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Abstract: One of the approaches to determining and quangjfiire credit risk of a loan portfolio is by obtaigithe
distribution of losses of the portfolio and detenmg the risk quantities from such distributions.this paper, we describe
the challenges to using this approach and illusteapractical solution where simulation methodsua®d to obtain loss
distribution for a two obligor portfolio. This ifh¢n extended to ten and hundred obligor portfolibgsting probability
distributions with specified parameters are theadus approximate the loss distributions obtaitésing such parameters
of the existing probability distributions, we obitahe risk quantities associated with the loanfpbotincluding Expected
and Unexpected losses. We realized that dependirtgeoconfidence interval for which we measureliinexpected Loss,
Stress Losses are needed to account for the éstabff the portfolio.

Keywor ds. Economic Capital, Expected Loss, Unexpected Lobtig@, Loss Given Default, Exposure at Default,

Stress Loss

1. Introduction

of the components of risk measure: Probability effdlt
(PD), Loss Given Default (LGD), Exposure at Default
(EAD) and Maturity (M). The goal of these regutais is

In the last two decades, credit risk management has define risk weights by determining cut-off paint

become a topic of paramount importance in finarts.

between and within areas of Expected Loss and

importance became greatly significant, when in 200TUnexpected Loss where regulatory capital is to &ld,hin

Lehman Brothers, one of the biggest investment §ank
the US, collapsed after failing to honour its oatigns. The
collapse triggered a domino effect that led to eave
corporate failures leading to what became knowrthas
credit crunch. If one considers the level of cogterdebt,
sovereign debt, retail loans, debt securitizatiehicles and
instruments that suffered during this period thes ¢xtent
of the credit market and its effect on corporatd amost
national economies is overwhelming. Although bairks
developing countries were not directly hit by thegé
losses that characterized the European and Amebiaaks
during the period, it is essential that their ficih
institutions develop robust credit risk managenmeontels
as it continues to expose its businesses furthethén
international market. The dramatic growth in thedir
market in developing countries especially in the thecade
provides the drive and need for development andlysbfi a
wealth of new credit models.

the event of a default. Such determination of neasures
depends on the level of sophistication of the backédit
models. These measures include tl&tandardized
Approach the Internal Ratings Based Approach
(Foundation) and the Advanced Internal Rating Based
Approach Currently, most central banks in developing
countries continue to use the Standardized Appredgbh
simply specify the minimum capital requirementsaasgsk
weight percentage (usually 8-10% of debt), to bl las
capital [1]. Such models in banking supervision act
robust and sophisticated enough to withstand simila
catastrophic losses such as which occurred in Euespul
America. It is therefore essential that more adednredit
models are used to determine regulatory capitat@ally
in Africa.

The seminal paper on credit risk modeling is Merton
(1974). In Merton’s model, the value of the totssets of a
firm is modeled by a geometric Brownian motion. Tine

Recent advances in credit risk models have beeatefaults if its assets fall below the (fixed) leval its

reflected in several
committee on banking supervision.
proposal, banks can determine their own estimdtesrae

reforms proposed by the Basdhbilities at a pre specified time horizon. An @ptipricing
Under the Baseapproach can then be used to value the firm's e@sta

call option on its assets with strike price equathe level
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of its liabilities [2]. The idea of linking a firm'slefault (1977) developed a Monte Carlo simulation method fo
behaviour with the value of its assets is intuiffve Solving option valua_tion problems. The method Sm
appealing, and has spawned the broad class of mod#ie process generating the returns on the undgriggset

referred to as structural models. The common featfiall
of these models is the assumption that the firmédicr
quality is determined by its capital structure dnel values
of its assets and liabilities. Joint default bebavican then
be introduced by linking the values of the assatd a
liabilities to macroeconomic factors. Examples oist

approach include the CreditMetrics and Moody’s-KMV

models popular in industry [3].

In factor models, the price of a credit sensitive

instrument is driven by the values of a set of Amdntal
random variables (common to all securities) as waslian
idiosyncratic factor. The key property is the caiadial
independence of credit losses, given the valueghef
fundamental factors. Often, one-factor models adanit
decomposition of the portfolio loss variable
monotonic function of the factor and a residuale Tormer
part of the decomposition is called systematic viglereas
the latter part is called specific or idiosyncraigk. In this
paper we will assume that the random variaKlds a
macroeconomic factor affecting all defaults, aneré¢hexist
an idiosyncratic facto independent ofX, affecting the
industry within which the obligor operates [3].

Our approach in this study begins by outlining thek
components of a credit risk instrument of a loantfpbo

which includes Expected Loss, Unexpected Loss, LosS

Given Default, Exposure at Defawdnd Maturity. As the
number of obligors in a portfolio increases, thetfotio
loss is then driven by the joint default behavidr tle
obligors. If all obligors default independently ati Loss

Given Default instruments are independent, then the

Central Limit Theorem implies that portfolio lossesll
tend to be normally distributed. However, in mastes this
is not so as the obligor defaults do not occur frechelently.
Default correlation, the tendency of defaults tocuoc
together, can come from the fact that obligors nbay
drawn from same or similar industries, or affecbsdthe
overall health of the economy. Defaults can alsadbated
due to contagion effect from direct ties betweemdi. This
implies that obligor defaults are not independéuot. these
reasons, real portfolio losses tend to exhibit siess and
fat tails [3].

The joint probability of default is achieved by
determining the asset value correlation of obligés true
asset returns of individual obligors are not disect
observable, equity prices are used as a proxy $seta
returns to determine asset value correlation ofgols.
Monte Carlo simulation, a probability simulatiorchaique,
is employed to understand the impact or how likiilg
resulting outcomes or default behaviour is dependerthe
macroeconomic factors of systematic and idiosyrcrak.
Monte Carlo simulation is widely employed in fin@nd he
most common use of Monte Carlo simulations in foeis
when we need to calculate an expected value ohetifin

into a

and invokes the risk neutrality assumption to derilie
value of the option [5]. Recently, Monte Carlo slation
approach to generate loss distributions has alsmrbe
popular in operational risk models. Enrique Nauarra
developed operational risk quantification using kon
Carlo simulation [6]. A more detailed approach tedit
risk using Monte Carlo simulation was outlined ag1].
“For an extensive discussion of credit risk modglgee as
outlined in [8].
In this paper, we employ Monte Carlo simulation by
generating scenarios for the portfolio loss. This¢hieved
by simulating the common macroeconomic faet@nd the
idiosyncratic factog; . This procedure is repeated a large
number of times to produce a sample from the true
portfolio distribution. The credit risk measures tife
distribution are then determined by methods
approximation using probability distributions. Adtigh
this procedure is computationally intensive (foample, in
a particular scenario for a portfolio of size huetithere
are 27,204,000 simulations), it can be applied ddfplio
of any size. Thus, we begin with a portfolio ofesitwo,
extend it to ten and then to a portfolio of sizadined.
After obtaining frequency of loss using Monte Carlo
simulation, we do not know the exact probability
distribution followed by the loss distribution. @itain the
corresponding probability  distribution, we employ
analytical approximation method to determine theireaof
distribution followed by the loss distribution. Metds of
Approximation using a probability distribution habeen
successfully used in finance and engineering terdehe

of

solutions to analytic problems that do not haveetbform
solutions. It has many applications in risk anaysjuality
control and cost scheduling. In finance, GiovaAdesi
provided a simple, analytic approximations method f
pricing exchange-traded American call and put oo
written on commodities and commodity futures cartsa
[9]. The reasons for fitting a distribution to at ¢ data
include the desire for objectivity, the need fotcamating
the data analysis, and interest in the values @& th
distribution parameters [10].

One problem of analyzing data through the procdss o
simulation and fitting a statistical distributios that many
other classical distribution functions could fitetlsample
and consequently, goodness-of-fit tests are neé¢oleoe
performed on the constructed probability distribnti
functions [11]. However, recent developments in pater
software offer programs that automatically assdss t
goodness-of-fit and provide the best distributiond given
data.

2. Main Body
We begin by outlining the building blocks of credik

f(X) given a specified distribution density [4]. Phelimmodeling and develop a simple framework for a jticf



44 Osei Antwi: Measuring Portfolio Loss Using Apgimation Methods

of two assets. We will first use these componemts texperience of the rating analyst than on pure nmaditieal
generate loss distribution from which we will cdate the procedures with strict defined outcome. In ratingsny
risk quantities for a two obligor portfolio and thextend drivers of the considered firm's economic futuree ar
the framework to a portfolio of 10 or more obligors considered. These include future earnings and fiasgls,

2.1, Components of Credit Risk Models debt, short and long term liabilities [5].

2.1.3. Exposure at Default (EAD)

Exposure at Default (EAD) estimates the amount thet
obligor owes in case of default. EAD actually sfiesithe
exposure a bank does have to its borrowers. Fangbea if
2.1.1. Default a bank loans a £1000 to an obligor, then the bank’s

There exist various definitions of default. Throaghthe Exposure at Default is £1000In general, the exposure
text we shall refer to default as failure to papmptly consists of two major parts; theutstandings and
Interest or principal on a loan agreement when dee commitmentsThe outstandings refer to the portion of the
payment default.Basically, there are two methods of exposure already drawn by the obligor. In case of
measuring losses due to credit risk: mark-to-maiked borrower’s default, the bank is exposed to thel @taount
default methods. The mark-to-market paradigm reieegn of the outstandings. The commitments can be divideal
losses when the credit quality of the obligor (atsferred to  two portions, drawn and un-drawn, in the time ofadé.
as debtor), deteriorates i.e. migrates to a loweditrating. EAD can be defined as:

Such losses are not paid out, but only recognizieenwhe
portfolio of the bank is marked-to-market. Credigration
is the approach used by JP Morgan Chase Bank [12].

On the other hand, the default method recognizesek
only when they are realized in the form of defa@iven
that an obligor defaults, the loan provider or tidigee 2.1.4. Loss Given Default (LGD)
suffers a loss referred to as Loss Given default. The Loss Given Default (LGD) represent an estindte
Mathematically, the default method is a speciakoafsthe the portion of the exposure-at-default that willt rime
mark-to-market method (considering only two ratingrecovered as a result of a default event, i.e., L&D
classes-default or survive). However, from a riskquantifies the portion of loss the lending entitifl weally
management view the two approaches are quite distinsuffer in case of default. The estimation of los®tes is
Throughout the text we shall focus on defaults caty@d somehow complicated because recovery rates depend o
ignore the credit risk related to credit migratidihat is, we many driving factors, for example on the quality the
shall ignore the probability that the obligor wouldbve collateral (securities, mortgages, guarantees) atwd on
from one credit quality to another including defanlthin ~ the “seniority” of the lenders claim on the borroiseassets.

a given time horizon. Loss Given Default is thus considered as a randarialle
describing the severity of the loss of a faciligpe in case

2.1.2. Probability of default (PD) 3 of default. LGD thus refers to the expectation bE t
This indicates the degree of likelihood or the p@tuibty severity of loss

that promised payments such as interest and coupon

payments and principal repayments will not be gmidhe LGD = Expected [Severity] 1.2
obligor. The assignment of a default probabilityewery
customer in a credit portfolio is far from an easgk.
There are essentially two approaches to this assgh

«  Calibration of default probabilities from market@da 215 Expected Loss (EL)

The most famous representation of this type is the Expected Loss (EL) gives an indication of the pmiaf
concept of Expected Default Frequencies (EDF) dgpeal  |oss that we can expect to occur over the comireg. yehe
by KMV Corporation.This method for calibrating default Expected Loss of a transaction is an insuranceoss |
probabilities from market data is based on creglieads of reserve to cover losses that a lending institueapects
traded products bearing credit risk, e.g., corgotednds from historical default experience. In a capitalade
and credit derivatives (swaps, etc.) requirement of a loan portfolio, the EL is providied by
«  Calibration of default probabilities from ratings pricing and provisions. As in probability theoryhet

Basically, ratings describe the creditworthiness ofttribute ‘expected” always refers to an expectation or
customers. Ratings are assigned to customers dly'er mean Value, and this is the case in -Credit. rIslaQSBSSIng
external rating agencies like Moody’ Investors Sems, expected loss of a loan, a customer is assignedizbility
Standard & Poor (S&P) or FITCH, or by a bank in&@m of Default (PD), a Loss Given Default (LGD) and an
rating methodologies. Quantitative as well as datie ~EXPosure at Default (EAD). , _
information is used to evaluate the client. In ficag the A 10SS of any obligor is then defined by a lossiatale

procedure is more often based on the judgment and

We begin by looking at the various components eflitr
risk models, define these components and outlirer th
mathematical contributions to the framework.

EAD = Outstandings +Commitments 11

Where y is the expected portion of the commitment
likely to be drawn prior to default.

Most lending institutions depend on rating agenaigsa
source for data of defaulted bonds.
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ExpectedLoss= PD x LGD x EAD 1.3 its loan of 1%, while obligor 2 has a PD of 2%. Tt@®D
for both loans is 50%.
Since the expected loss is not predictable to &gicer  The Expected Loss of the loan for obligor 1

degree we should mention that underlying our maslel = 1% * 50% * 1000 = 0.01*0.5*1000 = £5
some probability spac€Q, F,P) where Q is a sample The Expected Loss of the loan for obligor 2
space of a set of outcomds.is a collection of subset of = 2% * 50% * 1000 = 0.02*0.5*2000 = £20

The Expected loss of the portfolio is therefore

Q that form ao - field and Pis a probability measure. Z'c 490 = £05

The elements of are measurable events of the model and
by intuition it makes sense to claim that the evdfritefault 2 1 6. Unexpected Loss

should be measurable. For obtaining the representat \e now look at the key components of credit risk
above we need some assumptions that EAD and LGD &igydeling, starting with the standard deviation adsl. At

constant values. This is not necessarily the caseruall  the beginning, we introduced Expected Loss (EL) and
circumstances. There are various situations in hwhar pointed out that the EL of a transaction is an rasoe or

example EAD has to be modeled as a random variéible. |gss reserve to cover losses that a lending inistitu

such cases the EL is still given by Equation 1.8né can expects from historical default experience. Butdiag
assume that the exposure, the LGD and the PD aggpital against expected losses is not enoughadt) the
independent and EAD and LGD are the expectations @dnding institution should in addition to the exfeet loss
some underlying random variable. _ reserve, also save money to cover unexpected losses
~ But whether the constituents of equation 1.3 ar@yceeding the average experienced losses fromhjsasty.
independent or not the basic concept of EL is 8tdlsame  Thjs arises because most of the time actual lossesiot
and for reasons of simplicity our convention wi ithat equal to the EL. We therefore need a measure of the
EAD is always deterministic (non-random) quantitygeyiation of actual losses around their expecteel$e The
whereas LGD will be considered as a random variabl&iandard deviation of loss measures this credk df
Equation 1.3 is used to calculate the EL of a sirighn.  transaction, typically called the Unexpected Ldsk)([7].
The portfolio EL is simply the sum of the ELs ottlbans
in the portfolio [7] 2.1.7. Unexpected Loss of a Single Credit Risk

Example 1. Transaction

We shall look at the Expected Loss of two obligors; The unexpected loss of a credit risk transactian is
obligor 1 and obligor 2 that owe us 1000 and 2080nds function of the PD, LGD, and EAD and their variasceD,

respectively. This means our EAD is £1000 and £2000 | GD and EAD are independent random variables. The
obligor 1 and obligor 2 respectively. Obligor 1 l@BD on unexpected loss is given in Equation 1.4

ULe \/PDZEADZJLGDZ + EAD2LGD20pp2 + LGD2PD20 cap? + PD20enp 20 ap> s

+EAD?0\ 6p °0pp” + LGD?0pp Tgnp” + Tpp Teap Tiep”
All the functions are independent and we will assum;, replace o26p by LGD*(1-LGD)/4, and EAD is

that the probability of default has a Bernoullitdtsution,

so that we can substitute?pp by (PD—PD?). The
Loss Given Default hasfgeta distribution, which allows us

assumed to be deterministic, so widtap = 0. This leads
to Equation 1.5.

Unexpected Loss: EAD [,/[LGD 2 * PD * (L- PD) + PD * LGD * (L- LGD) /4] 1.5

_ regions), the unexpected loss of the portfolioieg by
2.1.8. Unexpected Loss of a Portfolio Equation 1.6.

Due to diversification (we can spread our investimen
over various positions in different industry sestand

Unexpected Loss of a Portfono\/:Zi:1...nZi:1.__nU|-i *ULi* @, 1.6

) oo ) . ) ) transactions and their correlation and is givefEquation
obligor I and obligor | in a portfolio of Nobligors.Fora 1 7

portfolio of two obligors,n = 2,the unexpected loss of the

Portfolio Unexpected Loss #ULl2 +UL,” + 2ULUL 0, 1.7
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Py, is the default correlation between obligor 1 andf ri <d; then it follows that obligor's asset value has

obligor 2. The default correlation gives an indicatof the
tendency of the two loans to default at the samatpo
time. The default correlation between obligoand obligor
] is determined by Equation 1.8.

_ JPD-PD, *PD,
' JPD *@-PD)@-PD;)

P 1.8

WhereJDP is the joint probability of default of obligar
and j ad PD; and PD; are the probability of default of
obligori andj respectively.The Joint Probability of Default

is a function of thePD’s of the obligors and their asset

correlation.

JDP = JDP(PD;, PDj ,assetcorrelationi’j) 1.9

dropped below the default threshold and hence oblig
defaults, otherwise the obligor survives [7].

By repeating the simulation of defaults many times,
will obtain frequency of losses from which we obtai
histograms of the loss frequencies. We shall ilhjtia
perform the Monte Carlo simulation for a portfolid two
obligors and then extend it to a portfolio of 10dah00
obligors. The results of the simulation for a twbligor
portfolio are shown in Figure 1. Similar simulation
procedures are obtained for 10 and 100 obligorfqlars.

3.1. Analytical Approximation Methods

We have so far used Monte Carlo simulation techaigu
obtain an empirical loss distribution of an undeny
portfolio consisting of two and ten and hundrediguuis.
However, we do not know the exact probability disttion

The Joint Probability of Default is established byfollowed by the frequency loss distributions. Taaib the

determining the volume under the asset value Higion
up to the default threshold of the
Mathematically, theJDPis a double integral which is
approximated by a Visual Basic program in Excel [7]

corresponding probability distribution we shall usa

two obligors.analytical approximation method to fit a probailit

distribution function to the loss frequency. Typigathe
analytical approximation method maps an actualfplot

The Unexpected Loss determined in this procedur@ith unknown loss distribution to an equivalent timio

represents credit risk at one standard deviatidoss. This

with known loss distribution. The loss distributian the

provides confidence level of around 90% which ig noequivalent portfolio is then taken as a substitiste the

sufficient to capture all the losses associatedh Wit loan
portfolio. For highly rated financial institutionsvith
confidence level of 99.9%, this additional losdereed to
as Stress Loss(SL) is highly significant. We would
determine the Stress Loss associated with eacHoliort
after the simulation procedure outlined in 3.

3. Simulation Procedure

We will now use a Monte Carlo simulation procedtoe
generate frequency of loss of the portfolio bydualing the
following steps:

1. Specify PD, LGD and EAD and R (systematic factor)t

for the portfolio.

2. Simulate changes in the state of the economy by

generating random variables from 0 to 1;
Macroeconomic factor for scenaric= NORMSINV
(RAND ()
3. Simulate changes in the obligor specific rigkby
generating random variables from 0 to 1;
Specific Factor for obligoi = NORMSINV (RAND ())
4. Obtain asset return of each obligor given by:
Asset return obligoi =

f :(\/R_%)*Y+(ﬁ)*£

where Y is the state of economy ang is the obligor
specific risk andY and &€ are obtained from steps
2 and 3 respectively anR is as specified in step 1.

5.  Set Default Point, , whered, = NORMSIN\(PD) .

“true” loss distribution of the original portfolidn practice
this is often achieved by choosing a family of wlsttions
characterized by its first and second moments shgpiwhie
typical shape of loss distribution (i.e., right-gled with fat
tails). We can then choose from the parameteriaedly of
loss distributions, the distribution best matchirie
original portfolio with respect to first and secombments
[1]. Thus, the analytical approximation method wstky
approximating the loss distribution of the origimpealrtfolio
by a known distribution and matching the first astond
moments of the original portfolio to the parametefshe
known portfolio. Thus, suppose we match our

distribution (unknown) to say beta distribution gkm),
hen basically we are looking for a random variable
X ~ B(a,B), representing the percentage portfolio loss

loss

Such that the paramete® and S solve the first and
second moments of the beta distribution.

The probability density function of the beta distrion
is given as:

_M@a+b) yaa, b
ﬁa,b(X)—r(a)r(b)X @-X) 1.11
with first moment
a
X] =
B X] 7+ p 1.12
and second moment
V[X] = ap 1.13

(@+p)a+p+]
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The analytical approximation thus takes the ran
variable X as a proxy for the unknown loss distribution
the portfolio we started with. Following this asqutian,
the risk quantities of the original portfolio cane
approximated by the respective quantiles of thedoar
variable X. For example, the quantiles the loss
distribution of our portfolio can be calculated @santiles
of the beta distribution [13]Thus, the true loss distributic
is substituted by a closddfrm, analytical and a we
known distribution. This is very useful for comptinaal
purposesWe shall now perform Monte Carlsimulation

4. Results and Discussions
4.1. 2-Obligor Portfolio Simulation

For the twoebligor portfolio we generate a scenario
setting the following risk meures:
PD = 5% (Set by bank using historical default ra
EAD = £3,000 (£1000 to obligor 1, £2000 to obliga
LGD=60% (obtained from historical average LGDs)
M = Maturity = 1 year
£ = Joint Default Probabilitof portfolio = 0.5

for Two (2), Ten (10) and &hdred (100) obligor portfolic The simulation result is summarized in Table
Table 1. Simulation Results for 2-Obligor Portfolio.
Default Point Default Point
Obligor 1 Obligor 1
-2.3263 -2.3263
miaionwaroracr SERT  Seforwn | fwwn |t ow e, o

1 -1.6413 0.3537 -1.6019 -1.3099 -2.1336 0 0 0
2 0.6115 -1.9249 0.6132 -0.3139 0.8013 0 0 0
S -1.0385 -0.5481 0.4594 -1.1740 -0.7795 0 0 0
4 1.7269 0.3124 -0.5896 1.6843 1.3638 0 0 0
5 -0.1714 -0.0585 0.1452 -0.1795 -0.1018 0 0 0
6 0.2654 1.6402 -0.2968 0.9709 0.1297 0 0 0
7 -1.7894 0.7774 0.5050 -1.2528 -1.4542 0 0 0
8 -1.1192 0.4465 -1.5877 -0.8013 -1.6467 0 0 0
9 -0.2123 -0.2061 -0.1971 -0.2821 -0.2721 0 0 0
10 -0.4145 1.3266 -0.6000 0.2225 -0.6145 0 0 0
11 -0.9587 2.5191 2.2991 0.2691 0.0066 0 0 0
12 0.7650 1.9007 0.1621 1.5342 0.7680 0 0 0
13 0.8657 1.4769 0.7657 1.4348 1.0947 0 0 0

The loss frequency obtainésl summarized in thTable

2 andthe resulting histogram is shown in Figil.

Table 2. Frequency Distribution of Dbligor Portfolic.

Irequency of Loss

120%

100%

80%

60%

40%

20%

0%

0 100 200 300 400

Loss Amount

500 600 700 800 %00 1000

L osses Erequency Percent of Cumulative

Frequency Frequency
£0.00 1955 97.98% 97.98%

£100.00 41 2.0137% 100.00%
£200.00 0 0 100.00%
£300.00 0 0 100.00%
£400.00 0 0 100.00%
£500.00 0 0 100.00%
£600.00 0 0 100.00%
£700.00 0 0 100.00%
£800.00 0 0 100.00%
£900.00 0 0 100.00%
£1,000.00 0 0 100.00%

Figure 1. Frequency Distribution of-Obligor Portfolio.

The probability distributiorfunction that best fit the 2-
obligor portfolio is the bounded gamma distributiewith
parametere1=2.2727and 6=22(. This gamma distribution
is completely characterized by two parametia and 6.
These quantities are linked as follo

u=ab
o =ab?

The probability density function of a gamma digtitibn

is:
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__ L e _
P(x) = o jx exp("%;)dx

Where X is the distribution variable, andl is the
standard gamma function evaluated at the
parameters and defined by the function

00

r(x) = Iu“exp(—x)du .
0
By using gamma function to approximate the distidou
of losses it follows that there exist a random afale

Osei Antwi: Measuring Portfolio Loss Using Apgimation Methods

is simply the value oXwhen P(x) = Confidence interval

(chosen to comply with bank’s risk appetite). Thaigpose
we set the confidence interval at 95%, then thal foss of

relevafiie portfolio is the value oK such that:

_ 1 a-1 _
= —r(a)e" Ix exp(%,)dx

Several other distributions can be fitted to theamand
standard deviation of loss rate data but the gamma
distribution provides the best fit for all the thrportfolios.

The gamma distribution of the 2-Obligor portfoloshown

x~g(a,6) , representing the percentage portfolio losg, Figure 2.

such that the parametersand 6 solve the first and second
moments of the gamma distribution. The total pdidftoss

00015

Probabilty Dersity Function

00014

0013

0001

ooott

0001

fix)

Expected Loss

TUnexpected Loss

Stress Loss

200 400 800 200

— Gamma (27264201 58)

1000 1200 1400 1600 1200

P

Figure 2. Graph of Gamma Distribution for 2-Obligor Portfoli

The data statistics and percentile distributionlasfses
obtained from the gamma distribution are given abl€ 3

Table 3. Data Statistics

and Table 4 respectively.

of 2-Obligor Portfolio.

- . Standard Coefficient Excess

Statistic Range Mean Variance Deviation Of Variation Standard Error Skewness Kurtosis

Value(£) 1000 500 1.1000E+5 331.66 0.66332 100 0 -1.2

Table 4. Percentile Distribution of 2-Obligor Portfolio.

Percentile Min 5% 10% 25% (QI)  50% (Median)  75% (Q3) 90% 95% Max

Value(£) 0 0 20 200 500 800 980 1000 1000
From Table 3: Stress Loss =Total Loss— Expected Loss —Unexpected
Mean = 500 Loss
Standard deviation = 331.66 Stress Loss = £1000 — £831.66 = £168.34
Hence For this portfolio there is no loss beyond the™95

Expected Loss of portfolio = £500

Unexpected Loss of portfolio = £331.66
The total loss of the portfolio is £1000. Thus byro
convention;

percentile, that is, 95 percentile coincides with the
maximum loss of the portfolio. Thus, in this polido
setting a risk tolerance of 95% will be sufficietot total
loss of the portfolio.
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4.2. 10-Obligor Portfolio Simulation

For the 100bligor portfolio we generate a scenario
setting the following risk measures:
PD = 5% (Set by bank using historical default ra
EAD=£20,150

LGD=60% (Obtainedrom historical average (LGDs)
M = Maturity = 1 year
P = Joint Default Probabilitef portfolio= 0.5
The loss frequencies are shown Table 5 and the
corresponding histogram generated is shown in Ei3.

The probability distribution that fit the data ihet 1(-
Obligor portfolio is the bounded Gamma distributiaith
parameters = 2.2727 an® = 220. This is shown in Figure
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Figure 4. Graph of Gamma distribution for 10-Obligor Portfoli

The data statistics and percentile distribution lags
obtained from the gamma distribution are giveiTable 5

and Table 6 respectively.

Table 5. Data Statistics of 10-Obligor Portfolio.

Statistic Range Mean Variance Star_lde_lrd Coefﬂ_mgnt e SEMEETE Skewness Excesg
Deviation Variation Error Kurtosis
Value(£) 4500 2250 2.2917E+ 1513.8 0.67281 478 0 -1.2
Table 6. Percentile Distribution of 10-Obligor Portfolio.
Percentile Min 5% 10% 25% (QI) 50% (Median)  75% (Q3) 90% 95% Max
Value(f) 0 0 50 875 2250 3625 445( 4500 4500
From Table 5: Standardleviation = 1,513.

Mean = 2,250

Hence
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Expected Loss of the portfolio = £2,2

Unexpected Loss of the portfolio = 513.80

Stress Loss = £4500£3763.80= £736.2

In this portfolio, there isno loss beyond the
percentile as the 85 percentile coincides with tt
maximum value of the losses which is £4! In this
portfolio setting a risk tolerance 86% will be sufficient tc
cover the total loss of the portfolio.

th

4.3. Hundred (100) - Obligor Portfolio Simulation

The simulation procedure is extended to a port
containing hundred obligors as obtained in real i&nkinc

Osei Antwi: Measuring Portfolio Loss Using Apprmation Method

operation. For the 100bligor portfolio we generate
scenario by setting the following risk measi

Asset value correlation is set at |
PD = 5% (Set by bank using historical default ra
EAD=£10,000,000,000 = sum of loans to the 100 obl
LGD =60% (obtained from historical averageLGDS)
M =1 year
£ = Joint Default Probabilitof portfolio = 0.5

The loss frequencgenerated from the simulations &
the corresponding histograsishown in Table 7 and Figure
5 respectively.
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Figure 5. Frequency Distribution of 100-Obligor Portfolio.

The probability distributiorfunction that best describe distribution with parameters = 1.2632 an® = 2.9367E+7.
the data in the 100-Qifor portfolio is the boundedamma  This is shown in Figure 6.
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The data statistics and percentile distributionlags obtained from the gamma distribution are giverTable
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7and Table 8 respectively.
Table 7. Data Statistics of 100-Obligor Portfolio.

Statistic Range Mean Variance Star_lda_trd Coem.C'q]t i SERED Skewness EXC@

Deviation Variation Error Kurtosis
Value(£) 2.5800E+8 2.8826E+7 1.3693E+15 3.7003E+7 1.2837 1.1547E+6 2.3151 6.8926

Table 8. Percentile Distribution of 100-Obligor Portfolio.
Percentile Min 50 10% 25% (QI) 50% (Median) 75% (Q3) 90% 95% M ax
Value(£) 0 0 0 6.0000E+6 1.8000E+7 3.6000E+7 7.8000E+7 1.0200E+8 1.5800E+8
From Table 8: have provided here will simplify the processes Iagd in

Mean = 2.8800E +7
Standard deviation = 3.7003E+7

the determination of portfolio risk.

Hence Expected Loss of the portfolio = £2.8800E +7

Unexpected Loss of the portfolio = £3.7003E+7

In this portfolio, there are losses beyond the™ 95
percentile as the $5percentile does not coincide with the (1
maximum loss of the portfolio. The cumulative lags to
the 95" percentile is £1.02E+8. The cumulative loss up to
99.9" percentile is £1.58E+8. This means that a barénor

institution keeping such a portfolio whose risketaince is 2
95% CI will keep a sum of £102m as Unexpected @apit
However, a bank with a high risk tolerance suchAas\
bank, with risk tolerance of 99.9% CI will keep ansof [3]
£258m as Unexpected Capital. For this portfolie, $tress
Loss is computed as:
Stress Loss=Total Loss — Expected Loss — Unexpeotsd  [4]
Stress Loss = £1.5800E+8 — £2.8800E +7- £3.7003E+7
=£92,197,000
[3]

5. Conclusions -

We have so far outlined and developed a modeldat
determine potential portfolio loss in excess of the We
have shown that based on your confidence levehi ban
hold capital far in excess of the UL. It now liegthwthe [7]

bank’s credit risk management team to determinetivene

to hold capital against losses in excess of thexpawed 8]
loss, beyond say 8(percentile of the distribution. Usually,
highly rated banks such as AAA banks would likentdd
reserves to cover stress losses. However, bankslaviter
ratings will deem it too expensive to hold capialainst
such huge potential losses which has very low gritiba
of occurrence. It must be emphasized here thabuadn
losses beyond the 8(ercentile are huge, they have very[10]
low probability of occurring. For example, from kig 5, it
can be observed that beyond thd @@rcentile there is a
loss of around £240,000,000, but the probabilityso€h
loss occurring is about 0.01. However, should sloss
(catastrophic) arise, it could lead to the collajp$ethe
institution. In a climate of high level of defaylts
uncertainty and corporate bankruptcy, it will begent and
risk sensible for a bank to keep capital to coushdosses.
As we have seen, simulation methods are simple {@2]
implement and interpret. It is able to determink the
losses in a loan portfolio and percentiles candterdghined

at different confidence levels. In summary, thehods we

(9]

(11]
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