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Abstract: The robust or sandwich estimator is common to estimate the covariance matrix of the estimated regression 

parameter for generalized estimating equation (GEE) method to analyze longitudinal data. However, the robust estimator 

would underestimate the variance under a small sample size. We propose an alternative covariance estimator to the robust 

estimator to improve the small-sample bias in the GEE method. Our proposed estimator is a modification of the 

bias-corrected covariance estimator proposed by Pan (2001, Biometrika88, 901—906) for the GEE method. In a simulation 

study, we compared the proposed covariance estimator to the robust estimator and Pan's estimator for continuous and 

binominallongitudinal responses for involving 10—50 subjects. The test size of Wald-type test statistics for the proposed 

estimator is relatively close to the nominal level when compared with those for the robust estimator and the Pan's approach.  
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1. Introduction

Correlated data are very commonly adopted in 

biomedical research in cases of repeated measurements on 

the same subject or clustered sampling. Reference [1] 

proposed the generalized estimating equations (GEE) 

method, which is one of the most popular ways to analyze 

these correlated data. The GEE method generally uses a 

robust covariance estimator (also known as sandwich or 

empirical covariance estimator) to estimate the covariance 

matrix of the regression coefficients. The covariance 

estimator is a consistent estimator, and is robust with 

respect to misspecification of the covariance matrix of the 

correlated data when the number of subjects is sufficiently 

large. However, the robust covariance estimator does not 

perform well for small samples. As it tends to be 

underestimated, the size of Wald-type tests for the 

regression coefficients could be substantially greater than 

the nominal level and the coverage probability of the 

corresponding confidence interval may be considerably 

below the nominal level for small samples even when the 

covariance matrix of the correlated data is correctly 

specified [2]. 

In practice, due to limited resources or limited size of the 

population in biomedical research, it is impossible to 

increase sample size. In pharmacological and toxicological 

researches on animals, the number of individuals per group 

would be about at most 10 and the total sample size is also 

about 50 individuals. In phase I studies, which are early 

conducted in the drug development process, the sample size 

is mostly 40—50.Of course, it is not easy to acquire the 

sufficient number of patients in clinical trials to develop 

orphan drugs. Even epidemiological studies, the sample 

size might be quite small. For example, an air pollution 

research reported by [3] was investigated on 16 children.  

Two major approaches have been proposed to solve the 

small-sample issue. One is to use alternative test statistics 

or probability distribution in substitution for the Wald-type 

chi-squared test and the other is to directly correct the bias 

of the robust covariance estimator of the coefficient. 

In the former case, [4, 5] used an F- or t-distribution 

rather than a chi-squared or normal distribution to test 
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regression coefficients estimated by the GEE method. 

Further, [6] proposed the use of score statistics for the 

corresponding test and its modification in place of the 

Wald-type statistics. These researchers showed that in 

terms of the test size, their proposed approaches were 

superior to the Wald-type statistics based on the robust 

covariance estimator. 

In the latter case, [2, 7, 8] proposed some alternative 

covariance estimators to improve the small-sample bias. 

Reference [9] compared the performance of the 

bias-corrected covariance estimators through a simulation 

study.  

In this study, we propose a modification of the 

bias-corrected covariance estimator proposed by [8] for the 

GEE method to analyze the small-sample longitudinal data 

with continuous and binominalresponses, and we provide 

one of the options for researchers who routinely address 

research questions using data from small samples. 

This paper is organized as follows. In Section 2, we 

provide the covariance estimator proposed by [8] and 

further, propose an alternative covariance estimator. In 

Section 3, we present the results of a simulation study to 

investigate the performance of the proposed and existing 

covariance estimators. Finally, Section 4 provides 

conclusions. 

2. Bias-Corrected Robust Covariance 

Estimator 

Let ���  denote an outcome variable on subjects 

� � 1, … , 	 and observations 
 � 1, … , �� for each subject. 

Also, assume that an�� � 
  matrix of covariate values 

X� � ����, … , ������ is adjoined to the outcome vectorY� �
����, … , ������ . To simplify notation, we suppose that 

�� � � as in [1]. 

The expected value and variance of the outcome variable 

are assumed to be ��� � �����|���� � �������
� �� and 

var����|���� �  !����� , respectively, where �  is a 

specified link function, �  is a regression parameter 

(
-vector) to be estimated,   is a scale parameter, and ! 

denotes a variance function that indicates the 

mean-variance relation. The working covariance matrix of 

Y�, V# is assumed to have the form  A�
�/&R��(�A�

�/&
, in 

which A� � diag�!���  and ,��-�  is the working 

correlation matrix parameterized by ( , an association 

parameter (.-vector).  

The GEE method identifies the estimator �/  of the 

regression parameter � as the solution to (1), substituting 

  with a 	�/& -consistent estimator  0�Y, ��  after 

replacing ( with a 	�/&-consistent estimator (1�Y, �,  �.  

                           U��� 4 ∑ D�
�V�

��S�
8
�9� � 0,             (1) 

whereD�  is an � � 
  matrix defined by D� � ;��/;� , 

V� �  A�
�/&R#�(�A�

�/&
,S# � Y� < �� ,and �� � ����, … , ����� .  

The covariance matrix of�/  by the GEE method, which is 

referred to as the robust covariance, is given by   

   (2) 

According to [1], the covariance estimation V=> of V? in 

(2) can be obtained by replacing cov�Y��with S�S�
� . In 

addition, the model (or naive) covariance estimator of �/  is 

given by 

                   VB> � �∑ D�
�V�

��D�
8
�9� ���.                 (3) 

The robust covariance estimator V=>  using S�S�
�  is 

expected to underestimate the variance of �/  when the 

sample size 	 is small [2].S�S�
�is not an optimal estimator 

of cov�Y�� , since it is neither consistent nor efficient, 

because it is based on the data from only one subject, �, as 

pointed out by [8]. 

Reference [8] proposed an alternative covariance 

estimator for �/  in (4) for small-sample adjustment: 

     (4) 

As we can see in (4), [8] uses the following matrix as the 

estimator of cov�Y��: 

         W� � A�
�/& E�

8 ∑ A�
��/&8

�9� S�S�
�A�

��/&F A�
�/&.       (5) 

W�is a consistent estimator of cov�Y��; however, W� is 

not an unbiased estimator for small 	 . Thus, we 

conventionally consider the use of  

   W�
G � A�

�/& E �
8�H ∑ A�

��/&8
�9� S�S�

�A�
��/&F A�

�/&
  (6) 

as the estimator of cov����. Hence, a modified covariance 

estimator is given by  

   (7) 

In practice, the covariance estimator VIB can be obtained 

by replacing �,  , ( with their respective estimates in 

(7). Of course, W� � W�
G  and VIJ � VIB  when 	 K


and 	 � ∞. Note that W�
Gis not dependent on  , just 

like W�. 
The modification is to use a degrees-of-freedom 

correction similar to the one conventionally used to obtain 

unbiased estimates of cov�Y��. VIBis more efficient than 

V=>and this result is simply proven by the discussion in[8]. 

Our proposed covariance estimator is slightly insight 

because 1/	 in (4) proposed by [8] is only replaced with 

1/�	 < 
� and it is well known as a bias adjustment in 

general linear models. However, the magnitude of the 

covariance estimates is meaningfully different between 

Pan’s and our methods when 	 is small. Reference [2] have 

represented a simple-to-implement modification to the GEE 
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robust estimator in (2), which consists of multiplying the 

GEE robust estimator by 	/�	 < 
� , and evaluated the 

performance of the modified estimator. This idea may be 

based on [10] which have considered a similar modification 

to the heteroskedasticity-consistent estimator shown in [11]. 

Henceforth, the robust and model covariance estimators 

in (2) and (3), the bias-corrected covariance estimator in(4), 

and our proposed estimator in (7) are referred to as RO, 

MO, PA, and PM, respectively. 

3. Simulation Study 

3.1. Scenarios and Methods 

The small-sample property of the proposed covariance 

estimator was evaluated by a simulation study. We assumed 

a randomized clinical trial with parallel group design, which 

each subject is assigned to either treatment group or control 

group. In this simulation study, the test size based on Wald 

M-statistics of � was investigated. The test size was defined 

as the proportion of times |�/N/SE��/N�| P MQ.RST�U �
0, V , 
 < 1� under a null hypothesis WQ: �N � �N�YZ[\�, with 

MQ.RST  as the 97.5 
�  percentile of standard normal 

distribution, �/  as the GEE estimate, and SE denoting the 

standard error derived from RO, MO, PA, and PM. We 

focusedlargely on the comparison between the test sizes of 

PM and PA because the statistical test for the regression 

parameters is of clinical and statistical interests in 

randomized clinical trials, andour proposed estimator PM is 

a modification of the bias-corrected covariance estimator 

PA proposed by [8]. 

The simulation data were generated for six scenarios 

presented in Table 1. In Scenarios 1 to 3 (normal response), 

we assumed a multivariate normal distribution with mean 

��� , variance ]��
& , and correlation coefficient ρ���G .The 

variance was]��
& � 1  and the true correlation structures 

were exchangeable with ρ���G � ρ � 0.2 and 0.5 .In 

Scenarios 4 to 6 (binominal response), the binominal 

response was assumed to be a multivariate binominal 

distribution with mean ���[12].The true correlation structure 

was an exchangeable structure with the true correlation 

coefficient b � 0.2.  

In the six scenarios, ��  was a treatment group 

(subject-between covariate) indicator; half the subjects had 

�� � 0  and the other half had �� � 1 . M�� was a 

subject-within covariate indicator and an independent 

Bernoulli distribution, that is, M�� � 0 or 1 with probability 

1/2.  

We correctly fitted the marginal mean model with 

�Q c ����  for Scenario 1, �Q c ���� c �&M��for Scenario 2, 

and �Q c ���� c �&�
 < 1� c �d���
 < 1� for Scenario 3 to 

the simulated normal response. In addition, we correctly 

fitted the marginal logistic model with exp� �Q c ����� for 

Scenario 4, exp� �Q c ���� c �&M���  for Scenario 5, and 

exp� �Q c ���� c �&�
 < 1� c �d���
 < 1�� for Scenario 6 

to the simulated binominal response. � � ��Q, ���� for 

Scenarios 1 and 4, � � ��Q, ��, �&�� for Scenarios 2 and 5, 

and � � ��Q, ��, �&, �d��  for Scenarios 3 and 6 were 

estimated by the GEE method using the exchangeable 

correlation structure or AR(1) structure as the working 

correlation structure.  

Further, we set the sample size 	 as 10, 16, 20, 30, 40, 

and 50 and the number of observations � as 5, 10, and 20 

for each subject. Data generation was repeated 100,000 

times in each scenario. The simulation study was performed 

by using SAS 9.3 (SAS institute Inc., Cary, NC).  

Table 1.Scenarios for generating simulation data 

Scenario Data type True mean structure 
True regression 

parameterh�ijkl� 

1 Normal ��� � �Q�YZ[\� c ���YZ[\��� �0, 0� 

2 Normal ��� � �Q�YZ[\� c ���YZ[\��� c �&�YZ[\�M�� �0, 0, 0� 

3 Normal ��� � �Q�YZ[\� c ���YZ[\��� c �&�YZ[\��
 < 1� c �d�YZ[\����
 < 1� �0, 0, 0, 0� 

4 Binominal logit����� � �Q�YZ[\� c ���YZ[\��� �0, 0� 

5 Binominal logit����� � �Q�YZ[\� c ���YZ[\��� c �&�YZ[\�M�� �0, 0, 0� 

6 Binominal logit����� � �Q�YZ[\� c ���YZ[\��� c �&�YZ[\��
 < 1� c �d�YZ[\����
 < 1� ��0, 0, 0, 0� 

 

3.2. Results 

Figs. 1 to 6 present the results of the simulation study in 

terms of the test sizes based on Wald M-statistics of �N in 

the cases where MO, RO, PA, and PM were used. The 

results are not reported for the intercept term �Q since it is 

usually considered to be a nuisance parameter in the six 

scenarios.  

Fig. 1 shows the test size of ��  for Scenario 1when 

ρ =0.5, in which an exchangeable structure is correctly 

specified and AR(1) is misspecified as the working 

correlation structure. The test size for PM was rather closer 

to 0.05 than those for MO, RO, and PA at all times in this 

scenario. The test size for PM also increased as the sample 

size 	decreased, much as with the other estimators. In fact, 

the test size for PM was somewhat inflated and fell within 

the range 0.082<0.088when 	 � 10. However, the size for 

PM was approximately 0.05 when 	 P 30. The size of the 

effect for the subject-between covariate may have been 

inflated even when PA was applied. The results are not 

reported for the test size when ρ � 0.2 since they are quite 

similar to that when ρ � 0.5.It is the same also at the time of 

Scenarios 2 and 3. 
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Figure 1.Test size of Wald-type test statistics for 

H0: �� � 0 at a nominal 0.05 level in Scenario 1 (normal response). 

WCS, working correlation structure; MO, model covariance estimator; 

RO, robust covariance estimator; PA, covariance estimator by [8]; PM, 

proposed covariance estimator. 

Fig. 2 reports the test sizes of �� and 

for Scenario 2, in which an exchangeable structure is 

correctly specified and AR(1) is misspecified as the working 

correlation structure. The results are not reported for the test 

size when � � 5, 20and ρ � 0.2since they are quite similar 

to that when � � 10and ρ � 0.5. It is the same also at the 

time of Scenario 3. The test size for PM of 

corresponding to the treatment effect fell within the range 

0.047 < 0.074 when � � 5, 10, 20 and

addition, the test size for the PM of �& corres

effect of the subject-within covariate was between 0.02

0.047 and PM was conservative when 	
hand, the test size for the PA of �& was between 0.051 and 

0.080when 	 p 20. The test sizes for all estimators except 

MO were slightly dependent on the specification of the 

working correlation structure.  

Fig. 3 presents the test sizes of ��
� � 10 and ρ � 0.5 for Scenario 

exchangeable structure is correctly specified and AR(1) is 

misspecified as the working correlation structure. The test 

size for PM of �� fell within the range 0.0

close to the nominal level 0.05when �
0.2, 0.5. In addition, the test sizes for the PM of 

corresponding to the time variable and the interaction term 

between �� and 
 < 1 , respectively, were generally 

controlled by the nominal level. 

Fig. 4 shows the test size of �� for Scenario 4

an exchangeable structure is correctly specified and AR(1) is 

misspecified as the working correlation structure. The test 

size for PM was rather closer to 0.05 than those for MO, RO, 

and PA at all times in this scenario. The test size for PM also 
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WCS, working correlation structure; MO, model covariance estimator; 

RO, robust covariance estimator; PA, covariance estimator by [8]; PM, 
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for Scenario 2, in which an exchangeable structure is 

correctly specified and AR(1) is misspecified as the working 

correlation structure. The results are not reported for the test 

since they are quite similar 

. It is the same also at the 

he test size for PM of �� 

corresponding to the treatment effect fell within the range 

and  ρ � 0.2, 0.5 . In 

corresponding to the 

within covariate was between 0.024 and 

	 p 20. On the other 

was between 0.051 and 

. The test sizes for all estimators except 

ere slightly dependent on the specification of the 

, �& , and �d  when 

for Scenario 3, in which an 

exchangeable structure is correctly specified and AR(1) is 

cified as the working correlation structure. The test 

fell within the range 0.045<0.056and was 

� � 5,10,20and ρ �
. In addition, the test sizes for the PM of �& and �d 

the time variable and the interaction term 

, respectively, were generally 

for Scenario 4, in which 

an exchangeable structure is correctly specified and AR(1) is 

sspecified as the working correlation structure. The test 

size for PM was rather closer to 0.05 than those for MO, RO, 

and PA at all times in this scenario. The test size for PM also 

increased as the sample size 	
other estimators. In fact, the test size for PM was somewhat 

inflated and fell within the range 0.064

	 � 10. However, the size for PM was approximately 0.05 

when 	 P 40. Further, the size for PM increased as the 

number of observations �  increased when 

This property was similar to the other estimators. The test 

size for PA was quite similar to that for RO. The size of the 

effect for the subject-between covariate may have been 

inflated even when PA was applied. 

Figure 2.Test size of Wald-type test statistics for 

H0: �N � 0 (j = 1, 2) at a nominal 0.05 level in Scenario 2 (normal 

response) when � � 10 and b
structure; MO, model covariance estimator; RO, robust covariance 

estimator; PA, covariance estimator by [8]; PM, proposed covariance 

estimator. 

Fig. 5 reports the test sizes of 

for Scenario 5, in which an exchangeable structure is 

correctly specified and AR(1) is misspecified as the working 

correlation structure. The results are not reported for the test 

size when � � 5, 20  since they are quite similar to that 

when � � 10. It is the same also at the time of Scenario 6. 

According to Fig. 5, the test size for PM of 

corresponding to the treatment effec

0.049<0.063when � � 5, 10,
for the PM of �&  corresponding to the effect of the 

subject-within covariate was between 0.021 and 0.047 and 

PM was conservative when	
of �&  was between 0.049 and 0.063 and was somewhat 

controlled at the nominal size. This result was most like the 

discussion by [8]. The test sizes for all estimators except MO 

were slightly dependent on the specification of the working 

correlation structure.  
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discussion by [8]. The test sizes for all estimators except MO 
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Figure 3.Test size of Wald-type test statistics for �N rejecting hypothesis 

H0: �N � 0 �U � 1, 2, 3� at a nominal 0.05 level in Scenario 3 (normal 

response) when � �10 and b= 0.5. WCS, working correlation structure; 

MO, model covariance estimator; RO, robust covariance estimator; PA, 

covariance estimator by [8]; PM, proposed covariance estimator. 

Fig. 6 presents the test sizes of �� , �& , and �d  when 

� � 10 for Scenario 6, in which an exchangeable structure 

is correctly specified and AR(1) is misspecified as the 

working correlation structure. The test size for PM of �� 

fell within the range 0.029<0.051 when � � 5,10,20. The 

size was smaller than the nominal level 0.05 when 	 p 30. 

In addition, the test sizes for the PM of �&  and �d 

corresponding to the time variable and the interaction term 

between �� and 
 < 1 , respectively, were generally 

controlled by the nominal level 0.05.  

Through the six scenarios, the sizes for PM of the 

treatment effect were relatively closer to the nominal size, 

especially for small 	, compared with that for PA. We also 

reconfirmed the small-sample problem for RO even when 

the correlation structure was correctly specified.Further, our 

proposed estimator PM can be interpreted as a helpful and 

robust modification of PAto address small-sample issues 

because the test size for the proposed method wasnot 

particularly dependent on the number of observations for 

each subject, the correlation structure, and the distribution of 

the response variable. 

4. Conclusions 

We modified the covariance estimator by [8] to adjust the 

small-sample bias of the covariance estimator of the 

regression coefficients. The GEE robust covariance 

estimator tends to underestimate the variance under a small 

sample size; that is, the 
 value for the robust covariance 

estimator is small and the statistical inference is liberal. 

 

Figure 4.Test size of Wald-type test statistics for �� rejecting hypothesis 

H0: �� � 0 at a nominal 0.05 level in Scenario 4 (binominal response). 

WCS, working correlation structure; MO, model covariance estimator; 

RO, robust covariance estimator; PA, covariance estimator by [8]; PM, 

proposed covariance estimator. 

 

Figure 5.Test size of Wald-type test statistics for hr rejecting hypothesis 

H0: hr � s (j = 1, 2) at a nominal 0.05 level in Scenario 5 (binominal 

response) when t �10. WCS, working correlation structure; MO, model 

covariance estimator; RO, robust covariance estimator; PA, covariance 

estimator by [8]; PM, proposed covariance estimator. 
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Figure 6.Test size of Wald-type test statistics for �N rejecting hypothesis 

H0: �N � 0 �U � 1, 2, 3� at a nominal 0.05 level in Scenario 6 (binominal 

response) when � �10. WCS, working correlation structure; MO, model 

covariance estimator; RO, robust covariance estimator; PA, covariance 

estimator by [8]; PM, proposed covariance estimator. 

The proposed covariance estimator avoids the bias of the 

robust variance estimator under the small sample size in 

many situations. The proposed method cannot completely 

control the test size below a nominal level; however, the 

method has relatively good performance compared with the 

existing methods. 

Our estimator has a simple structure, like that of [8]. In the 

data analysis for small samples, we often confront the 

convergence problem and the impossibility of estimates for 

the regression parameters.The simplicity of the covariance 

estimator will be an important property for the small sample 

issues. 
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