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Abstract: One of the approaches to determining and quantifying the credit risk of a loan portfolio is by obtaining the 
distribution of losses of the portfolio and determining the risk quantities from such distributions. In this paper, we describe 
the challenges to using this approach and illustrate a practical solution where simulation methods are used to obtain loss 
distribution for a two obligor portfolio. This is then extended to ten and hundred obligor portfolios. Existing probability 
distributions with specified parameters are then used to approximate the loss distributions obtained. Using such parameters 
of the existing probability distributions, we obtain the risk quantities associated with the loan portfolio including Expected 
and Unexpected losses. We realized that depending on the confidence interval for which we measure the Unexpected Loss, 
Stress Losses are needed to account for the total loss of the portfolio. 

Keywords: Economic Capital, Expected Loss, Unexpected Loss, Obligor, Loss Given Default, Exposure at Default, 
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1. Introduction 
In the last two decades, credit risk management has 

become a topic of paramount importance in finance. Its 
importance became greatly significant, when in 2007 
Lehman Brothers, one of the biggest investment banks in 
the US, collapsed after failing to honour its obligations. The 
collapse triggered a domino effect that led to several 
corporate failures leading to what became known as the 
credit crunch. If one considers the level of corporate debt, 
sovereign debt, retail loans, debt securitization vehicles and 
instruments that suffered during this period then the extent 
of the credit market and its effect on corporate and most 
national economies is overwhelming. Although banks in 
developing countries were not directly hit by the huge 
losses that characterized the European and American banks 
during the period, it is essential that their financial 
institutions develop robust credit risk management models 
as it continues to expose its businesses further in the 
international market. The dramatic growth in the credit 
market in developing countries especially in the last decade 
provides the drive and need for development and study of a 
wealth of new credit models. 

Recent advances in credit risk models have been 
reflected in several reforms proposed by the Basel 
committee on banking supervision. Under the Basel 
proposal, banks can determine their own estimates of some 

of the components of risk measure: Probability of Default 
(PD), Loss Given Default (LGD), Exposure at Default 
(EAD) and Maturity (M).  The goal of these regulations is 
to define risk weights by determining cut-off points 
between and within areas of Expected Loss and 
Unexpected Loss where regulatory capital is to be held, in 
the event of a default. Such determination of risk measures 
depends on the level of sophistication of the bank’s credit 
models. These measures include the Standardized 
Approach, the Internal Ratings Based Approach 
(Foundation) and the Advanced Internal Rating Based 
Approach. Currently, most central banks in developing 
countries continue to use the Standardized Approach which 
simply specify the minimum capital requirements as a risk 
weight percentage (usually 8-10% of debt), to be held as 
capital [1]. Such models in banking supervision are not 
robust and sophisticated enough to withstand similar 
catastrophic losses such as which occurred in Europe and 
America. It is therefore essential that more advanced credit 
models are used to determine regulatory capital especially 
in Africa. 

The seminal paper on credit risk modeling is Merton 
(1974). In Merton’s model, the value of the total assets of a 
firm is modeled by a geometric Brownian motion. The firm 
defaults if its assets fall below the (fixed) level of its 
liabilities at a pre specified time horizon. An option pricing 
approach can then be used to value the firm’s equity as a 
call option on its assets with strike price equal to the level 
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of its liabilities [2]. The idea of linking a firm’s default 
behaviour with the value of its assets is intuitively 
appealing, and has spawned the broad class of models 
referred to as structural models. The common feature of all 
of these models is the assumption that the firm’s credit 
quality is determined by its capital structure and the values 
of its assets and liabilities. Joint default behaviour can then 
be introduced by linking the values of the assets and 
liabilities to macroeconomic factors. Examples of this 
approach include the CreditMetrics and Moody’s-KMV 
models popular in industry [3]. 

In factor models, the price of a credit sensitive 
instrument is driven by the values of a set of fundamental 
random variables (common to all securities) as well as an 
idiosyncratic factor. The key property is the conditional 
independence of credit losses, given the values of the 
fundamental factors. Often, one-factor models admit a 
decomposition of the portfolio loss variable into a 
monotonic function of the factor and a residual. The former 
part of the decomposition is called systematic risk whereas 
the latter part is called specific or idiosyncratic risk. In this 
paper we will assume that the random variable X is a 
macroeconomic factor affecting all defaults, and there exist 
an idiosyncratic factor ε independent of X, affecting the 
industry within which the obligor operates [3]. 

Our approach in this study begins by outlining the risk 
components of a credit risk instrument of a loan portfolio 
which includes Expected Loss, Unexpected Loss, Loss 
Given Default, Exposure at Default and Maturity. As the 
number of obligors in a portfolio increases, the portfolio 
loss is then driven by the joint default behavior of the 
obligors. If all obligors default independently and the Loss 
Given Default instruments are independent, then the 
Central Limit Theorem implies that portfolio losses will 
tend to be normally distributed. However, in most cases this 
is not so as the obligor defaults do not occur independently. 
Default correlation, the tendency of defaults to occur 
together, can come from the fact that obligors may be 
drawn from same or similar industries, or affected by the 
overall health of the economy. Defaults can also be related 
due to contagion effect from direct ties between firms. This 
implies that obligor defaults are not independent. For these 
reasons, real portfolio losses tend to exhibit skewness and 
fat tails [3]. 

The joint probability of default is achieved by 
determining the asset value correlation of obligors. As true 
asset returns of individual obligors are not directly 
observable, equity prices are used as a proxy for asset 
returns to determine asset value correlation of obligors. 
Monte Carlo simulation, a probability simulation technique, 
is employed to understand the impact or how likely the 
resulting outcomes or default behaviour is dependent on the 
macroeconomic factors of systematic and idiosyncratic risk. 
Monte Carlo simulation is widely employed in finance. The 
most common use of Monte Carlo simulations in finance is 
when we need to calculate an expected value of a function 

)(xf given a specified distribution density [4]. Phelim 

(1977) developed a Monte Carlo simulation method for 
solving option valuation problems. The method simulates 
the process generating the returns on the underlying asset 
and invokes the risk neutrality assumption to derive the 
value of the option [5]. Recently, Monte Carlo simulation 
approach to generate loss distributions has also become 
popular in operational risk models. Enrique Navarrate 
developed operational risk quantification using Monte 
Carlo simulation [6]. A more detailed approach to credit 
risk using Monte Carlo simulation was outlined as in [7]. 
“For an extensive discussion of credit risk modeling see as 
outlined in [8]. 

In this paper, we employ Monte Carlo simulation by 
generating scenarios for the portfolio loss. This is achieved 
by simulating the common macroeconomic factor X and the 
idiosyncratic factor iε . This procedure is repeated a large 
number of times to produce a sample from the true 
portfolio distribution. The credit risk measures of the 
distribution are then determined by methods of 
approximation using probability distributions. Although 
this procedure is computationally intensive (for example, in 
a particular scenario for a portfolio of size hundred there 
are 27,204,000 simulations), it can be applied to portfolio 
of any size. Thus, we begin with a portfolio of size two, 
extend it to ten and then to a portfolio of size hundred. 

After obtaining frequency of loss using Monte Carlo 
simulation, we do not know the exact probability 
distribution followed by the loss distribution. To obtain the 
corresponding probability distribution, we employ 
analytical approximation method to determine the nature of 
distribution followed by the loss distribution. Methods of 
Approximation using a probability distribution have been 
successfully used in finance and engineering to determine 
solutions to analytic problems that do not have closed form 
solutions. It has many applications in risk analysis, quality 
control and cost scheduling. In finance,  Giovanni Adesi 
provided a simple, analytic approximations method for 
pricing exchange-traded American call and put options 
written on commodities and commodity futures contracts 
[9]. The reasons for fitting a distribution to a set of data 
include the desire for objectivity, the need for automating 
the data analysis, and interest in the values of the 
distribution parameters [10]. 

One problem of analyzing data through the process of 
simulation and fitting a statistical distribution is that many 
other classical distribution functions could fit the sample 
and consequently, goodness-of-fit tests are needed to be 
performed on the constructed probability distribution 
functions [11]. However, recent developments in computer 
software offer programs that automatically assess the 
goodness-of-fit and provide the best distribution for a given 
data. 

2. Main Body 
We begin by outlining the building blocks of credit risk 

modeling and develop a simple framework for a portfolio 
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of two assets. We will first use these components to 
generate loss distribution from which we will calculate the 
risk quantities for a two obligor portfolio and then extend 
the framework to a portfolio of 10 or more obligors. 

2.1. Components of Credit Risk Models 

We begin by looking at the various components of credit 
risk models, define these components and outline their 
mathematical contributions to the framework. 

2.1.1. Default 
There exist various definitions of default. Throughout the 

text we shall refer to default as failure to pay promptly 
Interest or principal on a loan agreement when due i.e. 
payment default. Basically, there are two methods of 
measuring losses due to credit risk: mark-to-market and 
default methods. The mark-to-market paradigm recognizes 
losses when the credit quality of the obligor (also referred to 
as debtor), deteriorates i.e. migrates to a lower credit rating. 
Such losses are not paid out, but only recognized when the 
portfolio of the bank is marked-to-market. Credit migration 
is the approach used by JP Morgan Chase Bank [12]. 

On the other hand, the default method recognizes losses 
only when they are realized in the form of default. Given 
that an obligor defaults, the loan provider or the obligee 
suffers a loss referred to as Loss Given default. 
Mathematically, the default method is a special case of the 
mark-to-market method (considering only two rating 
classes-default or survive). However, from a risk 
management view the two approaches are quite distinct. 
Throughout the text we shall focus on defaults only and 
ignore the credit risk related to credit migration. That is, we 
shall ignore the probability that the obligor would move 
from one credit quality to another including default within 
a given time horizon. 

2.1.2. Probability of default (PD) 
This indicates the degree of likelihood or the probability 

that promised payments such as interest and coupon 
payments and principal repayments will not be paid by the 
obligor. The assignment of a default probability to every 
customer in a credit portfolio is far from an easy task. 
There are essentially two approaches to this assignment: 
• Calibration of default probabilities from market data 

The most famous representation of this type is the 
concept of Expected Default Frequencies (EDF) developed 
by KMV  Corporation. This method for calibrating default 
probabilities from market data is based on credit spreads of 
traded products bearing credit risk, e.g., corporate bonds 
and credit derivatives (swaps, etc.) 
• Calibration of default probabilities from ratings 

Basically, ratings describe the creditworthiness of 
customers. Ratings are assigned to customers either by 
external rating agencies like Moody’ Investors Services, 
Standard & Poor (S&P) or FITCH, or by a bank internal 
rating methodologies. Quantitative as well as qualitative 
information is used to evaluate the client. In practice, the 
procedure is more often based on the judgment and 

experience of the rating analyst than on pure mathematical 
procedures with strict defined outcome. In ratings, many 
drivers of the considered firm’s economic future are 
considered. These include future earnings and cash flows, 
debt, short and long term liabilities [5]. 

2.1.3. Exposure at Default (EAD) 
Exposure at Default (EAD) estimates the amount that the 

obligor owes in case of default. EAD actually specifies the 
exposure a bank does have to its borrowers. For example, if 
a bank loans a £1000 to an obligor, then the bank’s 
Exposure at Default is £1000.  In general, the exposure 
consists of two major parts; the outstandings and 
commitments. The outstandings refer to the portion of the 
exposure already drawn by the obligor. In case of 
borrower’s default, the bank is exposed to the total amount 
of the outstandings. The commitments can be divided into 
two portions, drawn and un-drawn, in the time of default. 
EAD can be defined as: 

EAD = Outstandings + γ Commitments            1.1 

Where γ is the expected portion of the commitment 
likely to be drawn prior to default. 

2.1.4. Loss Given Default (LGD) 
The Loss Given Default (LGD) represent an estimate of 

the portion of the exposure-at-default that will not be 
recovered as a result of a default event, i.e., the LGD 
quantifies the portion of loss the lending entity will really 
suffer in case of default. The estimation of loss quotes is 
somehow complicated because recovery rates depend on 
many driving factors, for example on the quality of the 
collateral (securities, mortgages, guarantees, etc.) and on 
the “seniority” of the lenders claim on the borrower’s assets. 
Loss Given Default is thus considered as a random variable 
describing the severity of the loss of a facility type in case 
of default. LGD thus refers to the expectation of the 
severity of loss  

 LGD = Expected [Severity]                    1.2 

Most lending institutions depend on rating agencies as a 
source for data of defaulted bonds. 

2.1.5. Expected Loss (EL) 
Expected Loss (EL) gives an indication of the portfolio 

loss that we can expect to occur over the coming year. The 
Expected Loss of a transaction is an insurance or loss 
reserve to cover losses that a lending institution expects 
from historical default experience. In a capital charge 
requirement of a loan portfolio, the EL is provided for by 
pricing and provisions. As in probability theory, the 
attribute “expected” always refers to an expectation or 
mean value, and this is the case in credit risk. In assessing 
expected loss of a loan, a customer is assigned a Probability 
of Default (PD), a Loss Given Default (LGD) and an 
Exposure at Default (EAD). 

A loss of any obligor is then defined by a loss variable 



 Science Journal of Applied Mathematics and Statistics 2014; 2(2): 42-52  45 

 

EADLGDPDLossExpected ××=            1.3 

Since the expected loss is not predictable to a certain 
degree we should mention that underlying our model is 
some probability space ),,( ΡΩ F  where Ω is a sample 

space of a set of outcomes. F is a collection of subset of 
Ω  that form a σ - field and Ρ is a probability measure. 
The elements of F are measurable events of the model and 
by intuition it makes sense to claim that the event of default 
should be measurable. For obtaining the representation 
above we need some assumptions that EAD and LGD are 
constant values. This is not necessarily the case under all 
circumstances. There are various situations in which for 
example EAD has to be modeled as a random variable. In 
such cases the EL is still given by Equation 1.3 if one can 
assume that the exposure, the LGD and the PD are 
independent and EAD and LGD are the expectations of 
some underlying random variable. 

But whether the constituents of equation 1.3 are 
independent or not the basic concept of EL is still the same 
and for reasons of simplicity our convention will be that 
EAD is always deterministic (non-random) quantity 
whereas LGD will be considered as a random variable. 
Equation 1.3 is used to calculate the EL of a single loan. 
The portfolio EL is simply the sum of the ELs of the loans 
in the portfolio [7]  

Example 1. 
We shall look at the Expected Loss of two obligors; 

obligor 1 and obligor 2 that owe us 1000 and 2000 pounds 
respectively. This means our EAD is £1000 and £2000 for 
obligor 1 and obligor 2 respectively. Obligor 1 has a PD on 

its loan of 1%, while obligor 2 has a PD of 2%. The LGD 
for both loans is 50%. 

The Expected Loss of the loan for obligor 1  
= 1% * 50% * 1000 = 0.01*0.5*1000 = £5 

The Expected Loss of the loan for obligor 2  
= 2% * 50% * 1000 = 0.02*0.5*2000 = £20 

The Expected loss of the portfolio is therefore  
= 5 + 20 = £25 

2.1.6. Unexpected Loss 
We now look at the key components of credit risk 

modeling, starting with the standard deviation of loss. At 
the beginning, we introduced Expected Loss (EL) and 
pointed out that the EL of a transaction is an insurance or 
loss reserve to cover losses that a lending institution 
expects from historical default experience. But holding 
capital against expected losses is not enough. In fact, the 
lending institution should in addition to the expected loss 
reserve, also save money to cover unexpected losses 
exceeding the average experienced losses from past history. 
This arises because most of the time actual losses are not 
equal to the EL. We therefore need a measure of the 
deviation of actual losses around their expected levels. The 
standard deviation of loss measures this credit risk of 
transaction, typically called the Unexpected Loss (UL) [7]. 

2.1.7. Unexpected Loss of a Single Credit Risk 
Transaction 

The unexpected loss of a credit risk transaction is a 
function of the PD, LGD, and EAD and their variances. PD, 
LGD and EAD are independent random variables. The 
unexpected loss is given in Equation 1.4

UL=
222222222

222222222222

LGDEADPDEADPDPDLGD

LGDEADEADPDLGD

LGDEAD

PDPDLGDLGDEADEADPD

σσσσσσσ

σσσσσ

+++

+++
                            1.4 

All the functions are independent and we will assume 
that the probability of default has a Bernoulli distribution, 

so that we can substitute PD
2σ  by )( 2PDPD− . The 

Loss Given Default has a βeta distribution, which allows us  

to replace LGD
2σ by LGD*(1-LGD)/4, and EAD is 

assumed to be deterministic, so that 02 =EADσ . This leads 
to Equation 1.5. 

Unexpected Loss ]4/)1(**)1(**[ 2 LGDLGDPDPDPDLGDEAD −+−∗=                            1.5 

2.1.8. Unexpected Loss of a Portfolio 
Due to diversification (we can spread our investment 

over various positions in different industry sectors and 

regions), the unexpected loss of the portfolio is given by 
Equation 1.6.  

Unexpected Loss of a Portfolio =∑ ∑ == ,** ,,...,1,...,1 jijinini ULUL ρ                                1.6 

Where ji ,ρ  represents the default correlation between 

obligor i  and obligor j in a portfolio of nobligors. For a 

portfolio of two obligors, ,2=n the unexpected loss of the 

two credit risk transaction is a function of the ULs of the 
transactions and their correlation and is given in Equation 
1.7

Portfolio Unexpected Loss = 2,121
2

2
2

1 2 ρULULULUL ++                                           1.7 
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2,1ρ is the default correlation between obligor 1 and 

obligor 2. The default correlation gives an indication of the 
tendency of the two loans to default at the same point in 
time. The default correlation between obligor i  and obligor 
j is determined by Equation 1.8. 

)1)(1(*

*
,

jii

ji
ji

PDPDPD

PDPDJPD

−−

−
=ρ                  1.8 

Where JDP is the joint probability of default of obligor i 
and j ad PDi and PDj 

are the probability of default of 
obligor i and j respectively. The Joint Probability of Default 
is a function of the PD’s of the obligors and their asset 
correlation. 

),,( , jiji ncorrelatioassetPDPDJDPJDP =         1.9 

The Joint Probability of Default is established by 
determining the volume under the asset value distribution 
up to the default threshold of the two obligors. 
Mathematically, the JDP is a double integral which is 
approximated by a Visual Basic program in Excel [7]. 

The Unexpected Loss determined in this procedure 
represents credit risk at one standard deviation of loss. This 
provides confidence level of around 90% which is not 
sufficient to capture all the losses associated with the loan 
portfolio. For highly rated financial institutions with 
confidence level of 99.9%, this additional loss, referred to 
as Stress Loss (SL) is highly significant. We would 
determine the Stress Loss associated with each portfolio 
after the simulation procedure outlined in 3. 

3. Simulation Procedure 
We will now use a Monte Carlo simulation procedure to 

generate frequency of loss of the portfolio by following the 
following steps: 
1. Specify PD, LGD and EAD and R (systematic factor) 

for the portfolio. 
2. Simulate changes in the state of the economy by 

generating random variables from 0 to 1; 
Macroeconomic factor for scenario i= NORMSINV 

(RAND ( )) 
3. Simulate changes in the obligor specific risk ε by 

generating random variables from 0 to 1; 
Specific Factor for obligor i = NORMSINV (RAND ( )) 

4. Obtain asset return of each obligor given by: 
Asset return obligor i =    

( ) ( ) ε*1* 22
iii RYRr −+=  

where Y is the state of economy and iε is the obligor 
specific risk and Y  and ε are obtained from steps 
2 and 3 respectively and R is as specified in step 1. 

5. Set Default Point id , where )(PDNORMSINVdi = .  

If ii dr < then it follows that obligor’s asset value has 

dropped below the default threshold and hence obligor 
defaults, otherwise the obligor survives [7]. 

By repeating the simulation of defaults many times, we 
will obtain frequency of losses from which we obtain 
histograms of the loss frequencies. We shall initially 
perform the Monte Carlo simulation for a portfolio of two 
obligors and then extend it to a portfolio of 10 and 100 
obligors. The results of the simulation for a two obligor 
portfolio are shown in Figure 1. Similar simulation 
procedures are obtained for 10 and 100 obligor portfolios. 

3.1. Analytical Approximation Methods 

We have so far used Monte Carlo simulation technique to 
obtain an empirical loss distribution of an underlying 
portfolio consisting of two and ten and hundred obligors. 
However, we do not know the exact probability distribution 
followed by the frequency loss distributions. To obtain the 
corresponding probability distribution we shall use an 
analytical approximation method to fit a probability 
distribution function to the loss frequency. Typically, the 
analytical approximation method maps an actual portfolio 
with unknown loss distribution to an equivalent portfolio 
with known loss distribution. The loss distribution of the 
equivalent portfolio is then taken as a substitute for the 
“true” loss distribution of the original portfolio. In practice 
this is often achieved by choosing a family of distributions 
characterized by its first and second moments showing the 
typical shape of loss distribution (i.e., right-skewed with fat 
tails). We can then choose from the parameterized family of 
loss distributions, the distribution best matching the 
original portfolio with respect to first and second moments 
[1]. Thus, the analytical approximation method works by 
approximating the loss distribution of the original portfolio 
by a known distribution and matching the first and second 
moments of the original portfolio to the parameters of the 
known portfolio. Thus, suppose we match our loss 
distribution (unknown) to say beta distribution (known), 
then basically we are looking for a random variable 

),,(~ βαβX  representing the percentage portfolio loss 

such that the parameters α and β  solve the first and 

second moments of the beta distribution. 
The probability density function of the beta distribution 

is given as: 

11
, )1(

)()(

)(
)( −− −

ΓΓ
+Γ= ba

ba XX
ba

ba
Xβ                1.11 

with first moment 

βα
α
+

=][ XE                                1.12 

and second moment 

)1()(
][

2 +++
=

βαβα
αβ

XV                     1.13 
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The analytical approximation thus takes the random 
variable X as a proxy for the unknown loss distribution of 
the portfolio we started with. Following this assumption, 
the risk quantities of the original portfolio can be 
approximated by the respective quantiles of the random 
variable X. For example, the quantiles of
distribution of our portfolio can be calculated as quantiles 
of the beta distribution [13]. Thus, the true loss distribution 
is substituted by a closed-form, analytical and a well
known distribution. This is very useful for computational 
purposes. We shall now perform Monte Carlo 
for Two (2), Ten (10) and Hundred (100) obligor portfolios.

   

   

Simulation Macro factor 
Specific factor 

Obligor  1 

1 -1.6413 0.3537 

2 0.6115 -1.9249 

3 -1.0385 -0.5481 

4 1.7269 0.3124 

5 -0.1714 -0.0585 

6 0.2654 1.6402 

7 -1.7894 0.7774 

8 -1.1192 0.4465 

9 -0.2123 -0.2061 

10 -0.4145 1.3266 

11 -0.9587 2.5191 

12 0.7650 1.9007 

13 0.8657 1.4769 

 
The loss frequency obtained is summarized in the 

2 and the resulting histogram is shown in Figure 

Table 2. Frequency Distribution of 2-Obligor Portfolio

Losses Frequency 
Percent of 
Frequency 

£0.00 1955 97.98% 

£100.00 41 2.0137% 

£200.00 0 0 

£300.00 0 0 

£400.00 0 0 

£500.00 0 0 

£600.00 0 0 

£700.00 0 0 

£800.00 0 0 

£900.00 0 0 

£1,000.00 0 0 
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The analytical approximation thus takes the random 
as a proxy for the unknown loss distribution of 

the portfolio we started with. Following this assumption, 
the risk quantities of the original portfolio can be 
approximated by the respective quantiles of the random 

. For example, the quantiles of the loss 
distribution of our portfolio can be calculated as quantiles 

Thus, the true loss distribution 
form, analytical and a well-

known distribution. This is very useful for computational 
We shall now perform Monte Carlo simulation 

undred (100) obligor portfolios. 

4. Results and Discussions
4.1. 2-Obligor Portfolio Simulation

For the two-obligor portfolio we generate a scenario by 
setting the following risk meas

%5=PD (Set by bank using historical default rates)
EAD= £3,000 (£1000 to obligor 1, £2000 to obligor 2)

%60=LGD (obtained from historical average of
 M = Maturity = 1 year 
ρ  = Joint Default Probability 

The simulation result is summarized in Table 1.

Table 1. Simulation Results for 2-Obligor Portfolio. 

   
Default Point 

Obligor 1

   
-2.3263

Specific factor 
 

Specific factor 
Obligor  2 

Return 
Obligor 1 

Return 
Obligor 2 

Default 
Obligor 1

 -1.6019 -1.3099 -2.1336 0 

 0.6132 -0.3139 0.8013 0 

 0.4594 -1.1740 -0.7795 0 

 -0.5896 1.6843 1.3638 0 

 0.1452 -0.1795 -0.1018 0 

 -0.2968 0.9709 0.1297 0 

 0.5050 -1.2528 -1.4542 0 

 -1.5877 -0.8013 -1.6467 0 

 -0.1971 -0.2821 -0.2721 0 

 -0.6000 0.2225 -0.6145 0 

 2.2991 0.2691 0.0066 0 

 0.1621 1.5342 0.7680 0 

 0.7657 1.4348 1.0947 0 

is summarized in the Table 
the resulting histogram is shown in Figure 1. 

Obligor Portfolio. 

Cumulative 
Frequency 

97.98% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

100.00% 

Figure 1. Frequency Distribution of 2

The probability distribution 
obligor portfolio is the bounded gamma distribution with 
parameters α=2.2727 and θ=220
is completely characterized by two parameters, 
These quantities are linked as follows:

µ =

σ =
The probability density function of a gamma distribution 

is: 

52  47 

4. Results and Discussions 
Obligor Portfolio Simulation 

obligor portfolio we generate a scenario by 
setting the following risk measures: 

(Set by bank using historical default rates) 
= £3,000 (£1000 to obligor 1, £2000 to obligor 2) 

btained from historical average of LGDs) 

= Joint Default Probability of portfolio = 0.5 
The simulation result is summarized in Table 1.

Default Point 
Obligor 1 

Default Point 
Obligor 1  

2.3263 -2.3263 
 

Default 
Obligor 1 

Default 
Obligor 2 

Portfolio 
Loss 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 0 0 

 

Frequency Distribution of 2-Obligor Portfolio. 

The probability distribution function that best fit the 2-
obligor portfolio is the bounded gamma distribution with 

=220. This gamma distribution 
is completely characterized by two parameters, α and θ. 
These quantities are linked as follows: 

αθ=  
2αθ  

The probability density function of a gamma distribution 
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1
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θ
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−−
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=  

Where x  is the distribution variable, and Γ is the 
standard gamma function evaluated at the relevant 
parameters and defined by the function 

duxux x )exp()(
0

1 −=Γ ∫
∞

− . 

By using gamma function to approximate the distribution 
of losses it follows that there exist a random variable

),(~ θαgx , representing the percentage portfolio loss 

such that the parameters α and θ solve the first and second 
moments of the gamma distribution. The total portfolio loss 

is simply the value of xwhen )(xP = Confidence interval 

(chosen to comply with bank’s risk appetite). Thus, suppose 
we set the confidence interval at 95%, then the total loss of 
the portfolio is the value of x such that: 

dxx x )exp(
)(

1
95.0 1

θ
α

αθα
−−

∫Γ
=  

Several other distributions can be fitted to the mean and 
standard deviation of loss rate data but the gamma 
distribution provides the best fit for all the three portfolios. 
The gamma distribution of the 2-Obligor portfolio is shown 
in Figure 2. 

 

Figure 2. Graph of Gamma Distribution for 2-Obligor Portfolio. 

The data statistics and percentile distribution of losses 
obtained from the gamma distribution are given in Table 3 

and Table 4 respectively. 

Table 3. Data Statistics of 2-Obligor Portfolio. 

Statistic Range Mean Variance 
Standard 
Deviation 

Coefficient 
Of Variation 

Standard Error Skewness 
Excess 

Kurtosis 

Value(£) 1000 500 1.1000E+5 331.66 0.66332 100 0 -1.2 

Table 4. Percentile Distribution of 2-Obligor Portfolio. 

Percentile Min 5% 10% 25% (QI) 50% (Median) 75% (Q3) 90% 95% Max 

Value(£) 0 0 20 200 500 800 980 1000 1000 

 
From Table 3: 
Mean = 500 
Standard deviation = 331.66 
Hence 
Expected Loss of portfolio = £500 
Unexpected Loss of portfolio = £331.66 

The total loss of the portfolio is £1000. Thus by our 
convention; 

Stress Loss =Total Loss– Expected Loss –Unexpected 
Loss 

Stress Loss = £1000 – £831.66 = £168.34 
For this portfolio there is no loss beyond the 95th 

percentile, that is, 95th percentile coincides with the 
maximum loss of the portfolio. Thus, in this portfolio 
setting a risk tolerance of 95% will be sufficient to total 
loss of the portfolio. 
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4.2. 10-Obligor Portfolio Simulation 

For the 10-Obligor portfolio we generate a scenario by 
setting the following risk measures: 

%5=PD (Set by bank using historical default rates)
=EAD £20,150 

%60=LGD  (Obtained from historical average of 
M = Maturity = 1 year 
ρ  = Joint Default Probability of portfolio 
The loss frequencies are shown in 
corresponding histogram generated is shown in Figure 

The probability distribution that fit the data in the 10
Obligor portfolio is the bounded Gamma distribution with 
parameters α = 2.2727 and θ = 220. This is shown in Figure 4.

Figure 4

The data statistics and percentile distribution of loss 
obtained from the gamma distribution are given in 

Statistic Range Mean 

Value(£) 4500 2250 2.2917E+6

Table 6

Percentile Min 5% 10%

Value(£) 0 0 

 
From Table 5: 
Mean = 2,250 
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Obligor portfolio we generate a scenario by 

(Set by bank using historical default rates) 

from historical average of LGDs) 

of portfolio = 0.5 
The loss frequencies are shown in Table 5 and the 
corresponding histogram generated is shown in Figure 3. 

The probability distribution that fit the data in the 10-
Obligor portfolio is the bounded Gamma distribution with 

= 220. This is shown in Figure 4. 

Figure 3. Frequency Distribution of 10

Figure 4. Graph of Gamma distribution for 10-Obligor Portfolio. 

The data statistics and percentile distribution of loss 
obtained from the gamma distribution are given in Table 5 

and Table 6 respectively. 

Table 5. Data Statistics of 10-Obligor Portfolio. 

Variance 
Standard 
Deviation 

Coefficient of 
Variation 

Standard 
Error 

2.2917E+6 1513.8 0.67281 478 

Table 6. Percentile Distribution of 10-Obligor Portfolio. 

10% 25% (QI) 50% (Median) 75% (Q3) 90%

50 875 2250 3625 4450

Standard deviation = 1,513.8
Hence 

52  49 

 

Frequency Distribution of 10-Obligor Portfolio. 

 

Standard 
 

Skewness 
Excess 

Kurtosis 

0 -1.2 

90% 95% Max 

4450 4500 4500 

deviation = 1,513.8 
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Expected Loss of the portfolio = £2,250
Unexpected Loss of the portfolio = £1,
Stress Loss = £4500 – £3763.80= £736.20
In this portfolio, there is no loss beyond the 95

percentile as the 95th percentile coincides with the 
maximum value of the losses which is £4500.
portfolio setting a risk tolerance of 95% will be sufficient to 
cover the total loss of the portfolio. 

4.3. Hundred (100) - Obligor Portfolio Simulation

The simulation procedure is extended to a portfolio
containing hundred obligors as obtained in real life banking 

Figure 5

The probability distribution function 
the data in the 100-Obligor portfolio is the bounded g

Figure 6

The data statistics and percentile distribution of loss 
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Expected Loss of the portfolio = £2,250 
Unexpected Loss of the portfolio = £1,513.80 

£3763.80= £736.20 
no loss beyond the 95th 

percentile coincides with the 
maximum value of the losses which is £4500. In this 

95% will be sufficient to 

Obligor Portfolio Simulation 

The simulation procedure is extended to a portfolio 
containing hundred obligors as obtained in real life banking 

operation. For the 100-obligor portfolio we generate a 
scenario by setting the following risk measures

Asset value correlation is set at 0.5.
%5=PD  (Set by bank using historical default rates)

=EAD £10,000,000,000 = sum of loans to the 100 obligors
=LGD 60% (obtained from historical average of

=M 1 year 
ρ  = Joint Default Probability 

The loss frequency generated from the simulations and 
the corresponding histogram is
5 respectively. 

Figure 5. Frequency Distribution of 100-Obligor Portfolio. 

function that best describe 
ligor portfolio is the bounded gamma 

distribution with parameters α
This is shown in Figure 6. 

Figure 6. Graph of Gamma Distribution for 100-Obligor Portfolio. 

The data statistics and percentile distribution of loss obtained from the gamma distribution are given in 
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obligor portfolio we generate a 
scenario by setting the following risk measures 

Asset value correlation is set at 0.5. 
(Set by bank using historical default rates) 

£10,000,000,000 = sum of loans to the 100 obligors 
60% (obtained from historical average ofLGDs) 

= Joint Default Probability of portfolio = 0.5 
generated from the simulations and 

is shown in Table 7 and Figure 

 

α = 1.2632 and θ = 2.9367E+7. 

 

obtained from the gamma distribution are given in Table 
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7and Table 8 respectively. 

Table 7. Data Statistics of 100-Obligor Portfolio. 

Statistic Range Mean Variance 
Standard 
Deviation 

Coefficient of 
Variation 

Standard 
Error 

Skewness 
Excess 

Kurtosis 

Value(£) 2.5800E+8 2.8826E+7 1.3693E+15 3.7003E+7 1.2837 1.1547E+6 2.3151 6.8926 

Table 8. Percentile Distribution of 100-Obligor Portfolio. 

Percentile Min 5% 10% 25% (QI) 50% (Median) 75% (Q3) 90% 95% Max 
Value(£) 0 0 0 6.0000E+6 1.8000E+7 3.6000E+7 7.8000E+7 1.0200E+8 1.5800E+8 

 
From Table 8: 
Mean = 2.8800E +7 
Standard deviation = 3.7003E+7 
Hence Expected Loss of the portfolio = £2.8800E +7 
Unexpected Loss of the portfolio = £3.7003E+7 
In this portfolio, there are losses beyond the 95th 

percentile as the 95th percentile does not coincide with the 
maximum loss of the portfolio. The cumulative loss up to 
the 95th percentile is £1.02E+8. The cumulative loss up to 
99.9th percentile is £1.58E+8. This means that a bank or an 
institution keeping such a portfolio whose risk tolerance is 
95% CI will keep a sum of £102m as Unexpected Capital. 
However, a bank with a high risk tolerance such as AAA 
bank, with risk tolerance of 99.9% CI will keep a sum of 
£258m as Unexpected Capital. For this portfolio, the Stress 
Loss is computed as: 
Stress Loss=Total Loss – Expected Loss – Unexpected Loss 
Stress Loss = £1.5800E+8 – £2.8800E +7- £3.7003E+7 
                   = £92,197,000 

5. Conclusions 
We have so far outlined and developed a model that can 

determine potential portfolio loss in excess of the UL. We 
have shown that based on your confidence level a bank can 
hold capital far in excess of the UL. It now lies with the 
bank’s credit risk management team to determine whether 
to hold capital against losses in excess of the unexpected 
loss, beyond say 90th percentile of the distribution. Usually, 
highly rated banks such as AAA banks would like to hold 
reserves to cover stress losses. However, banks with lower 
ratings will deem it too expensive to hold capital against 
such huge potential losses which has very low probability 
of occurrence. It must be emphasized here that although 
losses beyond the 90th percentile are huge, they have very 
low probability of occurring. For example, from Figure 5, it 
can be observed that beyond the 90th percentile there is a 
loss of around £240,000,000, but the probability of such 
loss occurring is about 0.01. However, should such loss 
(catastrophic) arise, it could lead to the collapse of the 
institution. In a climate of high level of defaults, 
uncertainty and corporate bankruptcy, it will be prudent and 
risk sensible for a bank to keep capital to cover such losses. 
As we have seen, simulation methods are simple to 
implement and interpret. It is able to determine all the 
losses in a loan portfolio and percentiles can be determined 
at different confidence levels.  In summary, the methods we 

have provided here will simplify the processes involved in 
the determination of portfolio risk. 
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