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Abstract: In this paper we present a method to find the solution of time-varying systems using orthonormal Bernstein 
polynomials. The method is based upon expanding various time functions in the system as their truncated orthonormal Bernstein 
polynomials. Operational matrix of integration is presented and is utilized to reduce the solution of time-varying systems to the 
solution of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique. 
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1. Introduction 

The history of orthogonal polynomials is very old. The 
Legendre polynomials originated from determining the force 
of attraction exerted by solids of revolution and their 
orthogonal properties were established by Adrien Marie 
Legendre during (1784-90). The problem of solving ordinary 
differential equations over infinite or semi-infinite intervals 
and of obtaining expansion of arbitrary functions over such 
intervals attracted the attention of famous mathematicians in 
the nineteenth century and to resolve it, functions known 
today as Hermite polynomials were introduced in 1864 by 
Charles Hermite (1822-1905). 

In 1807, Joseph Fourier (1768-1830) while solving the 
partial differential equation encountered in connection with 
conduction of heat in a rod discovered that the solution can be 
expressed as a series of exponentially weighted sine functions. 
Later, he extended this idea to represent any arbitrary function 
as an infinite sum of sine and cosine functions. 

Orthogonal functions (OFs) and polynomial series have 
received considerable attentions in dealing with various 
problems of dynamic systems and many papers have been 
written in various field of their application. The main 
approach is that of converting the underlying differential 
equation governing the dynamical systems to an algebraic 
form through the use of an operational matrix of integration�. 
The matrix �  can be uniquely determined based on the 
particular OFs. Special attentions has been given to 
applications of Walsh functions[6], block-pulse functions 

[1,13,14], Laguerre polynomials [5], Legendre Polynomials 
[2,3], Chebyshev polynomials [4,10], Taylor series [9] and 
Fourier series [7,11]. The available sets of OFs can be divided 
into three classes. The first includes a set of piecewise 
constant basis functions (PCBFs) (e.g. Walsh, block-pulse, 
etc.). The second consists of a set of orthogonal polynomials 
(OPs) (e.g. Laguerre, Legendre, Chebyshev, etc). The third is 
the widely used set of sine-cosine functions (SCFs) in the 
form of Fourier series. In this paper we use orthonormal 
Bernstein polynomials to solve time varying systems.  

The method reduces the original problem to solving linear 
algebraic equations. Therefore, computational difficulties are 
greatly reduced namely the method consists of reducing the 
problem to a set of algebraic equations by first expanding the 
candidate function as an orthonormal Bernstein polynomials 
with unknown coefficients. These orthonormal Bernstein 
polynomials are first introduced. The operational matrices of 
integration are given. This matrix is then used to evaluate the 
coefficients of the orthonormal Bernstein polynomials for the 
solution of time varying systems. 

2. Bernstein Polynomials and Their 

Properties 

The � -polynomial of � -th degree are defined on the 
interval [0,1]as ([8,12] ) 

�	,
��
 = ��� � �	�1 − �

�	 ,				0 ≤ � ≤ �.     (1) 



 Science Journal of Applied Mathematics and Statistics 2015; 3(4): 194-198 195 
 

Where 

��� � =

!

	!�
�	
!.  

Bernstein polynomials have some properties that 
distinguish it from other polynomials for example continuity 
and partition of unity property. All of the Bernstein 
polynomials vanish at the initial and end points of the 
interval [�, �]  except for the first polynomial and the last 
polynomial are equal to 1  at �	 = 	�  and �	 = 	� , 
respectively, which provides greater flexibility to impose 
boundary conditions. The Bernstein polynomials, although 
not based on orthogonal polynomials, can also be applied to 
analyze various problems. Specifically, Bernstein 
polynomials have been used for solving the partial differential 
equation. 

It can be shown that each of the �-polynomials is positive 
and also the sum of all the �-polynomials is unity for all real 
� belonging to the interval[0,1], that is, ∑ �	,

	�� ��
 = 1. 
Also it can be easily shown that any given polynomial of 
degree � can be expanded in terms of linear combination of 
the basis functions  

���
 = ∑ �	
	�� �	,
��
,				� ≥ 1           (2) 

Moreover we have followings  
1.		�	,
�0
 =  	�,			�	,
�1
 =  	
,			  
2.		�	,
��
 = �1 − �
�	,
�"��
 + ��	�",
�"��
,	  
3.		�	,
�1 − �
 = �
�	,
��
.  
Where	 	denotes Kronecker delta function. 
A recursive definition can also be used to generate the 

Bernstein polynomials over [�, �] so that the �th Bernstein 
polynomial of �th-degree can be written 

�	,
��
 = �%�&

%�' �	,
�"��
 + �&�'

%�' �	�",
�"��
.     (3) 

More properties of �-ploynomilas can be find in [8]. 

3. Orthonormal (-polynomials  

Using Gram- Schmidt orthonormalization process on �	,
 
and normalizing, we obtain a class of orthonormal 
polynomials from Bernstein polynomials. We call them 
orthonormal Bernstein polynomials of order � and denote 
them by)�	,
��
. For example with � = 8 we have  

)�[0,8]��
 = +�17
�−1 + �
-, 	
)�[1,8]��
 = −+�15
�17� − 1
�−1 + �
/, 	
)�[2,8]��
 = +�13
�136�1 − 32� + 1
�−1 + �
2, 	
)�[3,8]��
 = −+�11
�680�3 − 360�1 + 45� − 1
�−1 + �
5, 	
)�[4,8]��
 = +�9
�2380�7 − 2240�3 + 630�1 − 56� + 1
�−1 + �
7,  

)�[5,8]��
 = −+�7
�6188�5 − 9100�7 + 4550�3 − 910�1 + 65� − 1
�−1 + �
3, 	
)�[6,8]��
 = +�5
�12376�2 − 26208�5 + 20475�7 − 7280�3 + 1170�1 − 72� + 1
�−1 + �
1, 	
)�[7,8]��
 = −+�3
�19448�/ − 56056�2 + 63063�5 − 35035�7 + 10010�3 − 1386�1 + 77� − 1
�−1 + �
, 	
)�[8,8]��
 = 24310�- − 91520�/ + 140140�2 − 112112�5 + 50050�7 − 12320�3 + 1540�1 − 80� + 1.  

Figure 1 shows these orthonormal functions.  

 

Figure 1. Orthonormal Bernstein olynomials with m=8 

A function 8��
  belongs to the apace 91[0, 9]  may be 
expanded by Bernstein orthonormal polynomials as follows 
[8, 13]:  

8��
 = ∑ �	
:	�� )�	
��
,              (4) 

where if <.> be the standard inner product on 91[0,1] then  

�	
 =< 8. )�	
 >. 

By truncating the series (4) up to �� + 1
th term we can 
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abtain an approximation for 8��
 as follows:  

8��
 ≈ ∑ �	

	�� )�	
��
 = �>���
.        (5) 

Where 

���
 = [)��,
��
, )�",
��
, … , )�
,
��
]> .				    (6) 

It can be easily seen that the elements of ���
 in interval 
[0, 9] are orthogonal.  

4. Operational Matrix of Integration for 

Orthonormal Bernstein Polynomials  

In this section, we present the operational matrix of 
Integration for Bernstein orthonormal polynomials. To do this, 
first we introduce the concept of the operational matrix.  

The operational properties of the orthogonal series may be 
written in terms of operational matrices of integration and 
differentiation. The main concept around these properties is 
the fact that the integral of an orthogonal series may be also 
expressed as a orthogonal series. The same can be stated for 
orthogonal series and their derivatives. In general terms the 
operational matrix of integration and differentiation may by 
defined as 

@ …@ A�B
CB = �DA��

E

�

E

�
, 

CDA��

C�D = FDA��
. 

Note that P and	D are operational matrices of integration 
and differentiation respectively. Any given differential 
equation of degree n	can be expressed as a set of state-space 
equations. This same set can be transformed into an algebraic 
set of equations using operational matrices. 

Definition 1. Suppose  

A = [A�, A", … , AD], 
where 	A�, A", … , AD  are the basis functions on the given 
interval[�, �]. The matrices JD×D and �D×D are named as the 
operational matrices of derivatives and integration 

respectively if and only if  

C
C� A��
 ≈ JA��
	

@ A
E

'
�B
CB ≈ �A��
. 

Operational matrices are used in several areas of numerical 
analysis and they hold particular importance in various 
subjects such as integral equations, differential and partial 
differential equations, optimal control and etc. Also many 
textbooks and papers have employed the operational matrices 
for spectral methods.  

Using the operational matrix of an orthonormal system of 
functions to perform integration for solving, identifying and 
optimizing a linear dynamic system has several advantages:  

(i) The method is computer oriented, thus solving higher 
order differential equation becomes a matter of dimension 
increasing, 

(ii) The solution is a multi-resolution type  
(iii) The solution is convergent, even though the size of 

increment may be large.  
Until now, the operational matrix of integration has been 

determined for several types of orthogonal basis functions, 
such as the Walsh function, block- pulse function, Laguerre 
series, Chebyshev polynomials, Legendre polynomials and 
Fourier series.  

The aim of present paper is to derive the Bernstein 
orthonormal polynomials matrix of integration namely  
�
L" . The matrix �
L" may be used to solve problems of 
system analysis and synthesis in a manner similar to those of 
the other orthogonal functions. The Bernstein polynomials are 
first orthonormalized and the operational matrix of integration 
is then derived. With the same procedure as in [12], where the 
operational matrix of integration for Bernstein polynomials is 
derived, the integration of ���
 in (5) can be approximated 
by ���
 as follows:  

M �E� �B
CB ≈ ����
. 
Where � is the operational matrix of integration of order 

�� + 1
 × �� + 1
 and with � = 6 is given by:  

� =

N
OO
OO
O
P 0.13265 0.25343 0.21934 0.19503 0.16443 0.1275 0.07356
−0.009386 0.11224 0.21998 0.17501 0.15273 0.1166 0.06794
0.0014151 −0.016921 0.091837 0.18408 0.12944 0.1092 0.05983
−0.0003403 0.0040701 −0.022089 0.071429 0.14489 0.0831 0.05849
0.00011506 −0.0013759 0.0074675 −0.02414 0.051020 0.1010 0.03612
−0.0000495 0.00059211 −0.003213 0.010392 −0.02195 0.03061 0.04860
0.00002144 −0.000256 0.0013915 −0.004499 0.009507 −0.01325 0.01020Q

RR
RR
R
S

 

5. Illustrative Examples 

In this section two examples are given to demonstrate the 
applicability, efficiency and accuracy of our proposed method. 
The following examples show the computational power of the 
Bernstein polynomial operational matrix of integration.  

5.1. Example 1 

Consider a linear time-varying system 

TU��
 + T��
 = 1, 
T�0
 = 2, (7) 
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The exact solution is1 + V�E. Here we obtain approximated 
solution of (7) using the Bernstein operational matrix of 
integration �  with � = 6  and compare the solutions. By 
Integration (7) from 0 to t, we get  

@ TU
E

�
�B
CB + @ T

E

�
�B
 = @ 1

E

�
CB 

⟹ T��
 − T�0
 + @ �>
E

�
��B
CB = � 

⟹ �>�(�) − ��>�(�) + �>��(�) = �">�(�). 

By simplifying we get 

� = (�� + �")(X + �)�". 

Now � can be computed. By substituting � in (5), Figure 
2 depicts the corresponding errors between the approximate 
solution and exact one.  

 

Figure 2. Corresponding error between the approximated solution and exact 

one in Example 1 with m=6  

5.2. Example 2 

Consider a linear time-varying system  

TU(�) − 5T(�) = 4�, 
T(0) = 0.25, (8) 

The exact solution is −4/25 − (4/5)� + (41/100)V5E . 
Here we obtain approximate solution of (8) using the 
Bernstein operational matrix of integration �  by taking 
� = 8 and compare the solutions. Integrating (8) from 0 to t, 
we get  

@ TU
E

�
(B)CB − @ 5

E

�
T(B) = @ 4

E

�
BCB 

⟹ T(�) − T(0) − 5 @ �>
E

�
�(B)CB = 2�1 

⟹ �>�(�) − ��>�(�) − 5�>��(�) = 2�">�(�) 

By simplifying we get 

� = (�� + 2�")(X − 5�)�". 
Now � can be computed. By substituting � in (5), Figure 

3 depicts the corresponding errors between the approximate 
solution and exact one.  

 

Figure 3. Corresponding error between the approximated solution and exact 

one in Example 2 with m=8 

6. Conclusion 

Using orthonormal Bernstein polynomials, a simple and 
computational method for solving linear time varying systems 
is considered. The method is based upon reducing a linear 
time varying systems to an algebraic linear or nonlinear 
problem. The unity of the function of orthogonality for 
Bernstein polynomials and the simplicity of applying 
Bernstein polynomials are great merits that make the 
approach very attractive and easy to use.  

Although the method is simple, by solving various 
examples, accuracy in comparison of the other methods can 
be found. Furthermore this method can be extended to high 
order differential equations by appropriate changes. 
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