.866 0.71 0.386 0.428 0.3 -0.6  0.4 13 

0.206 0.177 0.226 0.128 0.117 0.146 0.5 -  1.3 0.3 -  0.9 14 

m=15 

0.535 0.358 0.560 0.346 0.257 0.282  0.7   1 

2 

3 

0.133 0.139 0.144 0.110 0.107 0.116  0.4   

0.208 0.199 0.221 0.140 0.136 0.149  0.5 -    

0.206 0.221 0.222 0.125 0.145 0.159   0.3 0.6 4 

5 0.992 0.992 0.123 0.956 0.964 0.975   0.73-  1.2 

0.738 0.670 0.749 0.531 0.478 0.519 0.6 -  1   6 

7 0.108 0.109 0.129 0.096 0.094 0.102 0.1 0.24   

0.078 0.073 0.083 0.066 0.069 0.069  0.4  0.8 8 

9 

10 

0.867 0.643 0.880 0.647 0.421 0.475  0.7 -   0.5 

0.171 0.158 0.209 0.113 0.122 0.133  0.6 -   0.2 -  

0.265 0.201 0.301 0.150 0.150 0.177  0.5 -  0.2 0.7 11 

12 0.272 0.283 0.301 0.177 0.208 0.211  0.1 0.35-  1.3 

0.805 0.506 0.822 0.607 0.325 0.363 0.3 -0.6  0.4 13 

0.170 0.144 0.200 0.115 0.100 0.133 0.5 -  1.3 0.3 -  0.9 14 
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Table A.2. Powers of portmanteau tests for N = 200, m=10 and 20, and 0.05=α  

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 2θθθθ
 1θθθθ

 2φφφφ
 1φφφφ

 
Model 

m=10 

0.999 0.997 1 0.994 0.962 0.964  0.7   1 

2 

3 

0.411 0.393 0.412 0.329 0.255 0.262  0.4   

0.751 0.693 0.751 0.561 0.493 0.501  0.5 -    

0.942 0.943 0.944 0.837 0.839 0.841   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 0.999 0.999 0.6 -  1   6 

7 0.434 0.412 0.437 0.292 0.261 0.269 0.1 0.24   

0.622 0.590 0.619 0.446 0.425 0.432  0.4  0.8 8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.735 0.678 0.768 0.562 0.482 0.4999  0.6 -   0.2 -  

0.913 0.867 0.911 0.763 0.684 0.678  0.5 -  0.2 0.7 11 

12 0.860 0.860 0.883 0.702 0.721 0.726  0.1 0.35-  1.3 

1 1 1 1 1 1 0.3 -0.6  0.4 13 

0.889 0.848 0.891 0.724 0.680 0.701 0.5 -  1.3 0.3 -  0.9 14 

m=20 

0.998 0.985 0.997 0.996 0.820 0.849  0.7   1 

2 

3 

0.314 0.297 0.324 0.220 0.185 0.190  0.4   

0.626 0.557 0.639 0.407 0.371 0.381  0.5 -    

0.878 0.866 0.886 0.674 0.696 0.733   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 0.998 0.996 0.996 0.6 -  1   6 

7 0.307 0.289 0.319 0.188 0.170 0.179 0.1 0.24   

0.500 0.472 0.507 0.302 0.304 0.320  0.4  0.8 8 

9 

10 

1 1 1 0.997 0.991 0.995  0.7 -   0.5 

0.618 0.531 0.650 0.378 0.334 0.355  0.6 -   0.2 -  

0.857 0.742 0.828 0.605 0.504 0.524  0.5 -  0.2 0.7 11 

12 0.784 0.78 0.808 0.565 0.595 0.607  0.1 0.35-  1.3 

1 1 1 1 0.976 0.981 0.3 -0.6  0.4 13 

0.797 0.739 0.808 0.561 0.512 0.544 0.5 -  1.3 0.3 -  0.9 14 

Table A.3. Powers of portmanteau tests for N = 500, m=15 and 20, and 0.05α =  

WMQɶ
 WLQɶ

 
*
mD  MQɶ

 LPQɶ
 

ɶ
BPQ

 2θθθθ
 1θθθθ

 2φφφφ
 1φφφφ

 
Model 

m=15 

1 1 1 1 1 1  0.7   1 

2 

3 

0.729 0.712 0.742 0.574 0.484 0.493  0.4   

0.985 0.980 0.990 0.736 0.890 0.895  0.5 -    

1 1 1 1 0.999 1   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 1 1 0.6 -  1   6 

7 0.784 0.765 0.788 0.573 0.548 0.551 0.1 0.24   

0.967 0.974 0.960 0.905 0.863 0.867  0.4  0.8 8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.984 0.971 0.981 0.919 0.904 0.906  0.6 -   0.2 -  

1 1 1 0.996 0.985 0.985  0.5 -  0.2 0.7 11 

12 1 1 0.998 0.986 0.992 0.992  0.1 0.35-  1.3 

1 1 1 1 1 1 0.3 -0.6  0.4 13 

0.999 0.999 0.999 0.992 0.989 0.986 0.5 -  1.3 0.3 -  0.9 14 

m=20 

1 1 1 1 1 1  0.7   1 

2 

3 

0.683 0.662 0.691 0.521 0.431 0.444  0.4   

0.978 0.969 0.981 0.891 0.832 0.840  0.5 -    

1 1 1 0.997 0.998 0.996   0.3 0.6 4 

5 1 1 1 1 1 1   0.73-  1.2 

1 1 1 1 1 1 0.6 -  1   6 

7 0.737 0.722 0.744 0.492 0.468 0.468 0.1 0.24   

0.957 0.966 0.951 0.862 0.808 0.813  0.4  0.8 8 

9 

10 

1 1 1 1 1 1  0.7 -   0.5 

0.977 0.955 0.973 0.878 0.842 0.858  0.6 -   0.2 -  

1 0.998 1 0.989 0.973 0.974  0.5 -  0.2 0.7 11 

12 0.998 0.997 0.998 0.973 0.981 0.980  0.1 0.35-  1.3 

1 1 1 1 1 1 0.3 -0.6  0.4 13 

0.999 0.996 0.999 0.984 0.975 0.974 0.5 -  1.3 0.3 -  0.9 14 
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