
 

Science Journal of Applied Mathematics and Statistics 
2015; 3(1): 22-26 

Published online February 9, 2015 (http://www.sciencepublishinggroup.com/j/sjams) 

doi: 10.11648/j.sjams.20150301.14 

ISSN: 2376-9491 (Print); ISSN: 2376-9513 (Online) 

 

The Common Principal Component (CPC) Approach to 
Functional Time Series (FTS) Models 

Farah Yasmeen 

Department of Statistics, University of Karachi, Karachi, Pakistan 

Email address: 
riazfarah@yahoo.com (F. Yasmeen) 

To cite this article: 
Farah Yasmeen. The Common Principal Component (CPC) Approach to Functional time Series (FTS) Models. Science Journal of Applied 

Mathematics and Statistics. Vol. 3, No. 1, 2015, pp. 22-26. doi: 10.11648/j.sjams.20150301.14 

 

Abstract: The functional time series (FTS) models are used for analyzing, modeling and forecasting age-specific mortality 

rates. However, the application of these models in presence of two or more groups within similar populations needs some 

modification. In these cases, it is desirable for the disaggregated forecasts to be coherent with the overall forecast. The 'coherent' 

forecasts are the non-divergent forecasts of sub-groups within a population. Reference [1] first proposed a coherent functional 

model based on product and ratios of mortality rates. In this paper, we relate some of the functional time series models to the 

common principal components (CPC) and partial common principal components (PCPC) models introduced by [2] and provide 

the methods to estimate these models. We call them common functional principal component (CFPC) models and use them for 

coherent mortality forecasting. Here, we propose a sequential procedure based on Johansen methodology to estimate the model 

parameters. We use vector approach and make use of error correction models to forecast the specific time series coefficient for 

each sub-group. 
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1. Introduction 

Functional time series (FTS) encompasses data in the form 

of curves that are observed at regular intervals in time. 

Recently these models are applied for demographic 

forecasting and breast cancer mortality forecasting (see [3] 

and [4]).  

However, the application of these models in presence of 

two or more groups within similar populations needs some 

modification. [1] Introduced a simple and interpretable 

method of estimating a functional linear model. This model 

provides coherent mortality forecasts for two or more groups, 

i.e. forecasts of individual groups which will not diverge in the 

long run.  The coherent functional model is one of several 

extensions of the basic functional time seriesmodel proposed 

by [3], however, the authors did not discuss the 

implementation and estimation of these models. 

In this paper, I relate some of the functional models 

described above to the common principal components (CPC) 

and partial common principal components (PCPC) models 

introduced by [2], and provide methods for estimating these 

models. These models will be called common functional 

principal component (CFPC) models and will be used for 

coherent mortality forecasting. As described earlier, [1] 

defined a functional time series model for the entire aggregate 

of groups (the product term) and functional time series models 

for each of the ratio terms of group-specific rates to the 

product term. The time series coefficients of the product 

model were then forecast with (possibly non-stationary)  

ARIMA models and the ratio coefficients with stationary 

ARMA or ARFIMA models. In this paper, I propose a 

sequential procedure for estimating the model parameters. My 

procedure differs from the procedure described in [1] that here 

I will use a vector approach, and will make use of error 

correction models for forecasting the specific time series 

coefficients. 

For illustrative purposes, I apply these CFPC models to the 

all-cause mortality data of males and females in Australia. The 

interest lies in developing a suite of tools that will provide 

more accurate forecasts than the existing approaches when 

applied to real data sets. 

2. Common Functional Principal 

Component (CFPC) Models 

The CPC analysis assumes that the space spanned by the 

eigenvectors is identical across groups, whereas the variances 

associated with these common principal components vary [2]. 
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The main advantage of the CPC approach relative to the 

ordinary PCA approach is that it is a way of compressing the 

high-dimensional data of several groups into a small number 

of common factors across groups. We need to estimate a 

smaller number of parameters with CPC than with ordinary 

PCA applied separately to each group. The CPC framework 

has the advantage that it is mathematically appealing and 

empirically parsimonious. For the estimation procedure and 

the properties of the parameters of CPC models, the reader is 

referred to [2] and [5]. 

Common principal component (CPC) models have been 

considered particularly important in Implied Volatility (IV) 

dynamics [see 6-7]. Some other references in this area include 

[8-9]. However, these models have never been used for 

mortality forecasting. Here, I combine the ideas of functional 

data analysis and common principal components with time 

series models. I differ from the above approaches in the way 

that I use CPC models for the coherent forecasting of mortality 

rates. 

Suppose there are J related functional time series 

corresponding to age-specific mortality rates of J groups and it 

is of interest to forecast them jointly rather than independently.  

Let ��,�(�)denote the mortality rate for age and year t, t= 

1,...,n , for the jth group. We will model the log mortality, ��,�(�	) = ��
 [ ��,�(�) ], and assume that there is an 

underlying smooth function
�,�(�)that we are observing with 

error. Thus,  ��,�(�	) = 
�,�(�	) + ��,�(�	)��,�,	         (1) 

It is desirable to define a functional time series model for 

the whole aggregate of groups. Since the mean function can 

vary across groups, the following model termed as CFPC-I 

can be used:  
�,�(�	) = ��(�) + ∑ ��,�∅�(�)���� + ��,�(�)    (2) 

According to [2], the space spanned by the principal 

components is same in all groups but their variances can vary. 

Hence, we can define another model with same basis functions 

but different coefficients  
�,�(�	) = ��(�) + ∑ ��,�,�∅�(�)���� + ��,�(�)    (3) 

I will call this the CFPC-II model and it is of considerable 

importance when the age patterns (basis functions) do not 

differ significantly among the groups but their time series 

coefficients can vary across the groups. 

The idea of partial common principal components (PCPC) 

models was also introduced by [2]. A PCPC(p) model, where 

‘p’ denotes the order of the common eigen-vectors, is 

appropriate when one assumes that in each group there are ‘p’ 

joint (common) components, and the remaining ‘q’ are 

non-common or specific components. If we relate this idea to 

demographic models, then this type of model is proposed by 

[10], who used one common and one group-specific 

component for each of the group. 

Combining these ideas and defining a functional linear 

model with more than one component, say ‘K’ common and ‘L’ 

specific components, we havethe following functional linear 

model 


�,�(�	) = ��(�) + ∑ ��,�∅�(�)���� + ∑ ��,�,����� ��,�(�) + ��,�(�)(4) 

where each��,�,�  is a stationary time series, but ��,�may be 

non-stationary. This model will be termed as Partial Common 

Functional Principal Component (PCFPC)(p,q) model.  

3. Estimation of Parameters 

For estimating the parameters of a CFPC model, it is 

desirable to obtain a suitable matrix M of the observed log 

mortality rates on which SVD is to be applied. Then we will 

get the basis functions and corresponding estimates of the time 

series coefficient. 

Let M be a p×n matrix with (i , t)th element , i.e.  

M= ���� �� … ��"⋮ ⋮ … ⋮⋮ ⋮ ⋮ ⋮�$� �$ … �$"
% 

For CFPC-I, first we obtain the weighted average of the log 

mortality rates after smoothing. Let &�,�(�	)is the value of 

smoothed log mortality rate at age and time t for the jth group 

and '�,�(�	)is the (i , t)th element of , the total number of 

exposures for the jth population, j = 1, 2, . . . , J.  (�(�)=[(�,�(�)( ,�(�) … (",�(�)] 

where 
P�,�(+) =  

,-
--
.'�,�(��)'�,�(� )⋮⋮'�,�(�$)/0

00
1
 

For CFPC-I, the matrix Mcan be obtained as  

�	,�= 
∑ 234,5(+6)7 × $4,5(+6)95:; ∑ $4,5(+6)95:;            (5) 

After obtaining Mfrom the elements given in equation(5), 

we apply SVD to get the common basis functions and 

coefficients for model given in (2).  

For CFPC-II, the matrix M will be  

M = [<�|< |…. |<� ] 

WhereMk = (�(	�)�)$+"  

and 

�(	,�)�= 
234,5(+6)=>5(+5)7 × $4,5(+6)∑ $4,5(+6)95:;         (6) 

Applying SVD to M=�ΛΡgives where is of order p×p and A = <B� is of order Jn×p. The common basis function �C�(�	)is the ( i, j )th element of�. The specific coefficients ̂ 
can be obtained from A = <B�.  
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Finally, for the PCFPC model, we first apply SVD to the 

matrix M for CFPC-I given in equation (5) so that, the terms 

are estimated.  

��(�) + E ��,�∅�(�)�
���  

Next, the problem is to estimate the specific coefficients 

and basis functions for each group. For this, we apply SVD to 

the residual matrix for the jth group defined as  F� =[ F�,�(�)F ,�(�) … . . F",�(�)]  

where  F�,�(�) =  &�,�(�) − [��(�) + ∑ ��,�I�(�)����   (7) 

Applying SVD to F� gives F� = J���A�. The specific basis 

function ��,� (�) is the (i , l)th element ofJ�  whereas the 

coefficient ��,�,�can be obtained from F�′J�, as described for 

the common components. 

4. Forecasting the Coefficients 

4.1. CFPC Models 

To obtain the forecast value of mortality rates from CFPC 

model, we first obtain the forecast for each of the common (or 

non-common) components in the model.  

Let �L",M,� and �L",M,�,� denote the h-step ahead forecast of �"NM,� and �"NM,�,� respectively. Also, let 
O",M,�(�)denote the 

h-step ahead forecast of 
"NM/",�(�) for j = 1, 2, . . . , J. Then 

the forecasts for CFPC models are given by are estimated.  
O"NM/",�(�) = �̂�(�) + ∑ �L",M,�∅Q�(�)�
���     (8a) 


O"NM/",�(�) = �̂�(�) + ∑ �L".M.�,�∅Q�(�)�
���     (8b) 


O"NM/",�(�) = �̂�(�) + ∑ �L",M,�∅Q�(�)�
��� + ∑ �O",M,�,�

�
��� �C�,�(�)(8c) 

where �̂�(�)are the estimated values of��(�), j = 1, 2, . . . , J 

and ∅Q�(�)are the estimated common basis functions. Here 

�O",M,�,� denote the h-step ahead forecast of the specific 

coefficient for PCFPC model given in equation (4). 

To obtain the forecasts of the mortality rates from the CFPC 

model, I first obtain the forecast for each of the common (or 

no-common) components in the model. Note that the basis 

functions for the first two CFPC models are the same. One can 

use univariate time series models for the coefficients of the 

models given in equations (2) and (3) and the common 

components of the model given in equation (4).  

The common coefficients ��,�  ,  k=1,2,…,K, all are 

independent, as they are all obtained from a principal 

component decomposition. Hence, there is no need to apply 

multivariate time series models; rather, univariate models, 

including ARIMA models, exponential smoothing statespace 

models [11], random walk with drift and other univariate time 

series models can be used. Here I use ARIMA models, with an 

automatic algorithm based on [12] for choosing the values of 

the parameters. 

4.2. PCFPC Models 

In this section, I will discuss some important issues with 

using partial common functional principal component 

(PCFPC) models. They include forecasting the specific 

coefficients of these models and the cointegration in these 

components. 

4.2.1. Forecasting the Specific Coefficients 

For forecasting the specific coefficients of a PCFPC model, 

I use vector autoregressive (VAR) models with co-integration. 

Using a VAR(p) model, it is necessary for all of the variables 

included to have the same order of integration. We consider 

the following two cases: 

1. If all the variables are stationary (or I(0)), we can use the 

standard case, i.e., a VAR model in levels is appropriate. 

The appropriate lag length is selected according to some 

model specification criteria e.g., AIC or BIC. 

2. If the variables are non-stationary I(d) with d ≥1, then 

the simplest approach is to difference each of them ‘d’ 

times and then apply the standard VAR model in the 

usual manner; but in the case of cointegration, 

differencing can result in a large positive autocorrelation 

in residuals. Hence, we make use of cointegration and 

vector error correction models (VECM). 

4.2.2. Cointegration in Specific Coefficients 

[13] first pointed out that a linear combination of two or 

more non-stationary series may be `stationary'. The stationary 

combination may be interpreted as ‘cointegration', or an 

‘equilibrium relationship’ between the variables. If the 

variables are not cointegrated, then one variable might drift 

above or below the other variable in the long run. 

4.2.3. Cointegration when Cointegrating Vector is 

Pre-Specified 

For the two-sex data, suppose the males and females time 

series coefficients are co-integrated with pre-specified vector 

� = (1, −1)′i.e the long-run relationship between the male 

series��,T and female series��,3 is ��,T =  ��,3 . We can test it 

for its co-integration using a unit root test for the difference 

series U =  ��,T − ��,3 , using Augmented Dickey Fuller ADF 

test . We have to test  

VW =  �′�� =  ��,T − ��,3 ~ I (1) (no co integration)  

V� =  �′�� =  ��,T − ��,3 ~ I (0) (co integration)  

Co-integration is found if the unit-root test rejects the 

no-cointegration null (see [14]). For forecasting the specific 

componentsof a PCFPC model, we use Johansen 

Methodology [15], based on the vector error correction model 

(VECM). 

4.2.4. Johansen Methodology 

Johansen methodology starts with a VAR model. A VAR 

process with p lags is defined as  
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�� =  ФW +  Ф� ��=� + Ф  ��= + ⋯ + Ф$��=$ +  ��(9) 

where Ф	 ’s are (K× K) coefficient matrices for i = 1, 2, . . . , p 

and is K-dimensional white noise i.e. ��~[(0, ]).  

One can obtain the following form of vector error 

correction models (VECM):  ∆��= ФW + П��=� + г�∆��=� + г ∆��=  … . +г$∆��=$  + �� (10) 

with  г	 =  − ∑ Ф	$��	N� fori = 1, 2, …. p-1 

and 

П = (a − E Ф	
$

	�� ) 

Here matrixП is called the long run impact matrix and 

matrices г	′b are called short-run impact matrices. The matrix П��=�represents the co-integration relation.  

4.2.5. Forecasting from VECM 

To forecast from VECM, we first convert it into appropriate 

VAR model. e.g. in bivariate case   ∆��= ФW + П��=� + г�∆��=� + ��        (11) 

After estimating the matrices П  and г� , we can easily 

convert this model into VAR(2) using   Ф  = -г�                  (12a)  Ф� =  г� – П + a               (12b) 

Once the parameters’s are estimated, forecasts can be 

obtained in the usual manner as forecast from a VAR model.  

4.2.6. Choosing among the Best CFPC Model 

We define 

K: the number of common components and 

L: the number of non-common or specific components (c�,� : Percentage variance explained by the first K 

common components; (c ,�,� :Percentage variance explained by the first L 

non-common components in jth group, 

here 

(c�,� =  de∑ dee:fe:; (c ,�,� =  d5,g∑ d5,gg:fg:;         (13) 

Whereh�  andh�,�  are the eigenroots corresponding to the 

kth common and lth non-common factor for the jth group 

respectively. Also, one can define the cumulative variation as 

follows: i(� : Total variation explained by the first K common 

components;  i( ,�: Total variation explained by the first L non-common 

components in jth group; with  

i(� =  ∑ deje:;∑ dee:fe:; i( ,� =  ∑ d5,gg:kg:;∑ d5,gg:fg:;           (14) 

4.2.7. Coefficient of Explanation 

To measure the performance of a CFPC model, we define  

il� = 1 − ∑ m 2n4,5(+)= oO4,5(+)7pq4:; rs+
∑ m 2n4,5(+)= >t5(+)7pq4:; rs+          (15) 

where��,�(�)are the observed value of log mortality rate and 
O�,�(�)are fitted values obtained from a CFPC model. 

5. Empirical Application 

In this section, we will illustrate the procedure of fitting and 

forecasting through CFPC models using an application to the 

age-sex specific data of Australia. The data are obtained from 

[16].  

Table 1 shows the coefficient of explanation for different 

CFPC models, each with six common components. CFPC-I 

gives considerably higher values of and the model is 

explaining about 96.82% variability in females and 96.38% in 

males. 

The values of for CFPC-II are slightly lower in both groups 

(74.4% in female and 73.88% in males).  

Table 1. Coefficient of explanation for Australian Sex Data. 

Model Female Male 

CFPC-I (6) 0.9682 0.9638 

CFPC-II (6) 0.7439 0.7388 

PCFPC(6,6) 0.9931 0.9904 

Independent 0.9886 0.9857 

If we apply PCFPC model, we will get the best fitted model 

as now it is capturing about 99% variability in both groups. 

We use K=6 and L=6 and the value ofi(�  is 99.4% for 

common components and the values of i( ,�are 83.2% and 

79.9% for females and males respectively, which are 

sufficiently high.  

Table 2 represents the p-value of Augmented Dickey Fuller 

(ADF) unit root test for the specific coefficients for males and 

females. For the first two coefficients, we are unable to reject 

the hypothesis about the presence of unit-root. The next step is 

to determine whether the individual series are cointegrated. 

For this, we can use Engle-Granger cointegration test [13] 

based on the residuals from OLS regression of one variable 

(say��,�) on other variable (� �). �u =  vu + �u�w + x��            (16a) �w =  vw + �w�u + x �            (16b) 

Table 2. p-value for the Augmented Dickey-Fuller unit root test for specific 

coefficient ��,�,�, Specific Coefficients. 

Series 1 2 3 4 5 6 

Male 0.6099 0.9566 0.0100 0.0118 0.0317 0.0259 

Female 0.5156 0.9004 0.0308 0.0215 0.0265 0.0154 
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Table3. p-values for augmented Dickey Fuller unit root test for 

Engle-Granger Cointegration Method. 

Coefficient 

No. 
1 2 3 4 5 6 

Residuals 

(male) 
0.017 0.020 0.025 0.018 0.047 0.045 

Residuals 

(female) 
0.010 0.039 0.010 0.010 0.031 0.028 

Table 3 represents the p-value of ADF test for the 

staticresiduals x�,� and x ,� ). It is interesting that for both 

males and females, the p-values are smaller than 0.05. After 

confirming the cointegration between the first two coefficients 

of males and females, the next step is to determine the nature 

of cointegration relation. For bivariate time series, the 

cointegrating vector β will be� = (1, -�∗)′ 
In our case, suppose that the demographers assume that 

there is a long-run equilibrium in the male and female series 

with pre-specified cointegrating vector � = (1, −1)′. For this, 

we first check the presence of unit-root in the differences of 

observed series. Table 4 shows the p-values of Augmented 

Dickey Fuller test for the difference of specific coefficients  U = �T − �3 

The results in tables (2) and (4) confirm that the original 

series were I(1) and their differences are stationary.  

6. Conclusion 

In this paper, we introduced a new class of functional linear 

models for coherent mortality forecasting. We developed the 

methods for estimating their parameters and forecasting from 

these models.  

It is found that the specific time series coefficients among 

different subgroups are highly correlated; hence we used 

vector autoregressive (VAR) and vector error correction 

models (VECM) to forecast them. For the purpose of 

illustration, the models are applied to the two-sex data of 

Australia. It is found that all new methods work well and 

mortality rates and life expectancy can be forecast in a 

coherent way. Also, PCFPC model provides some extra 

information about the age-groups that are most responsible for 

the difference. We found that the difference of male and 

female series U = �T − �3 is a stationary process. It means 

that there is long run equilibrium among male and female 

coefficients. 
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