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Abstract: This study sought to estimate finite population total using Spline regression function. It compared the Spline 

regression with Sample Mean estimator, design-based and model - based estimators. To measure the performance of each 

estimator, the study considered average bias, the efficiency by use of the mean square error and the robustness using the rate 

change of efficiency. In this research, five populations were used. Three of them were simulated according to the following 

models: linear homoscedastic, quadratic homoscedastic and linear heteroscedastic and two natural populations. The 

performances of the five estimators were studied under the five populations. The sudy found that Sample Mean(SM), Horvitz-

Thompson (HT) and Ratio (R) estimators are not robust while Nadaraya-Watson(NW) and Periodic Spline(PS) are robust when 

linearity and homoscedasticity of the population structure are violated. 
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1. Introduction 

1.1. Introduction 

There are two generally accepted options in studying the 

characteristics of finite population. The first option is a study 

in which every unit of the population is examined called a 

census. Use of a census to study a population is time 

consuming, expensive, often impossible and strangely 

enough, often inaccurate. The other option is to study the 

characteristic of a population by examining a part of it. The 

theory of survey sampling as developed during the past 

several decades provides us with various kinds of reasonable 

scientific tools for drawing samples and making valid 

inference about the population parameters of interest. 

1.1.1. Census Versus Sampling Method 

Although there are advantages with the census method, the 

cost, effort and the time required to conduct census may be 

enormous unless the population is very small. In such a case 

we resort to sampling that involves examination of a part of 

the population. Although a census operation gives a more 

reliable data, sampling is more appropriated when: 

i. The cost of conducting census would be prohibitive. 

ii. The population is large, such that it would be 

impossible to conduct a census. 

iii. The study involves destruction of elementary units 

under study, such that it would be appropriate to 

conduct sample testing. 

iv. Quick results are required, such that it would be 

appropriate to conduct sample survey rather than 

carrying out a complete count. 

1.1.2. Basic Ideas of Sampling and Estimation 

In the basic sampling setup, the population consists of a 

known finite number N of units – such as people or plots. 

With each unit is associated a value of a variable of 

interest, sometime referred to as the y-value of that unit. 

The y-value of each unit in the population is unknown 

quantity. However, the units in the population are 

identifiable and may be labeled with numbers 1, 2,. N. A 

sample of the units in the population is selected and 

observed. The data collected consist of the y-value for each 

unit in the sample together with the unit’s label. The 

procedure by which the sample units is selected from the 

population is called the sampling design. With most of the 

well- known sampling designs, the design is determined by 

assigning to each possible sample the probability p(s) of 

selecting that sample. For example, using the simple 

random sampling design, the units are selected with equal 

and independent probability p(s). 
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1.2. Estimation Approaches 

To estimate finite population total (��) in survey, where 

�� = ∑
=1

,
i

iY  

We need to have Yi ( i =1, 2, 3,., N) the survey variables 

and xi ( i = 1, 2, 3,., N) design variables ( Auxiliary 

variables). The following therefore is a list of approaches 

that are considered in this study in the estimation of finite 

population total. 

1.2.1. Design - Based Approach 

This is also known as classical approach. In this approach, 

the variables of interest of the target population are viewed 

as fixed quantities. Also the design introduces selection 

probabilities that determine the properties of estimators that 

are used to obtain expected values, variances, biases etc. The 

samples are generated by sampling design p(s) with the 

values nyyy ,...,, 21 , nxxx .,..,, 21  held fixed. The 

repetition of sample drawing procedure forms the basis of 

randomization framework. The approach assumes that 

models have no relevance to the inferential framework. In 

experimental design, randomization is employed to protect 

the experimenter against subjective biases. Scott and Smith 

(1975) extended results of Blackwell. According to Fisher, 

randomization was relevant before the data were collected 

but not in the analysis of data which is in agreement with 

most statisticians in the experimental sciences. 

Randomization is therefore an insurance against selection 

bias. 

1.2.2. Model – Based (Prediction) Approach 

From Royall (1976) the concept of the super population 

is introduced thus: “The finite population should itself be 

regarded as a random sample from some infinite 

population”. Hence finite population is assumed to be 

generated as a random sample from a super population. 

Also noted that variable of interest are viewed as random 

variables and properties of estimators depend on the joint 

distribution of these random variables. A sample is selected 

from the finite population using a known sampling scheme. 

Then observations are made on the sample values and are 

then used to make predictions about the non sample values. 

In this case the model connects a variable of interest Y with 

a set of auxiliary variables X, Cox (1995). However, noted 

that the choice of a model and it’s robustness to 

misspecification is the major issue. Small deviation from a 

chosen model may lead to serious errors in an inference. 

Sometimes the models become mathematically complex 

while still not being suitably realistic (Thompson, 1992). 

For example, where model assumption of the variable being 

studied is that of independence it ignores the tendency in 

many population for nearby or related units to be 

correlated. 

1.2.3. Non-Parametric Approach 

The parametric method of estimation is used when it is 

assumed that the data is drawn or generated from one of the 

known parametric family of distributions. In many cases 

however, the experimenter does not know the form of the 

basic distribution and needs statistical techniques which are 

applicable regardless of the form of the distribution. These 

techniques are referred to as non parametric or distribution 

free methods. They apply to very wide families of 

distributions rather than only to families specified by a 

particular functional form. They do not require the various 

assumptions about the distribution of population from 

which the sample was obtained. The main idea behind this 

class of models is that the effect of an explanatory (design) 

variable and dependent variable of interest is not modeled 

as parametric, usually linear function but is kept flexible. 

The only assumption needed is that the effects of the 

explanatory variables are modeled as smooth i.e. 

differentiable functions. The functional shape is then to be 

estimated from the data by either using: Kernel based 

methods or Spline based methods. 

Kernel Based Method. 

The Kernel estimator is expressed in terms of a Kernel 

function which satisfies the condition; 

� ����	� = 1�
��
� �����	� = 0�
��

� ������	� = �� < ∞�
�� ��

�
                  (1) 

Usually, but not always, K will be a symmetric 

probability density function, the normal density for 

instance. Therefore, according to Silverman (1986) the 

Kernel estimator of the density function with Kernel K is 

defined by, 

( ) ∑
=








 −=
n

1i

i
Λ

h

xx
K

nh

1
xf                        (2) 

where h is the bandwidth. It is clearly observed that the 

Kernel estimator is a sum of ‘bumps’ placed at the 

observations. Each individual bumps is created by 

( ) ( ){ }/hxxKnh i

1 −−
and the estimate 

Λ
f is a resultant hump 

obtained by adding them up. 

Spline Based Method. 

The name, “Spline function” was given by I.J 

Schoenberg (1946) to the piecewise polynomial function 

known as univariate polynomial Splines. This was because 

of their resemblance to the curves obtained by their 

draftsmen using a mechanical Spline –a thin flexible rod 

with a groove and a set of weights called “duck” used to 

position the rods at points through which it was derived to 

draw smooth interpolation curves passing through 

prescribed points. The basic idea dates back at least to 

Whittaker (1923). More resent papers on the subject 

include Wahba (1975), Smith (1979), and Silverman (1985) 

among others. For Kernel regression estimation a weighting 

scheme due to Nadaraya (1964) –Watson (1964) has been 

associated with random design, and a convolution type 

weighting scheme with fixed design based on mean square 

error; none of the estimators is uniformly optimal in either 
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design. The multitude of non parametric regression 

estimators is an issue of considerable practical and 

theoretical importance. A wide class of estimators studied 

by Jennen Steinmetz and Gasser (1988) included fixed 

width Kernel estimators, smoothing spline and nearest –

neighbor estimators as particular cases. No estimator is 

uniformly best in terms of integrated mean squared error, 

but the kernel estimator turns out to be the minimax 

optimal. Since non parametric methods are usually intended 

to be applicable to a broad variety of situations the 

minimax property is an important safeguard. Two 

definitions of Kernel weights enjoy particular popularity, 

the Nadaraya –Watson type (Nadaraya 1964, Watson 1964) 

and the convolution type estimator (Priestly and Chao1972, 

Gasser and Muller 1979). The Nadaraya-Watson method is 

intuitively motivated as an estimator of a conditional 

expectation which suggests a context where the 

independent variable is random. Hence this method seems 

suited for a situation of randomly selected design points, 

whose distribution is determined by the design density. 

A spline function is a piecewise defined function with 

certain smoothness conditions. The most commonly used 

form is the cubic splines. There are two sorts of splines; 

ordinary splines and B-spline. The two spline function have 

the same general structure regarding the piecewise defined 

function such as 

( ) 3

3,

2

2,1,0, xaxaxaaxf iiiiii +++=                   (3) 

and the smoothing conditions. The difference is that the 

ordinary splines go through all the data points exactly 

where as B -spline do not necessarily fit the data exactly. 

For ordinary splines, the curve has to go through all the 

points hence the equation ( ) ii yxf =  has to be satisfied for 

all the points ( )ii y,x . The spline function has to yield the 

value 
iy  for

ix . The smoothing conditions too have to be 

fulfilled. B-spline are piecewise defined functions usually 

polynomial with the same smoothness conditions as 

ordinary spline. They are however not forced through the 

data points exactly, the function has simply to come close 

to the data points. 

In estimation of finite population total, the challenge is 

to identify an estimator that is efficient when the population 

structure is not known. In this study, try to compare the 

spline regression with the known estimators of 

nonparametric (Nadaraya-Watson), Sample Mean estimator, 

Design-based Horvitz-Thompson estimator and Model-

based Ratio estimator. The challenge is to obtain an 

estimator which is robust to the violation of both linearity 

and homoscedasticity of the population structure. 

2. Methodology 

2.1. Non-Parametric Estimation of the Population Total 

Using Kernels 

In this section, the Nadaraya-Watson Kernel estimator is 

considered. It is assumed that the auxiliary information is 

available for the entire population and the auxiliary variable 

X and the study variable Y are related in a more general way. 

Consider the model 

yi = m ( )ix  +ε I                             (4) 

where m ( )ix  is the mean function and ε i a random error 

term. It is assumed that the functional form of m (xi) is 

unknown but assumed to be smooth and continuous. 

Let wi(x), i = 1, 2, …, n be the weight function known as 

Kernel function. The Kernel is a continuous, bounded and 

symmetric function which integrates to one. That is 

∫ k(u)du = 1 

By taking kh(u) = h-1k 








h

u
 to be the Kernel with band 

width h. The weight sequences for the Kernel smoothers as 

given by Nadaraya (1964) - Watson (1964) is 

wi(x) = ∑
=

−
−

1i

ih

ih

x)/h(xk

x)/h(xk

                  (5) 

The Nadaraya -Watson estimator of m(x) in (3.1) is 

Λ

m (x)= ∑
i

( ) iyxw i                  (6) 

Substituting 3.2 in 3.3 we have 

( ) ( )
( )

∑
∑=

=
−

−
=

n

1i

in

1i

ih

ih
Λ

y

/hxxk

/hxxk
xm

                  (7) 

The shape of the Kernel weights is determined by K, 

where K is a symmetric probability density function that 

satisfies conditions in equations 1. One unique feature of the 

size of the bandwidth is that the smaller it is the more 

concentrated are the weights around x. However, the non-

parametric regression based estimator Tnp for the population 

total T is given by 

np

Λ
T  = ∑

=

n

1i

iy  + ( )∑
∉si

i

Λ

xm                   (8) 

where ( )xm
Λ

 is the Nadaraya-Watson estimator give in (7). 

Hence by substituting (7) in (8) Nadaraya – Watson estimator 

of the population total becomes: 

nw

Λ
T = ∑

∈si

iy  + ∑
∉si

( )
( )



















−

−
∑
∑=

=

n

1i

in

1i

ih

ih y

/hxxk

/hxxk
   (9) 

where 
nwT

Λ
 represents the Nadaraya-Watson estimator of the 

population total. 
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2.2. Properties of Nadaraya-Watson Kernel Estimator of 

the Population Total 

The Nadaraya-Watson Kernel regression estimator is 

given as in (8) and (7) 

In order to find a standard measure of estimation error, the 

Mean Square error (MSE), the study looked at the 

conditional mean and variance of TT np

Λ

−  under the model 

( ) εxmy ii += . 

( )∑∑
∉∈

+=
sj

j

Λ

si

inp

Λ

xmyT  

and ∑∑
∉∈

+=
sj

j

si

i yyT  

So that ( )∑
∉






 −=−
sj

jj

Λ

np

Λ

yxmTT  

Thus ( ) 














 −=




 − ∑
∉sj

jj

Λ

pnp

Λ

yxmET/XTE  

where Xp is the population vector of X-values. 

But ( ) ( )∑= jjij

Λ

yxwxm

∑

∑

∈

−

∈

−








 −








 −

=

si

ji1

si

i

ji1

h

xx
kh

y
h

xx
Kh

( ) ( ) iynhxd
h

xx
K

1

1

js

Λ

si

ji −
−

∈















 −
=∑  

where ( ) ( ) ∑
∈

−







 −
=

si

ji1

js

Λ

h

xx
Knhxd is the standard Nadaraya-

Watson estimator of the density ( )js xd . 

Hence ( ) 














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


 − ∑
∉sj

jj

Λ
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Λ

yxmET/XTE  

( ) ( )


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



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
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

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
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−
−

sj si

ji

1

1
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( ) ( ) ( )( )


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
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
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−

sj si

jjs

Λ

i
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1

j
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ynhxdy
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KnhxdE  

( ) ( )


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


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
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
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
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−
−

sj si si

j
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i
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1
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y
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( ) ( ) { }∑ ∑
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−
−

−






 −





=
sj si
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1
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Λ

yyE
h

xx
Knhxd  

Since ( ) ( )xmyE =  under the model, we have; 






 − pnp

Λ

T/XTE

 

( ) ( ) ( ) ( ){ }∑∑
∈∈
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−
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1
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Λ
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Knhxd

. 

Next, we look at the conditional error variance; 
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Since ( )xδVarY 2=  under the model, we have 


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
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where ( ) ( )∑
∉

−
−













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1

1
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Λ
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2.3. Spline Regression Estimator of the Population Total 

Wahba (1975) has shown that Kernel smoothing estimator

)(m x
Λ

 is closely related to smoothing 

Splines estimator when it is represented approximately as 

a linear function of the data values yi. Hence there exists a 

weight function F (z,xi) such that 

(x)m
Λ

= ∑
=

n

1i

ix)yF(z,
n

1
 

where the function F(z,x) is defined as 

F(z,x) = 






 −
h

xz
k

h

1

f(x)

1
               (10) 

Hence we have 
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Substituting )(xm
Λ

in 
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Λ
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+
si

i

Λ
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i )(xmy  

We get the smoothing spline estimator of the population 

Total 
ss

Λ

T as 

ss

Λ

T = ∑
∈si

iy + ∑ ∑
∉ =







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si

n
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h
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1
.

f(x)

1

n

1
  (11) 

where K(u) is defined as 

K(u) = 0.5 exp(-|u | /1.41)sin(( | u| /1.41) + π/4) 

and the function K(u) has the following properties; 

( )
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32

2
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We can see that the properties of the function K(.) above 

are similar to those given for the Kernel function but can 

take negative values as well. Hence the smoothing spline 

estimator corresponds approximately to a Kernel type 

estimator of order 4. Eubank (1988) has shown that if the 

function m(.) is assumed to be periodic then (x)m
Λ

 

corresponds to a spline estimator with a fixed bandwidth 

parameter h and weights F(z,x) = hw(u/h) where h = 4/1λ  

and w(u) = ( )λuλw  

the estimator corresponding to the periodic spline is 
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=

=
n

1i

ii

Λ

yxz,hF
n

1
xm  

where F(.) is as defined in (10),hence giving 
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=

               (13) 

Since n
-1

F(z,x) does not sum to one, we divide the weights 

by their sum and we denote the modified weights by FR(z,xi), 

then 

FR(z,xi) = ( ) ( )∑ −−
i

ii )/hx(zF)/hx(zF               (14) 

therefore the Fm(z,xi) periodic spline estimator of the 

function m(x)is given by; 
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Substituting (15) in (6) 

We have the Periodic Spline Estimator of the population 

total 
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Next, we consider the conditional error variance; 
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3. Empirical Results and Discussion 

To compare the performance of the five estimators, that is, 

Horvitz Thompson, the Ratio estimator, Sample Mean 

estimator, the Nadaraya - Watson Kernel estimator and 

periodic spline estimator as spline regression estimator so as 

to identify a robust estimators, the study simulated three 

populations based on the following models; linear 

Homoscedastic model, Quadratic Homoscedastic model and 

Linear Heteroscedastic model. Also the study used two real 

populations. The criteria for comparing these estimators are 

average bias, mean square error and the rate of change of 

efficiency as a measure of robustness. 

3.1. The Choice of the Kernel and Bandwidth 

This study used the Gaussian Kernel in Nadaraya - Watson 

estimator of the population total which is defined as 

( ) ( ) ∞<<−∞=
−

u,
2π

1
uK e

2
u

2

1

 

where ∑
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
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n
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i

h

xx

n

1
u . Assume that the Kernel function K 

satisfies the conditions given in equation 1. An optimal 

bandwidth for Nadaraya-Watson smoother was chosen 

within the interval 




 ≤≤
1/51/5

2n

3δ
h

4n

δ
 where δ  is the 
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standard deviation of ,' sxi ( Silverman, 1986). Therefore, 

the bandwidth h used was chosen to be the centre point h= 

7/8 1/5δn− . The Kernel function used in the periodic spline is 

K (u) = 0.5 exp(-|u | /1.41)sin(( | u| /1.41) + π/4) (Wahba, 

1975) 

3.2. Description of the Study Population and Estimators 

The artificial population was simulated in the following 

manner. 

a) In artificial population I, 76 data points were 

generated according to the model; 

( )iii xY εα +






 −+=
4

1
1 where ( )2,0 δε Ni≈ , [ ]1,0Uxi ≈  and 

α = 0.5. 

b) In artificial population II, we again generated 76 data 

points according to the model 

iii xY εα +

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
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2

4

1
1 . 

c) In artificial population III, once more 76 data points 

were generated according to the model 

iiii xxY εα +






 −+=
4

1
1 . Where ix , iand εα  in b and c 

are the same as in population I 

d) The Real population IV, was obtain from the Kenya 

National Bureau of Statistics (KNBS) for the 

population census done in Kenya in 2009. In this 

population, i considered the Auxiliary variable Xi to 

be the number of households in the ith District and 

study variable Yi the total population by District 

except for Nairobi province where Divisions are used 

instated of Districts, where i = 1,2,., 76. Our variable 

of interest Y is the population total. 

e) Population V, this population has variable X 

describing shares a customer already possessed 

(Acquired) versus shares applied for (Booked) in a 

stock exchange brokerage farm, variable Y, both 

expressed in Kshs. Again i selected 76 data points in 

this population. The average bias and Mean Square 

Error of the population total were computed for each 

of the following five estimators: Sample Mean
SM

Λ

Y , 

Horvitz-Thompson
HT

Λ

Y , Ratio estimator
R

Λ

Y , 

Nadaraya-Watson 
nw

Λ

T  and periodic spline
ps

Λ

T . 

Below is a summary of the formulae used in computing 

their respective population total. 

The following are scatter diagrams showing the 

distributions of the five populations mentioned above. 

 

Figure 1. The population is linear with homoscedastic variance structure. 

 

Figure 2. The population is quadratic with homoscedastic variance 

structure. 

 

Figure 3. Linear population with heteroscedastic variance structure. 
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Figure 4. Kenya population census- 2009 (in millions). 

This population appears to be linear with heteroscedastic 

variance structure. 

 

Figure 5. Stock Exchange Shares (in millions Ksh). 

The acquired shares and booked shares in this population 

structure appear to be uncorrelated. 

3.3. Description of the Computation Procedure 

For each artificial population of size 76, samples of size n 

= 40 were generated by simple random sampling without 

replacement and 30 replicate samples were selected and 

estimates computed. Similarly, for the real population of size 

76, samples of each size 40 were replicated 30 by SRSWOR 

and the estimators of the population total computed. For the 

case of Horvitz-Thompson, the sample units xi’s are selected 

with unequal probabilities. To select a sample with unequal 

probabilities with Horvitz-Thompson weights, we have iπ , 

the probability of the unit i being included in the sample such 

that 
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π . For each of the 

population, we compute the true population total ∑
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Define 
rY
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 as the population total estimator, where r = 

SM, R, HT, NW, and PS. Then 
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= 1  where 

irY
Λ

is 

population total estimate of the ith sample and rth estimator 

while R is the number of sample replicates.Hence the bias of 

each estimator of populations total were computed as 
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where k = 1, 2, 3, 4, 5. 

We define the mean square error to be 
2
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rYVar is the unconditional variance of the 

estimator over the 30 replicates for the artificial and natural 

populations. Therefore, the Mean Square Error in the 

estimation of both the artificial and natural populations is 

given by: 
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The Relative Change in Efficiency (RCE) for each 

estimator was given by 
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Where j = 1,2,3,4. 

3.4. Results and Interpretations 

The results of this study are summarized in Tables 1to 5. 

On each population the performance of each estimator is 

analyzed using the average bias and mean square error. The 

average bias is an indication of the measure of how closed an 

estimator is from the true value, while the MSE is used to 

assess efficiency of an estimator. For example an estimator 

will be said to be more efficiency than another, if its MSE is 

comparably smaller i.e if MSE (T1) < MSE (T2), where T1 

and T2 are estimators, then T1 is said to be more efficient 

than T2. 
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Table 1. Summary of the formulae used in computing their respective population total. 

Estimator Formula 

Sample Mean(SM)   

Horvitz-Thompson(HT)  =  

Ratio(R)    

Nadaraya-Watson(NW)  =  +  

Periodic-Spline(PS)   

 

Table 2. Population I (Linear and homoscedastic). 

 SM HT Ratio NW PS 

Estimate 82.38245 82.38245 83.2557 82.17422 82.61311 

Bias 2.090872 2.09187 2.96412 1.88264 2.32153 

Var 16.06147 59.24723 49.725193 17.95833 19.84259 

MSE 20.43321 63.61897 58.511200 21.50266 25.23209 

Population Total 80.29158 

In population I, i noted that from the low values of the bias 

that all the five estimators perform well under these 

conditions. However, Nadaraya-Watson has the least bias 

followed by SM, Horvitz-Thompson, Periodic spline and 

Ratio estimator in that order. Looking at MSE of this 

population, SM estimator has the lowest MSE, followed by 

Nadaraya-Watson, periodic spline, and Ratio. H-T estimator 

has the highest MSE in this population. However, the values 

of the MSE of these estimators on this population are lowest 

as compared to those obtained in the other populations. This 

implies that these estimators have high efficiency in linear 

and homoscedastic population structure. Though the sample 

mean with the least MSE is the most efficient in this 

population. 

Table 3. Population II (Quadratic and homoscedastic). 

 SM HT Ratio NW PS 

Estimate 80.50299 88.61431 88.28095 82.24362 82.75191 

Bias 1.99378 10.1051 9.77174 3.73441 4.2427 

Var 308.0725 1871.043 2037.5316 35.25991 38.1297 

MSE 312.0477 1973.156 2133.018 49.20572 56.13020 

Population Total 78.50921    

In population II, i noted that SM has the least absolute 

bias followed by Nadaraya-Watson, periodic spline, 

Horvitz-Thompson, and lastly the Ratio estimator. Next, 

looking at MSE, the Nadaraya-Watson and periodic spline 

both have low MSE followed by SM, H-T and lastly Ratio 

estimator. Here we note that the Nadaraya-Watson is the 

best estimator for a quadratic and homoscedastic 

population while Ratio estimator has the highest MSE thus 

making it the least efficient estimator for this population. 

This is true because the ratio estimator is based on the 

assumption of linearity which when violated the estimator 

as expected breaks down. 

Table 4. Population III (Linear and heteroscedastic). 

 SM HT Ratio NW PS 

Estimate 74.74086 82.06381 83.4728 80.31023 82.88512 

Bias -2.82623 3.49672 4.905757 1.74314 4.318024 

Var 20.81065 1467.187 1189.2757 25.4385 28.73993 

MSE 28.79823 1479.414 1213.3417 28.47704 47.38526 

Population Total 78.56709    

In population III, noted that Nadaraya-Watson has the least 

absolute bias, followed by SM, Horvitz-Thompson, Periodic 

spline and lastly Ratio estimator. Considering the MSE, 

Nadaraya-Watson and SM have a low MSE followed by 

periodic spline, Ratio and the H-T estimator in that order. 

Nadaraya –Watson and SM become the best estimators of 

this population which is linear and heteroscedastic 

population. 

Table 5. Population IV (Kenya population census-1999). 

 SM HT Ratio NW PS 

Estimate 29.69973 26.436061 30.33481 29.8734 31.40218 

Bias 1.31815 -1.945519 1.953226 1.491818 3.020605 

Var 29.31531 640.95164 560.92100 109.86438 186.017 

MSE 31.05283 644.76673 564.7361 112.0899 195.1441 

Population Total 28.38158 

In population IV, noted that Sample Mean has the least 

bias followed by Nadaraya-Watson, 

H-T, Ratio and lastly periodic spline. Looking at MSE, 

SM has the least MSE, followed by Nadaraya-Watson, 

Periodic spline, Ratio and H-T estimator. Thus, SM has 

proved to be the best estimator for this real population which 

appears to be linear and with heteroscedastic variance from 

the scatter diagram. 
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Table 6. Population V (stock exchange shares). 

 OLS HT Ratio NW PS 

Estimate 22.90294 14.37602 17.61762 21.3429 20.95047 

Bias 2.98857 -5.53835 -2.29675 1.42853 1.0361 

Var 666.5136 1419.2356 1681.9498 197.4472 102.8545 

MSE 675.4452 1449.9089 1687.2246 199.48789 103.9280 

Population Total 19.91437    

This population appears to be neither linear nor 

homoscedastic from the scatter diagram Figure 

5. In this population, Periodic spline has the least absolute 

bias, next is Nadaraya-Watson, Ratio, SM, and lastly 

Horvitz-Thompson estimator. As concerns the MSE, Periodic 

spline has the least MSE thus proving to be the best 

estimator for this population whose structure is not known. It 

is followed by Nadaraya-Watson, SM, H-T and Ratio 

estimator. 

Table 7. Mean Square Error. 

 SM HT Ratio NW PS 

POP I 20.43321 63.61897 58.5112 21.50266 25.23209 

POP II 312.0477 1973.156 2133.018 49.20572 56.13020 

POP III 28.79823 1479.414 1213.3417 28.47704 47.38526 

POP IV 31.052832 644.76673 564.7361 112.0899 195.1441 

POP V 675.4452 1449.9089 1687.2246 199.48789 103.9280 

Table 8. Relative Change in Efficiency (RCE). 

 SM HT Ratio NW PS 

RCE I 14.271595 30.015214 35.454867 1.288355 1.224556 

RCE II 0.40938355 22.254290 19.7369136 0.3243495 0.877976 

RCE III 0.51972363 9.134818 8.6517607 4.2128388 5.2143488 

RCE IV 32.056245 21.7905 27.835925 8.2773587 3.1188819 

Finally, the study compared the relative Change in 

Efficiency (RCE) among the five estimators. First, was the 

case when linearity assumption of the population structure is 

violated. Considering the RCE I, in Table 7 that the 

nonparametric estimators, Nadaraya-Watson and Periodic 

Spline have low RCE. This imply that they are the least 

sensitive to the violation of the linearity structure of the 

population and hence the most Robust among the five 

estimators. They are then followed by the SM, and Ratio 

estimators. Nevertheless, Horvitz-Thompson estimator is the 

least Robust among them as far as the violation of linearity 

assumption of the population structure is concerned. 

Secondly RCE II, investigate the violation of the 

Homoscedastic assumption in a population structure. 

Considering the RCE II, Table 7 that the Nadaraya-Watson, 

Periodic Spline and SM have the lowest RCE. This imply 

that they are the least sensitive to the change of structure of 

the population and hence the most robust among the five 

when homoscedastic assumption is violated. 

On the other hand the Ratio and Horvitz-Thompson are 

least robust to the violation of homoscedastic condition on 

the population structure. Next we consider RCE 111. SM is 

having the least value. Next on the list is Nadaraya-Watson, 

Periodic spline, Ratio and Horvitz-Thompson estimators. 

However, we have also noted that all values of RCE 111 are 

quite low. This implies that though SM is the most robust to 

the change in the population structure, the low value shows 

that the other estimators are also robust and we conclude that 

population I is almost similar in structure to population IV, 

though it seems that homoscedastic condition is violated. 

Lastly, in RCE IV, The Periodic Spline estimator has the 

least value of RCE thus becoming the most robust estimator 

to the change of population structure from linear and 

homoscedastic to the structure which is non linear and non 

homoscedastic. Nadaraya-Watson also proved to be robust to 

the same change in the structure. However, Ratio and 

Horvitz-Thompson estimators proved to be highly sensitive 

to the changes in the population structure. These two 

estimators are therefore less robust as compared to the other 

two non parametric estimators. The least robust estimator on 

this list as fur as this population is concern is SM. Therefore, 

Periodic spline has proved to be robust when both linearity 

and homoscedastic conditions are violated. 

4. Conclusions and Recommendations 

4.1. Conclusions 

This study has revealed that the spline regression estimator 

performed impressively well in all aspects considered: bias, 

efficiency and robustness. We noted that it performed well in 

linear homoscedastic model and in quadratic homoscedastic 

model. However, even when the homoscedasticity 

assumption was violated it still performed well. We therefore 

conclude that Periodic Spline estimator is a robust estimator. 

It is therefore recommended to be used as a suitable 

estimator of the population total when the structure of the 

population is unknown. It has also been noted that the 

Nadaraya-Watson estimator performs well in the linear 

homoscedastic model and also when the linearity conditions 

is violated. It also suffices to mention that its performance 

was unquestionably impressive in the linear heteroscedastic 

model clearly indicating that it is robust to the violation of 

linearity and homoscedastic condition. 

4.2. Recommendation 

i. From the findings of our research, the Horvitz-

Thompson (design-based) estimator and the Ratio 

estimator (model-based) should be used within the 

confines of a linear homoscedastic model. They are not 

appropriate for use when the structure of the population 

is not known. 

ii. The two estimators, Nadaraya-Watson and periodic 

spline estimators; are suitable for use in linear 

homoscedastic model and even when the assumptions 

of the model are violated sensitivity to the change of 

population structure is relatively low and hence are 

classified as highly robust. 

Notation 

1. N = size of the finite population generally assumed to 

be known. 

2. n = sample size. 

3. x = design variable. Its values can either be made 
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available before hand or in the course of data 

collection. 

4. y = the survey variable or variable under study. 

5. y = n-1 ∑
=

n

1i

iy  = sample mean. 

6. s2 = sample variance = 
2

n

1i

i )y(y
1n

1
∑

=
−

−  

7. σ 2(sigma) = population variance = ( )∑
=

−
−

N

1i

2

i YY
1N

1
 

8. Y  = ∑
=

N

1I

iY
N

1
 the finite population mean. 

9. ∑
=

=
N

1i

iT YY  = Finite population total. 

10. Srswor – Abbreviation of simple random sampling 

without replacement. 

11. Ksh – Kenya shilling. 

12. SM=Sample Mean 

13. HT = Horvitz-Thompson 

14. R = Ratio 

15. NW = Nadaraya-Watson 

16. PS = Periodic-Spline 
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