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Abstract: Since sampling weights are not simply equal to the reciprocal of selection probabilities its always challenging to 

incorporate survey weights into likelihood-based analysis. These weights are always adjusted for various characteristics. In cases 

where logistic regression model is used to predict categorical outcomes with survey data, the sampling weights should be 

considered if the sampling design does not give each individual an equal chance of being selected in the sample. The weights are 

rescaled to sum to an equivalent sample size since original weights have small variances. The new weights are called the adjusted 

weights. Quasi-likelihood maximization is the method that is used to make estimation with the adjusted weights but the other 

new method that can be created is correct likelihood for logistic regression which included the adjusted weights. Adjusted 

weights are further used to adjust for both covariates and intercepts when the correct likelihood method was used. We also looked 

at the differences and similarities between the two methods. Analysis: Both binary logistic regression model and multinomial 

logistic regression model were used in parameter estimation and we applied the methods to body mass index data from Nairobi 

Hospital, which is in Nairobi County where a sample of 265 was used. R-software Version 3.0.2 was used in the analysis. 

Conclusion: The results from the study showed that there were some similarities and differences between the quasi-likelihood 

and correct likelihood methods in parameter estimates, standard errors and statistical p-values. 

Keywords: Binary Logistic Regression, Multinomial Logistic Regression, Adjusted Weights, Correct Likelihood, 

Quasi-Likelihood, Nairobi 

 

1. Introduction 

1.1. Introduction 

Logistic regression provides a method for modeling a 

binary response variable, which takes values 1 and 0. For 

example, we may wish to investigate how death (1) or survival 

(0) of patients can be predicted by the level of one or more 

metabolic markers. When the response variable is binary (e.g. 

death or survival), then the probability distribution of the 

number of deaths in a sample of a particular size, for given 

values of the explanatory variables, is usually assumed to be 

binomial. (Courvoisier et al, 2011) 

Regression models have become an integral component of 

any data analysis concerned with describing the relationship 

between the response variable and one or more explanatory 

variables. It is often the case that the outcome variable is 

discrete, taking on two or more possible values. (Hosmer and 

Lemeshow, 2000). 

For example, in a study of obesity for adults, selected 

individuals can have a high body mass index (BMI) or do not 

have a high BMI. In such a case BMI will be the independent 

variable while the independent variables gender, age and race. 

The dependent variable has two possible outcomes: 

individuals having a high BMI, not having a high BMI. 

Subsequently, we can code them as 1 and 0, respectively. 

Binary logistic regression model can be extended to 

multinomial logistic regression model, in which the response 

variable has more than two levels. The simultaneous increases 

in obesity in almost all countries seem to be driven mainly by 

changes in the global food system, which is producing more 

processed, affordable, and effectively marketed food than ever 

before. This passive overconsumption of energy leading to 

obesity is a predictable outcome of market economies 

predicated on consumption-based growth (Swinburn et al, 

2011) Using an example, in the study of obesity for adults the 

BMI value can be divided into four different levels (obese, 

overweight, normal, and underweight), then we build the 
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multinomial logistic regression model with gender, age and 

race as covariates. We labeled the levels as 1, 2, 3 and 4, 

respectively 

Weights always make sure the sample is representative of 

the population of interest and that other objectives are met and 

are particularly important when over-sampling occurs. The 

sampling weights should be considered if the sampling design 

does not give each individual an equal chance of being 

selected. Sampling weights can be thought as the number of 

observations represented by a unit in the population if they are 

scaled to sum to the population size. According to Gelman 

(2007) sampling weight is a mess. It is not easy to estimate 

anything more complicated using weights than a simple mean 

or ratio, and standard errors are tricky even with simple 

weighted means. Contrary to what is assumed by many 

researchers, survey weights are not in general equal to the 

inverse of probabilities selection, but rather are constructed 

based on a combination of probability calculations and 

nonresponsive adjustments. 

In this research since the variance was too small, we 

rescaled the sampling weights to sum to an equivalent sample 

size. These new weights are called the adjusted weights and 

are the ones that were incorporated into the logistic regression 

model to estimate the parameters. 

1.2. Quasi-Likelihood and Adjusted Weights 

Quasi-Likelihood Method can be used to estimate 

parameters in the logistic regression model with adjusted 

weights since the variance function and mean function varies 

independently. This model estimates the variance function 

from the data directly without normal distributional 

assumption. 

1.2.1. Probability Weights 

Weights may vary for several reasons. The estimator of total 

will be equal to �� = ∑ �� �����	
 , where �� is the overall 

probability that the �th element is selected. We can define the 

sampling weight for the � th element as �� = 1 ��� . Since 

Smaller selection probabilities may be assigned to the 

elements with high data collection costs and a high selection 

probabilities may be assigned to the elements with larger 

variances. (Kutner and Nachtsheim, 2004) 

1.2.2. Adjusted Weights 

Here we don’t rely on conditioning on model elements such 

as covariates to adjust for design effects. But we rescale 

sample weights to sum to the equivalent sample size so as to 

obtain estimators The equivalent sample size is smaller than 

the sample size but in other cases the equivalent sample size 

could be larger, but we restrict attention to simple random 

sampling 

In the super population model, let ��denote the response 

variable for the �th unit in the sample. Here, ��are assumed to 

be independent random variables. Let us define the mean for �th unit�� = � (��) and variance�� = ��� (��), � = 1, … , � 

where� is the sample size. The mean and variance of the 

super population model are 

� = � 1∑ ����	
 � � ����
�

�	
 � = ( 1∑ �����	
 ) � �����
�

�	
  

The estimate of� and variance of mean are 

�� = ( 1∑ ����	
 ) � ����
�

�	
 ���(��) = � ∑ �����	
(∑ ����	
 )�� �. 
Let us consider another set of weights defined by��∗ =��( "#∑ "#$#%& ) , where ��  is �� = (∑ "#$#%& )'∑ "#'$#%& . We call ��∗  as the 

adjusted weights and �� as an equivalent sample size (Potthoff, 

Woodbury and Manton 1992). 

The equivalent sample size is smaller than the population 

size. We rescale the sampling weights to sum to an equivalent 

sample size because the original variance is too small to 

include enough information. These new weights are called the 

adjusted weights. 

We can rewrite the estimators using ��as 

� = (1��) � ����  � = (1��) � �����  
�� = (1��) � ����  ���(��) = (1��) � 

1.3. Binary Logistic Regression Model 

When have a binary output variable Y, and we want to 

model the conditional probability Pr(Y = 1|X = x) as a 

function of x; any unknown parameters in the function are to 

be estimated by maximum likelihood. 

1. First let ( )p x be a linear function of x . Every 

increment of a component of x  would add or subtract 

so much to the probability, p must be between 0 and 1, 

and linear functions are unbounded. 

2. Let log p(x) be a linear function of x , so that changing 

an input variable multiplies the probability by a fixed 

amount. Remember that logarithms are unbounded in 

only one direction, whereas linear functions are not. 

3. Finally, we make the logistic (or logit) transformation, 

log
1

p

p−
 (Which has an unbounded range) a linear 

function of x . 

Formally, the model logistic regression model is that 

0

( )
log .

1 ( )

p x
x

p x
β β= +

−
 

Solving for p this gives 
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Where p = the probability of individual i who has a high 

BMI with x set of predictors, 

e  = the base of natural logarithms 
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0β  = the constant of the equation and, 

x  = the coefficient of the predictor variables (Hosmer and 

Lemeshow, 2000) 

1.4. Multiple Logistic Regression Model 

The simple logistic regression model can be easily extended, 

for it to have to more than one predictor variable.  

Definition, 

* = + *,*
…*-.

/

-×

1 = + 11
…12.


/
2×


1� = + 13�
…3�,-.

/

-×

 

We shall have 14* = *, + *
1
 + ⋯ + *-.
1-.
 1�′* = *, + *
3�
 + ⋯ + *-.
3�,-.
 

Therefore �89�: = ;� = <=-(>#4?)
@<=-(>#4?) 
1.5. Multinomial Logistic Regression Model 

When the response variables have more than two levels, we 

still use logistic regression model. We divide the response into A response categories, the variables will be9�
 , . . . , 9�B. Then, 

let A be the baseline, the logit for the Cth 
comparison is: 

;′�DB = EFG< �;�D;�B� = 1′�*DBC = 1, 2, … , A − 1 

;�D = J3�K1�4*DL1 + ∑ J3�(1�4*M)B.
M	
 C = 1, 2, … , A − 1 

(Andersson et al. 2010) 

1.6. Maximum Likelihood 

Maximum likelihood, also called the maximum likelihood 

method, is the procedure of finding the value of one or more 

parameters for a given statistic which makes the known 

likelihood distribution a maximum. (Einicke et al, 2012) 

Maximum likelihood methods are used to estimate and 

make inference about the parameters and these methods are 

efficient and attractive when the model follows the normal 

distribution assumption. Since not all the distributions are 

normal, such as a Poisson distribution, in which the variance is 

same as the mean the method will not always apply. The mean 

and variance parameters do not vary independently. (Balgobin 

and Choi, 2010) 

We can recall that, the joint probability function for binary 

logistic regression is: 

G(9
, … , 9�) = N O�(9�) = N ;�P#�
�	
 (1 − ;�)
.P#

�
�	
  

EFG<G(9
, … , 9�) = EFG< N O�(9�)�
�	
= EFG< N ;�P#(1 − ;�)
.P#

�
�	
  

= � Q9�EFG<;� + (1 − 9�)EFG<(1 − ;�)R�
�	
  

           = � S9�EFG< ( ;�1 − ;�)T + � EFG<(1 − ;�)�
�	


�
�	
  

Since we know that 1 − ;� = 

@<=-(?UV?&=#)  And EFG< W X#
.X#Y = *, + *
3� 
Therefore, EFG<Z(*,, *
) = ∑ 9�(*, + *
3�) −��	
∑ EFG<Q1 + J3�(*, + *
3�)R��	
 here we are trying to find *, 

and *
 to maximize the log-likelihood function: E� = EFG<Z(*, , *
)= � 9�(*, + *
1�)�
�	
− � EFG<�
�	
 Q1 + exp(*, + *
1�)R 

Define: 

^~̀ = +�
��…�a
/ 1b = cdd

e1
f1�f…1afghh
i
 

The model is 9 = 1f* . The estimator of j is *k =(1bf ∑ 1b.
b ).
1bf ∑ �b.
b , where ∑ �lm  a diagonal matrix 

with �th diagonal element n��. (Nandram and Choi, 2002) 

1.7. Quasi-Likelihood 

We analyze the binary logistic regression with sampling 

weights. 

The quasi likelihood is ∏ O�(��)"# = ∏ ;�̀ #"#(1 −��	
��	
;�)(
.`#)"#  E� = EFG<G(9
, … , 9�)" 

= EFG< N O�(��)"# = EFG< N ;�̀ #"#(1 − ;�)"#(
.`#)�
�	


�
�	
  

= � ��Q��EFG<;� + (1 − ��)EFG<(1 − ;�)R�
�	
  

= W� 3�����Y * − � ��EFG<K1 + J=#?L 

Let 
pqrsq�p? =(∑ 3�����) − ∑ "#=#?
@<t#u = 0 

Let 
p'qrsq�p'? = − ∑ "#w=#?W
@<t#uY.=#?<t#ux$#%& W
@<t#uY'  

We find estimators to maximize the quasi log-likelihood 
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function: Z(�) = ∑ ��Z(��)��	
 . 

The estimator of *is*k = (1bfyb ∑ 1b.
b ).
1bfyb ∑ �b.
b . 

1.8. Correct Likelihood 

When we incorporate the weights into the probability 

distribution function (pdf), in order to keep the new function 

still to be a pdf, we need to normalize it. For the discrete 

distribution, the new function becomesℎ(3) = {(=)|∑ {(})|, and for 

the continuous distribution, the new probability distribution 

function becomesℎ(3) = {(=)|~ {(})|�}. We introduce the sampling 

weights in the probability distribution function, ℎ(3) = O(3)". 

Here are some of the distributions and their normalization 

with sampling weights. We compared their similarities and 

differences using the mean and variance. 

Example 1 

Let 3~�(�, n�)with sampling weights (�), The density 

function of normal distribution is: 

O(3|�, n�) = 
�√�X J.(t��)''�'  , −∞ < 3 < ∞ 

Introducing the sampling weights we have: 

O(3∗, �| �, n�) = � 
�√�X J.(t∗��)''�' �"

~ S 
�√�X J.(t∗��)''�' T" �3∗@�.�
 

= �J.(t∗��)''�' �"

~ J.|(t∗��)''�' �3∗@�.�
= J.|(t∗��)''�'�√" ∙ √2; = 1√2; ∙ √�n ∙ J.|(t∗��)''�'  

Here, 3∗~�(�, �'" ) 

We see that the mean of normal distribution is�(3) = �, 

and the mean of normalized distribution with sampling 

weights is �(3∗) = �. There, the mean of normal distribution 

does not change after normalization. Similarly, the variance of 

normal distribution is ���(3) = n� ,and the variance of 

normalized distribution with sampling weights is���(3∗) =�'" . The variance of the normal distribution changes after 

normalization. 

Example 2 

Let 3~jJ��F�EE� (�) with sampling weights (�) , The 

density function of Bernoulli distribution is: �(1 = 3 | �) = �=(1 − �)
.= 3 = 0, 1 0 ≤ � ≤ 1 

Introducing the sampling weights we have: �(3∗, �|�) =�-t∗(
.-)&�t∗�|
-|@(
.-)| 3∗ = 0,1 

Here, 3∗~jJ��F�EE� W -|-|@(
.-)|Y 

We see that the mean of Bernoulli distribution is�(3) = �. 

The mean of normalized Bernoulli distribution with sampling 

weights is �(3∗) = -|-|@(
.-)&�| . So that �(3∗) < �(3)  or �(3∗) > �(3) or �(3∗) = �(3)when � = 1. 

Example 3 

Let 3~��E���F���E (�) with sampling weights (�), The 

density function of Multinomial distribution is: �( ∗~= ) = ∏ �D>�MD	
 , 1D = 1, where the unit is C, otherwise 0. 

Introducing the sampling weights we have: 

�K1L = �∏ �>�MD	
 �"
�∑ ∏ �>�MD	
B� �" 

        z = ∏ �>�"MD	
∏ Q�
" + ��" + ⋯ + �M"R>�MD	
 = N � �"∑ �D"MD	
 �>�M
D	
  

Here, ~~> ��E�(1, �), where � = -�|∑ -�|��%& C = 1, 2, … � 

The mean of � independent Bernoulli distributions is equal 

to �  without any sampling weights; it has changed to � = -�|∑ -�|��%& C = 1,2, … , �  in the presence of the sampling 

weights. 

Example 4 

Let �∗~jJ� W� = <tu
@<tuY with sampling weights (�), The 

density function of binary logistic regression is: �(9∗ = �∗|*) = �`∗(1 − �)
.`∗ 

                         = � J=?1 + J=?�`∗ ∙ S 11 + J=?T
.`∗
 

Introducing the sampling weights we have: 

�(9 = �|*) = w <tu
@<tux"` w 

@<tux"(
.`)
w <tu
@<tux" + w 

@<tux"  

= w <tu
@<tux"` w 

@<tux"(
.`)

@<|tuK
@<tuL| = J=?"`1 + J=?" 

= J=?"`Q1 + J=?"R` ∙ �1 + J=?"�`Q1 + J=?"R= � J=?"1 + J=?"�` ∙ S 11 + J=?"T
.`
 

= � J="?1 + J="?�` S 11 + J="?T
.`  , � = 0, 1 

The mean of binary logistic regression is �∗ = <tu
@<tu. The 

mean of normalized binary logistic regression with sampling 

weights is  � = <tu|
@<tu| . Sampling weights will be used to 

adjust the covariates and intercepts in the normalized binary 

logistic regression. When we estimate binary logistic 

regression coefficients, we multiply sampling weights with 
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both covariates and intercepts to create new covariates and 

new intercepts, and use correct likelihood estimation methods. 

In the new method, we normalize the binary logistic 

regression with adjusted weights and use the correct 

likelihood to make estimation and inferences. Clearly, there 

are some differences between correct likelihood of normalized 

binary logistic regression with adjusted weights and 

quasi-likelihood of binary logistic regression with adjusted 

weights. 

Example 5 

Let �∗~��E� �� = < u&~t�

@∑ < u��~t���&�%& , … , < u��&~t�


@∑ < u��~t���&�%& �  with 

sampling weights(�), The density function of multinomial 

logistic regressions is: 

�∗~��E� �1, < u&~t�

@∑ < u��~t���&�%& , … , < u��&~t�


@∑ < u��~t���&�%& , 

@∑ < u��~t���&�%& �  

Introducing the sampling weights we have: �(9 = �|*)
= W 
∏ �̀!��&�%& Y" �∏ S < u~t�


@∑ < u~t���&�%& T` S 

@∑ < u~t���&�%& T
.∑ `��&�%&�.
�	
  "

S < u~t�

@∑ < u~t���&�%& T" + S 

@∑ < u~t���&�%& T"  

= W 
∏ `�!��&�%& Y" ∙ ∏ J ?`"~t��.
�	
J ?"~t� + 1  

= � 1∏ ��!�.
�	
 �" ∙ ∏ J ?`�"~t��.
�	
W1 + J ?"~t� Y∑ `� ∙ W1 + J ?"~t� Y∑ `�
1 + J ?"~t�  

= � 1∏ ��!�.
�	
 �" N � J ?&"~t�1 + ∑ J ?4�"~t��.
�	
 � �̀ � 11 + ∑ J ?4�"~t��.
�	
 �
.∑ �̀�.

�	
  

For multinomial logistic regression, we take one category 

as the reference category, then compare others with it. We use 

sampling weights to adjust the covariates and intercepts in the 

normalized multinomial logistic regressions. When we 

estimate multinomial logistic regressions coefficients, we 

multiply both covariates and intercepts with sampling weights 

to create new covariates and new intercepts, and use correct 

likelihood estimation methods. In the new method, we 

normalize multinomial logistic regression with adjusted 

weights and use the correct likelihood to make estimation and 

inferences. 

There are some differences between correct likelihood of 

normalized multinomial logistic regressions with adjusted 

weights and quasi-likelihood of multinomial logistic 

regressions with adjusted weights. (Grilli and Pratesi, 2004) 

1.9. Summary 

The sampling weights of the correct likelihood method are 

the same as those in the quasi-likelihood method but both of 

them are adjusted weights. 

Quasi likelihood method has the intercepts as 1, and 

covariates are the regular covariates. However, in the correct 

likelihood method, the sampling weights are further used to 

adjust for both covariates and intercepts. In correct likelihood 

method, we multiply adjusted weights with both intercepts 

and covariates; the intercepts are equal to adjusted and also the 

covariates are equal to regular covariates. 

Table 1. Differences between quasi-likelihood and correct likelihood. 

 Quasi-likelihood Correct Likelihood 

Covariates Regular Covariates Adjusted Covariates 

Intercepts 1 Adjusted Weights 

Likelihood ℎ(3) = O(3)"Not Normalized ℎ(3) = {(=)|∑ {(})|   Normalized 

2. Analysis and Interpretation 

2.1. Analysis Using Binary Logistic Regression 

A binary logistic regression model was used to analyze the 

data. We had four levels of BMI, 1, 2, 3 and 4 in which we 

compared underweight with no underweight or normal weight 

with not normal weight and so on. In the dataset of Nairobi 

County we took each variable as 1, and call the others 0, to 

perform the binary regression. We call BMI equals to 1 as 1, 

and call BMI equals to 2 to 4 as 0 in Nairobi County , did the 

first binary regression, then we repeated the process, call BMI 

equals to 2 as 1, and call BMI equals to 1, 3 and 4 as 0 in 

Nairobi County did the second binary regression. We kept 

repeating until the fourth binary regression analyses .The 

following table shows the results of the binary regression. It 

shows the differences and similarities between the QLM and 

CLM. In this study we analyzed the binary and the 

multinomial logistic regression one by one, basing on the two 

methods to compare their differences and similarities. We 

included p-values (Pr), estimates, Wald Chi-Square (WS) 

statistics and standard errors (SE). The variables age, race and 

gender are the independent variables for regression of BMI. 

From table 2 above we were comparing binary logistic 

regressions in Nairobi County; we can see differences and 

similarities between quasi-likelihood and correct likelihood 

methods. Specific about differences, when BMI equals to 

three compared to the others, the p-value of race is different; 

the quasi-likelihood methods value was 0.4740 (>0.05), but 

when using the correct likelihood method we obtained a value 

of 0.0118 (<0.05). Also in this analysis, we found out that, the 

p-value of gender was also different; the quasi-likelihood 

methods value was 0.0186 (<0.05), but new methods (correct 

likelihood) value was 0.0809 (>0.05). When BMI equals to 

four compared to the others, the p-value of age is different; the 

quasi-likelihood methods value was 0.0377 (<0.05), but the 

new was 0.6150 (>0.05). The p-value of gender is also 

different; the quasi-likelihood methods value was 0.0857 

(>0.05), while the correct likelihoods method value was 

0.0330 (<0.05). 

Also from table 2, we can see that there were some 

similarities, for example, when the BMI was equal to two 
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compared to the others, the p-value of age was the same; the 

quasi-likelihood methods value was 0.6215 and using the 

correct likelihood method, we obtained 0.5671, a clear 

indication that both values obtained were greater that the 

p-value (0.05) When BMI equals to three compared to the 

others, the p-value of age for the quasi-likelihood method and 

correct likelihood methods were 0.4195 (>0.05), and 

0.3789(>0.05) respectively. 

Table 2. Coefficients of binary logistic regression model (n=265). 

Quasi-Likelihood Correct-Likelihood 

 Estimate SE WS Pr Estimate SE WS Pr 

1 vs 2 3 4         

Intercept -4.711 1.3430 10.341 0.0018 -5.375 1.0402 20.3551 0.0001 

Age -0.006 0.0314 0.0241 0.8675 0.0433 0.0311 2.1511 0.1301 

Race 0.1811 0.3781 0.2814 0.6058 0.5311 0.3955 1.0161 0.3155 

Gender 1.481 0.7431 3.6571 0.0341 0.4261 0.6135 0.8131 0.2101 

2 vs 1 3 4         

Intercept -1.3105 1.0711 1.6151 0.2157 -0.615 0.7151 0.8315 0.3457 

Age -0.0015 0.0121 0.2123 0.6215 -0.0041 0.00817 0.3451 0.5671 

Race 0.2101 0.4131 0.7131 0.7157 0.4715 0.2503 3.1131 0.063 

Gender 0.2711 0.5104 0.2501 0.6351 -0.2615 0.3218 0.7505 0.3431 

3 vs 1 2 4         

Intercept 2.2511 1.0431 4.5631 0.00315 1.6810 0.7850 4.7483 0.0281 

Age -0.0106 0.014 0.6905 0.4195 -0.0075 0.00849 0.7855 0.3789 

Race -0.3141 0.4751 0.4831 0.4740 -0.9581 0.3751 6.3510 0.0118* 

Gender -1.2451 0.5351 5.5201 0.0186 -0.5448 0.3181 3.0465 0.0812* 

4 vs 1 2 3         

Intercept -3.3165 1.2371 7.4851 0.0069 -2.5671 0.7788 11.1657 0.007 

Age 0.0241 0.0118 4.2341 0.0377 0.0036 0.00745 0.2525 0.6150* 

Race -0.2370 0.3499 0.433 0.519 0.154 0.2740 0.3701 0.5440 

Gender 0.8070 0.4740 2.9151 0.0857 0.7205 0.3405 4.4811 0.0330* 

*Values with asterisk indicate differences, values without asterisk indicate similarities 

2.2. Analysis Using Multinomial Logistic Regression 

We constructed a multinomial logistic regression model to analyze the four levels of BMI together. The four levels were 

labeled as 1, 2, 3 and 4 where we compared underweight, normal weight, overweight and obese at the same time. We used BMI 

=’1’ as the reference category and compared it with the other three levels of BMI all together. It is the same to use BMI = ‘2’ as 

the reference category. In the study, normal weights, overweight and obese were compared basing on the underweight. 

Table 3. Coefficients of multinomial logistic regression model (n=265). 

Quasi-Likelihood Correct-Likelihood 

 Estimate SE WS Pr Estimate SE WS Pr 

Intercept 2 3.231 1.7401 3.3670 0.0671 4.1280 1.324 9.6420 0.0015* 

Intercept 3 5.4941 1.6300 11.4640 0.0006 5.7941 1.3001 19.8751 0.0001 

Intercept 4 1.6015 1.7861 0.7811 0.3801 2.6711 1.2831 4.3391 0.0371* 

Age 2 -0.00041 0.0340 0.0004 0.9908 -0.041 0.0171 2.1459 0.1410 

Age 3 -0.00312 0.0335 0.006 0.9271 -0.301 0.0184 2.1441 0.1408 

Age 4 0.0214 0.0346 0.4171 0.5164 -0.0213 0.0181 1.3811 0.2431 

Race 2 0.0343 0.4801 0.0041 0.9421 -0.1201 0.4401 0.0845 0.7711 

Race 3 -0.4105 0.5083 0.6516 0.4140 -1.1480 0.5270 4.6750 0.0311* 

Race 4 -0.3767 0.4034 0.8740 0.3411 -0.2751 0.4431 0.4041 0.5311 

Gender 2 -1.1131 0.7501 2.0501 0.1531 -0.6761 0.5731 1.2811 0.2411 

Gender 3 -2.0131 0.8165 6.401 0.0145 -0.851 0.7015 2.151 0.1455* 

Gender 4 -0.613 0.8001 0.6651 0.4615 0.0311 0.6171 0.0012 0.9134 

Values with asterisk indicate differences, values without asterisk indicate similarities 

From table 3 above we can see coefficients of multinomial 

logistic regression, there were differences and similarities 

between quasi-likelihood and correct likelihood methods. 

Specific about differences, when BMI equals to three, the 

p-value of gender is different; the quasi-likelihood methods 

value was 0.0145 (<0.05), whereas that of correct likelihood 

method was 0.1455 (>0.05). The p-value of race is different; 

the quasi-likelihood methods value was 0.4140 (>0.05), but 

that of correct likelihood method is 0.0311 (<0.05). 

The similarities we see from table 3 above shows that when 

BMI was equals to two, the p-value of age is the same between 

these two methods, in the sense that they were both greater 
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than 0.05 since the quasi-likelihood methods value was 0.9908 

and correct likelihood method value 0.1410. The p-value of 

gender was 0.1531 and 0.2411 for the quasi-likelihood and 

correct likelihood respectively. 

3. Discussions and Conclusion 

In this study we used quasi-likelihood method as the old 

method for binary logistic regression model and multinomial 

logistic regression model. The maximum likelihood methods 

to make estimation and inference are no longer useful 

especially when the logistic regression fails to meet normal 

distribution assumption. As Pfeffermann et al (1998) pointed 

out maximum likelihood estimation will produce some bias. 

The contribution of this research is to use the correct 

likelihood method as the new method for binary logistic 

regressions model and multinomial logistic regression model. 

We put weights in the pdf, and in order to keep the new 

function still a pdf, we should divide it by the integral or sum 

of distribution with weights (i.e., we accommodate the 

weights by normalization). In the new method (correct 

likelihood), the weights are further used to adjust the 

covariates and intercepts. The quasi-likelihood method is the 

un-normalized distribution with sampling weights, but the 

correct likelihood method is the normalized distribution with 

sampling weights. By comparing the results of the two 

methods from the analysis, we conclude that there are 

similarities and differences. 

The practical examples we used was to diagnose overweight 

and obesity for adults. The dependent variable is BMI with four 

levels, underweight, normal weight, overweight and obese. We 

built binary logistic regression models and multinomial logistic 

regression models to show the differences and similarities 

between un-normalized distribution with sampling weights and 

normalized distribution with sampling weights. We believe 

using the normalized distribution, the correct likelihood, is the 

right thing to do, although the use of survey weights is a 

controversial area. Gelman (2007). It would be nice to compare 

our methods with the method of post stratification as described 

by Gelman (2007). One may want to post-stratify the survey 

weights to get approximately equal survey weights within strata. 

Nomenclature 

BMI Body Mass Index 
CLM Correct Likelihood Method 
Pdf Probability density function 
QLM Quasi-Likelihood Method 
SE Standard Error 
WS Wald Chi-square 
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