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Abstract: In this paper, it is intended to determine the necessary and sufficient conditions for the existence and hence the 

construction of a Lagrangian ( ),  ,  L t q qɺ  of a dynamical system from its equations of motion. The existence of a Lagrangian is 

vital importance for the Hamiltonian description of a dynamical system since via the Legendre transformation 

( )
1

,  ,  
n

i i

i

L H p q L t q q
=

→ = −∑ ɺ ɺ  we get the Hamiltonian of the system [1, 2]. It is also intended to show that the solution of the 

realization problem for the Hamiltonian system reduces to solving an inverse problem. 
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1. Introduction 

In practice it often happens that the mathematical 

description of a system in terms of state variables is very 

complex or even not known but the external variables can be 

determined from experimental measurements or other 

considerations [3]. This difficulty is one reason for the 

frequent use of a “black-box” description. However it is very 

useful to find a system in state space form to which the set of 

the external variables correspond. In “Realization problem” 

we start with the external behaviour of a system and attempt to 

obtain the state space description. This idea is very necessary 

in control theory. 

The Hamiltonian realization problem is described with a 

view of the inverse problem in classical being its special case; 

that is if the inverse problem can be solved, then there is a 

special case of the Hamiltonian realization problem that is 

solved. In realization problem for nonlinear input-output 

system ( ),  ,  U Y S  with U  the input space, Y  the output 

space and S  the system is to find a manifold M  called the 

state space with initial conditions ( ) 0
0x x=  and functions 

:f M U TM× → , : rh M →ℝ  such that 

( )
( )

,  ,

,     

x f x u

y h x

 =
 =

ɺ

 ( ) 0
0x x= ; x M∈             (1) 

realizes the input-output system ( ),  ,  .U Y S  TM  is the 

tangent bundle of M  [4]. 

2. Formulation of the Inverse Problem 

The formulation of the inverse problem is as follows: 

Consider the Lagrange’s equation 

( ) ( ) ( ),  ,  ,  ,  0k k k

d L L
L q t q q t q q

dt q q

∂ ∂= − =
∂ ∂

ɺ ɺ
ɺ

, 1,  ...,  k n= . (2) 

Consider also a holonomic Newtonian system 

( ),  ,  0k kq f t q q− =ɺɺ ɺ ; ( )2 2 1k nf C +∈ ℝ , 1,  ...,  k n= ,  (3) 

or equivalently in fundamental form [3]. 

( ) ( ),  ,  ,  ,  0i

k ki k
F A t q q q B t q q= + =ɺ ɺɺ ɺ  

( )2 2 1n

kiA C +∈ ℝ , ( )2 1 0n

ijA + ≠ℝ , , 1,  ...,  i k n= .    (4) 

The inverse problem then consists of studying the 
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conditions under which there exists Lagrangin ( ),  ,  L t q qɺ  

such that equations (2) coincides with equations (4) i.e. 

( ) ( ),  ,  ,  ,  i

ki kk k

d L L
A t q q q B t q q

dt q q

∂ ∂− = +
∂ ∂

ɺ ɺɺ ɺ
ɺ

, , 1,  ...,  i k n= . (5) 

Expansion of equation (2) yields 

2 2 2

0i i

k i k i k q

L L L L
q q

q q q q q t q

∂ ∂ ∂ ∂+ + − =
∂ ∂ ∂ ∂ ∂ ∂ ∂

ɺɺ ɺ
ɺ ɺ ɺ ɺ

, , 1,  ...,  i k n= . (6) 

Equation (5) then demands the validity of the equations 

2

kik i

L
A

q q

∂ =
∂ ∂ɺ ɺ

,                   (7) 

2 2
i

kk i k q

L L L
q B

q q q t q

∂ ∂ ∂+ − =
∂ ∂ ∂ ∂ ∂

ɺɺ
ɺ ɺ ɺ

, , 1,  ...,  i k n= .   (8) 

The following definition is necessary for the statement of 

existence of the Lagrangian. 

Definition 

The Lagrangian ( ),  ,  L t q qɺ  is called regular/degenerate in 

a region 
2 1n+
ℝ  of points ( ),  ,  t q qɺ  when the Hessian 

determinant ( ) ( )
2

2 1 2 1

2

n n

j

L
H

q q

+ +∂=
∂ ∂

ℝ ℝ
ɺ ɺ

, 1,  ...,  j n=  is 

non-null/null in it with the possible exception of a (finite) 

number of isolated zeros, [5] 

The solution of the inverse problem needs the following 

ingredients: 

Consider a system of n  second order ordinary differential 

equations 

( ) ( ),  ,  ,  0
i i

F q F t q q q= =ɺ ɺɺ , 1,  ...,  i n= .       (9) 

Define the variations of admissible one-parameter paths 

( ){ },  kP q t δ= , ( )1 2
,  t t t∈ , 13Oεδ ∈ , 1,  ...,  k n=  which 

are at least 
2C  in t  and 

1C  in δ  but not necessarily 

solutions of ( ) 0
i

F q =  by 

( )
0

k
k q

N t

δδ =

∂=
∂

, ( )
0

k
k q

N t

δδ =

∂=
∂
ɺ

ɺ , 

( )
0

k

k

q
N t

δδ =

∂=
∂
ɺɺ

ɺɺ , 1,  ...,  .k n=
           (10) 

The variational forms of iF  are given by 

( ) ( ) ( )k k k

i ik ik ik
M N a t N b t N c N= + +ɺ ɺɺ         (11) 

where 

0

i

ik k

F
a

q δ =

∂
=

∂
, 

0

i

ik k

F
b

q δ =

∂
=

∂ ɺ
, 

0

i

ik k

F
c

q δ =

∂
=

∂ɺɺ
, , 1,  ...,  .i k n=  

Definition 

A system of variational forms ( )M Nɶ  is called the adjoint 

system of ( )i
M N  defined by equations (11) if there exists a 

function ( ),  Q N Nɶ  such that the Lagrange identity 

( ) ( ) ( ),  i i

i i

d
N M N N M N Q N N

dt
− =ɶ ɶ ɶ ɶ , 1,  ...,  ,i n=    (12) 

holds for all admissible variations [6]. 

[3] has shown that the possible structures of ( )i
M N  and 

( ),  Q N Nɶ  are 

( ) ( ) ( )

( ) ( )

2

2
( ) ,    

( ) ,  ,

k k k

i ki ki ki

i j i j j

ij ij ij

d d
a M N N a N b N c

dt dt

d
b Q N N N b N N c N N Nc

dt

= − +

= + −

ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ

 

, , 1,  ...,  i j k n= .                (13) 

If ( )i
M N  coincides with its adjoint ( )iM Nɶ  i.e. if 

( ) ( )i iM N M N= ɶ , 1,  ...,  i n= , 
2N C= , then ( )i

M N  is 

called self-adjoint. 

By comparing equations (11) and (13) we get the conditions 

of self-adjointness for the variational forms: 

                

2       

ik ki

ik ki ki

ik ki ki ki

c c

b b c

a a c b

=
+ =
− = −

ɺ

ɺɺɺ

, , 1,  ...,  i k n=          (14) 

A system of ordinary differential equations is self-adjoint 

when its variational forms are self-adjoint. 

[7] has further shown that 

(A) A necessary and sufficient condition for a holonomic 

one-dimensional Newtonian system in the fundamental form 

( ) ( ),  ,  ,  ,  0A t q q q B t q q+ =ɺ ɺɺ ɺ ; ( )3, mA B C∈ ℝ , 1m ≥ , 

( )3 0A ≠ℝ  to be self-adjoint in a region 
3
ℝ  of points 

( ),  ,  t q qɺ  is that the condition 

B A A
q

q t q

∂ ∂ ∂= +
∂ ∂ ∂

ɺ
ɺ

                 (15) 

Holds everywhere in 
3
ℝ . 

(B) A necessary and sufficient condition for a holomic 

Newtonian system ( ) ( ),  ,  ,  ,  0
ki k

A t q q q B t q q+ =ɺ ɺɺ ɺ , 

, 1,  ...,  i k n=  satisfying the continuity and regularity 

conditions ( )2 1, m n

ki kA B C +∈ ℝ , 2m ≥ , ( )2 1 0n

kiA + ≠ℝ , in 

a region 
2 1n+
ℝ  of points ( ),  ,  t q qɺ  to be self-adjoint in 
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2 1n+
ℝ , is that all of the following conditions are satisfied 

everywhere in 
2 1n+
ℝ : 

,                                                        

,                                                     

2 ,                     

ij ji

jiik

j i

j ki

ijj i k

i

j

A A

AA

q q

BB
q A

tq q q

BB

q

=
∂∂

=
∂ ∂

∂∂  ∂ ∂+ = + ∂∂ ∂ ∂ 

∂∂
−

∂

ɺ ɺ

ɺ
ɺ ɺ

1
,

2

j jk i

i k j i

BB
q

tq q q q









 ∂   ∂∂ ∂= + −   ∂∂ ∂ ∂ ∂   

ɺ
ɺ ɺ

, , 1,  ...,  i j k n=  (16) 

3. Realization of Hamiltonian Systems 

In practice, it often happens that the mathematical 

description of system in terms of state variables is very 

complex or even not known but the external variables can be 

determined from experimental measurements or other 

considerations. This difficulty is one reason for the frequent 

use of “black-box” description. However it is very useful to 

find s system in state space form to which the set of the 

external variables correspond. In “Realization problem”, we 

start with the external behaviour of a system of a system and 

attempt to obtain the state space description. The idea is very 

necessary in control theory. 

We shall now establish the necessary conditions on the 

external behaviour of a Hamiltonian system such that we can 

construct a Hamiltonian system which generates this external 

behaviour. Let ( ),  w y u=  and ( ) *,  ,  :y u x T Y M→ ×ℝ  

be a trajectory in ( ),  ,  ,  
i

M W B f⊂∑ ∑ . The variational 

principle assumes the existence of a parameter ε ∈ℝ  such 

that a family of functions ( ) ( )( ),  , ,  w t x tε ε  exists such that 

i. ( ) ( )( ).,  ,  .,  
i

w xε ε ∈∑  ε∀ . 

ii. ( ) ( )( ).,  ,  .,  w xε ε  is at least 
1C  in ε  and in t . 

iii. ( ) ( )( ) ( ).,  0 ,  .,  0 ,  w x w x= . 

Then the variation of ( ),  x w  is given by 

( ) ( )( ) ( ) ( )
0 0

,  ,  ,  ,  
w x

w t x t t t
ε ε

δ δ ε ε
ε ε= =

 ∂ ∂=  ∂ ∂ 
.   (17) 

Then 

t∀ , ( ) ( )( ) ( ) ( ),  
w t x t

w t t T W T Mδ δ ∈ × .      (18) 

It can be shown 

( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2,  ,  = e

x t w t

d
x t x t w t w t

dt
ω δ δ ω δ δ  [8]. 

Consequently, 

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( ) ( )( )

2

1

2 1

1 2

1 2 2 2 1 1 2 1

,  

,  ,  

t

e

w t

t

x t x t

w t w t dt

x t x t x t x t

ω δ δ

ω δ δ ω δ δ= −

∫
 

( ) ( )( ). ,  .
i

w x∀ ∈∑  and ( ) ( )( ). ,  .w xδ δ∀  of ( ) ( )( ). ,  . .w x  

If ( ) ( )( ). ,  .w xδ δ  has compact support in ( )1 2
,  t t  then 

( ) ( ) ( )( )
2

1

1 2,  0

t

e

w t

t

w t w t dtω δ δ =∫ .           (19) 

This is the general variational principle and it involves only 

the external behaviour of the system. This formulation has a 

useful consequence for the Hamiltonian realization problem 

which can be seen in the following way. 

Let ( ),  eW ω  denote a symplectic manifold and Z  

denote a space of C∞
 function :w W→ℝ .We define a 

weak symplectic form Ω  on Z  by 

( ) ( ) ( ) ( )( )1 2 1 2,  ,  e

w w t
w w w t w t dtδ δ ω δ δ

+∞

−∞

Ω = ∫       (20) 

where w Z∈  and 1wδ , 2wδ  are variations of w  with 

respect to Z  with compact support. If 
e∑  is an external 

system on ( ),  eW ω  such that 
e∑  is a submanifold of Z , 

then 
e∑  can be realized by a Hamiltonian system 

( ),  ,  ,  M W B f∑  iff 
e∑  is a Lagrangian submanifold of [9]. 

One procedure for realizing a Hamiltonian system is 

through solving an inverse problem of the calculus of 

variations as described below. 

Consider a system of second order differential equations 

( ),  ,  0
i

f q q q =ɺ ɺɺ , 1,  ...,  i m= . If we assume that the square 

matrix i

j

f

q

∂
∂ɺɺ

, , 1,  ...,  i j m=  has det 0≠ , then the inverse 

problem is to find the conditions under which there exists the 

Lagrangian L  such that 

( ),  ,  i

i i

d L L
f q q q

dt q q

 ∂ ∂− = ∂ ∂ 
ɺ ɺɺ

ɺ
, 1,  ...,  i m= .        (21) 

We solve this problem through variation methods. Consider 

a family of curves in 
m
ℝ  given by ( ),  q t ε . The variations 

iqδ , 1,  ...,  i m=  are defined by 

( ) ( )
0

,  k

k

q
q t t

ε

δ ε
ε =

∂
=

∂
, 1,  ...,  k m= .       (22) 

Also the variational form are defined by 

( )
1

0

m
i i i

i k k k

k k k k

f f f
M q q q q

q q q
ε

δ δ δ δ
= =

 ∂ ∂ ∂
= + + ∂ ∂ ∂ 
∑ ɺ ɺɺ

ɺ ɺɺ
  (23) 

where 

( ) ( ) ( )( ),  , ,  , ,  
i i

f f q t q t q tε ε ε= ɺ ɺɺ . 
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Assume that there exists other variational forms ( )1M δɶɶ  

such that we can define a function Q  where 

( ) ( )( ) ( )
1

,  
m

i i i i

i

d
q M q q M q Q q q

dt
δ δ δ δ δ δ

=
− =∑ ɶ ɶ ɶɶ     (24) 

qδ∀  and qδɶ  of ( ).,  q ε  defined by equations (22). 

If i iM M=ɶ , then there exists locally a function ( ),  L q qɺ  

such that 

i

i i

d L L
f

dt q q

 ∂ ∂− = ∂ ∂ ɺ
.              (25) 

Instead of taking ( ),  ,  0
i

f q q q =ɺ ɺɺ  now we take 

( ),  ,  
i i

f q q q u=ɺ ɺɺ , 1,  ...,  i m= . If the inverse problem of 

calculus of variation for if  has a solution for the Lagrangian 

L , then the realization of the system ( ),  ,  
i i

f q q q u=ɺ ɺɺ , 

1,  ...,  i m=  is 

,  1,  ...,  

,               1,  ...,  .

i i

i i

d L L
i m

dt q q

y q i m

  ∂ ∂− =  ∂ ∂  
 = =

ɺ            (26) 

Det 0i

i

f

q

 ∂
≠ ∂ ɺɺ

 implies that 
2

det 0
i j

L

q q

 ∂ ≠  ∂ ∂ ɺ ɺ
. 

If we define ( ) ( )
1,...,

1

,  ,  
i

m

i q
i m

i

L
H q L q L q q

q=
=

∂= −
∂∑ ɺ ɺ
ɺ

 and 

i

i

L
p

q

∂=
∂ ɺ

, 1,  ...,  i m= , then the above system is equivalent to 

the Hamiltonian system 

        

 ,   1,  ...,  .

            

i

i

i i

i

i i

H
q

p

H
p u i m

q

y q

∂ = ∂

 ∂= − + = ∂
 =



ɺ

ɺ           (27) 

The observability distribution of this system will have a 

constant dimension of 2m  so the Hamiltonian system (27) 

above is locally minimal i.e. it is controllable and observable 

[10] 

Example 

Consider the one-dimensional harmonic oscillator. The 

equation of motion is given by 

2 0y k y+ =ɺɺ . 

The solution of the inverse problem is given by 

( ) 2 21 1
,  

2 2
L y y my ky= −ɺ ɺ . 

The Hamiltonian is given by 

2
21 1

2 2

p
H ky

m
= + . 

The Hamiltonian system is given by 

 
p

y
m

p ky

 =

 = −

ɺ

ɺ

 

4. Conclusions 

In this paper it was shown how the Hamiltonian realization 

problem is described with a view of the inverse problem in 

classical mechanics being its special case; that is if the inverse 

problem can be solved, then there is a Hamiltonian realization 

problem that is solved. 
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